光活性高分子材料的研究进展
高分子材料的光学性能与应用研究

高分子材料的光学性能与应用研究高分子材料是一类应用广泛的材料,其独特的结构和性质使其在光学领域有着广泛的应用。
本文将探讨高分子材料的光学性能以及其在光学应用中的研究进展。
首先,高分子材料的光学性能是指其对光的吸收、透射和散射等特性。
光的吸收是高分子材料的重要性能之一,它取决于材料的能带结构和分子间的作用力。
一些高分子材料具有宽带隙结构,可以吸收紫外光,因此在紫外光谱仪器中有广泛的应用。
另外,在太阳能电池中,高分子材料也可以吸收可见光,并将其转化为电能。
此外,高分子材料的透射性能也非常重要,它决定了材料在光学器件中的传输效率。
一些高分子材料具有较高的透明度和低的透射损失,因此被广泛应用于光学器件,如光纤通信和液晶显示器。
其次,高分子材料的光学性能还与其分子结构和排列方式密切相关。
例如,聚合物链的取向和排布会影响材料的散射性能。
一些高分子材料拥有有序的分子结构和排列方式,可以实现光的定向传输,因此在光学波导器件中得到了广泛应用。
此外,高分子材料还可以通过控制其分子结构和排列方式,调节其光学性能。
例如,通过添加不同的功能化基团或共聚物,可以改变材料的吸收峰和透射范围,从而满足不同应用的需求。
目前,高分子材料的光学应用研究取得了许多重要的进展。
一个研究方向是开发新型的光学器件和传感器。
例如,一些高分子材料被用作光传感器,可以检测环境中的温度、湿度和压力等参数。
另外,高分子材料还被应用于光子晶体领域,用于制备具有特殊光学性能的人工结构。
此外,高分子材料在光催化、光致变色和光疗等领域的研究也取得了重要的突破。
然而,高分子材料的光学性能和应用仍然面临着一些挑战。
首先,一些高分子材料的光学性能较差,如吸收率低、透射损失大等,限制了其在光学领域的应用。
此外,高分子材料的稳定性和寿命也是一个问题,特别是在高温、高湿等恶劣条件下。
因此,未来的研究应该集中在开发具有优异光学性能和稳定性的高分子材料,以满足不同领域的需求。
具有特殊性能的高分子材料的研究进展及应用

具有特殊性能的高分子材料的研究进展及应用高分子材料是现代科技进步中的重要组成部分。
它们具有多种特殊性能,如高强度、轻质、耐磨损、耐化学腐蚀、导电性等,可被广泛应用于航空、航天、汽车、能源、医疗、电子、建筑等领域。
此外,随着人们对环保与可持续发展的关注,可降解高分子材料也逐渐得到重视。
本文将综述具有特殊性能的高分子材料的研究进展及应用。
一、高强度高分子材料高强度高分子材料是以高分子材料为基础的一类新材料。
在这类材料中,具有高强度的纤维材料如碳纤维、玻璃纤维等被加入其中,尤其是碳纤维,其强度可以和钢甚至是钛合金媲美。
因此,碳纤维增强高分子材料广泛应用于航空航天、汽车、体育用品等领域。
其中,碳纤维增强聚酰亚胺材料具有高温稳定性、阻燃性、耐腐蚀性等性能,应用于耐高温和防火领域,如火箭制造、电力设备绝缘材料等。
二、高导电高分子材料高导电高分子材料通常是通过将导电材料掺杂进普通高分子材料中而制成的。
这类材料具有导电、抗静电等独特性能,可被应用于电子信息领域。
其中最具代表性的是聚苯胺、聚噻吩和聚乙炔等高导电高分子材料。
聚苯胺被广泛应用于制造电池、传感器、太阳能电池等电子设备,聚噻吩则是制造有机发光二极管和太阳能电池的理想材料,聚乙炔在制造柔性电路、显示器和太阳能电池等领域也有广泛应用。
三、高透明高分子材料高透明高分子材料是指在保持高强度和韧性的前提下,同时具有较高的透光性。
这类材料通常是通过选择特殊的合成方法和改进材料结构而实现的。
高透明高分子材料在建筑、玻璃器皿、装饰等领域应用广泛,如聚碳酸酯、聚甲基丙烯酸甲酯、聚苯乙烯等。
其中,聚碳酸酯作为一种高透明、高强度、高韧性的材料,可用于制造汽车、飞机罩等,并有很好的隔热、隔音和阻燃性能。
四、可降解高分子材料可降解高分子材料是指在自然环境下或特定条件下能够分解并降解的高分子材料,这类材料主要由生物质材料和合成可降解高分子材料两类组成。
生物质材料如淀粉、纤维素等是一种可再生的、生产成本低廉、环保的材料,因此在医疗、包装、农业等领域有广泛应用。
功能高分子材料的应用现状及研究进展

科技 圈向导
21 年第 1期 02 4
功能高分子材料的应用现状及研究进展
齐 菲 ( 津现代职业技术学 院 中国 天津 天
3 05 ) 0 3 0
【 要】 摘 新型功能 高分子材料 已广泛应用 于许 多领域 , 本文分析 了传统功能 高分子材料在化 学、 、 生物 医用等方面的发展和应 用; 光 电、 介
绍 了几种新型功能 高分子材的研究进展 : 并论述 了发展功能 高分子材料的重要意 义。
【 关键词 】 功能材料 ; 高分子 ; 现状 ; 发展
材料是人类赖 以生存和发展 的物质基础 . 是人类 文明的重要里程 正等方 面获得 了较大成果 碑, 如今有人将能源 、 信息和材料并列为新科技革命的三大支柱 。 进入 新 型高分 子药物 , 具有缓 释 、 长效 、 毒的特点 , 低 分为两类 : 一类 药 本世纪 8 年代 以来 . O 一场与之相适应的“ 新材料革命” 蓬勃兴起。 功能 物即为高分子本 身 . 以直接 用作药物 . 可 也可以通过合 成获得某些疗 材料是新材料发展 的方 向.而功能高分子材料 占有举 足轻重的地位 . 效 另 一类高分子药物高分 子本身 没有药 用价值 . 而是作为药 物的载 由于其原料丰富 、 种类繁多 , 发展十分迅速 , 已成为新技术 革命 必不可 体 .以离子键或共价键 的形式连接具有药理 活性 的低分子化合物 . 制 少的关键材料【 ” 成 高分子药物控制释放制剂 。 方面达 到将最 小的剂 量在作用 于特定 一 部 位产 生治效 的 目的 ; 另一方 面使药物 的释放 速率可控 . 在提高疗效 1 能高分子材料 . 功 功能高分子材料在其原有性能的基础上 .赋予其某种 特定功能。 的同时 降低 了毒 副作用口 22 _新型 功能高分子材料 诸如 : 化学性 、 电性 、 敏性 、 导 光 催化 性 , 特定金 属离子 的选择螯 合 对 2 .高 吸水性高分子材料 .1 2 性. 以及 生物活性等特殊 功能 . 这些 都与在高分子 主链和侧链 上带有 近 年来开 发的高 吸水性树脂是一种新 型功能高分子材料 . 它可 吸 特殊结构的反应性功能基 团密切相关 收自 身重 量数 百倍 至上千倍 的水 . 身含 有强亲水性基 团同时具有 一 自 2功 能高分子材料 的研究现状 . 高吸水性树脂 的保水性能极 好 . 即使 受压也不会 渗 在原来高分子材料的基础上 ,可将功能高分子材料 分为两类 : 一 定 交联 度 。此外 . 而且具有 吸收氨等臭气 的功 能。 高吸水性 树脂 在石油、 工 、 化 轻工 、 类是 以改进其性能为 目的 的高功能高分子材料 : 另一类 是为赋予其某 水 , 建 筑等部 门被用作堵 水剂 、 脱水 剂 、 增粘剂 、 密封材料等 : 在农业上 可 种新功能的新型功能高分子材料口 以做土壤改 良剂 、 水剂 、 物无 土栽培材料 、 保 植 种子覆盖 材料 , 并可用 21 . 高功能高分子材料 以改造 沙漠 , 土壤流失 等 ; 日常生活 中 , 防止 在 高吸水性树脂可用作 吸 21 化学功能高分子材料 .1 . 餐 鞋垫 、 次性尿 布等。 一 化学功能高分子材料通常具有某种化学反应功 能 . 它将具有化学 水性抹 布 、 巾、 2 .C .2 O 功能高分子材料 2 活性 的基 团连接到 以原有主链链为骨架 的高分子上 离子交换树脂是 在不 同催化剂作用下 , C 以 O 为基本原料 与其他化合物缩 聚成 多 种带有可交换 离子 的活性 基团 、 具有 三维 网状结 构 、 不溶 的交 联聚 种共 聚物 。 其中研 究较多 、 已取得实质性进展 、 并具有应用价值 和开发 合物 . 在水 中具 有足够大 的凝 胶孔或大 孔结构 . 由于它具有高效 快速 O 与环 氧化 合物通过 开键 、开环 、 聚制得 的 缩 分析和分离 功能 . 目前 已广 泛用于硬水软 化 、 废水净化 、 高纯水制 备 、 前 景的共 聚物 是由 C 海水淡化 、 溶液浓缩和净化 、 海水提铀 , 特别是在食 品工业 、 制药行业 、 C 聚物脂肪族碳 酸酯 。把长期以来 因石化 能源燃烧 和代谢 而排放 0共 的污染环境 、 产生温 室效应 的 C O 视为一种新 的资源 。利用它 与其他 治理污染和催化剂 中应用的更为广泛 化 合物共聚 . 成新型 C 聚物材料 . 解决 当今世 界 日趋严重 的 合 O共 对 21 .. 2光功能高分子材料 O 含量增 高等问题有 重要 的现实意义 。 在光 的作用 下 , 实现对 光的传输 、 吸收 、 贮存 、 转换的高分 子材料 C 22 .3形状记忆功 能高分子材料 即为光功能高分子材料 近年来 。 在数据传输 、 能量转换和降低 电阻率 形状 记忆 功能材料 的特 点是形状记忆性 . 它是一种能循环 多次 的 等方面的应用增长迅速 感光性树脂 由感光基 团或光敏剂吸收光的能 发生变形并被保 量后 , 迅速改变分子 内或分子间的化学结构 , 引起物理和化学变化 。 光 可逆变 化。即具有特定 形状 的聚合 物受 到外 力作用 . 一旦给予适 当的条件 ( 、 、 、 、 )就 会恢复到原始状 力 热 光 电 磁 , 致变色高分子具有光色基 团. 不同波长的光对其照射 时会 呈现不同 的 持 下来 : 可将其分 为电致型 、 光致 颜色 , 当其受到特定波长照射后又会恢复为原来 的颜 色。利用这种 态。根据不 同的触发材料记忆 功能 的条件 , 而 热致型和酸碱感 应型。形状记忆 高分子材料是高分子功 能材料研 可逆反应 可以实现信息 的存 储 、 号的显示和材料 的隐蔽 . 用前景 型 、 信 应 究新分支 , 电子 、 在 印刷 、 纺织 、 包装 和汽 车工业 中具 有 良好 的发展 前 十分诱人 。
高分子材料的光学亮度与发光机制研究

高分子材料的光学亮度与发光机制研究摘要:高分子材料的光学亮度与发光机制是当前材料科学研究领域的热点之一。
光学亮度作为一种重要的物理性能指标,对于材料的应用具有重要意义。
本文将介绍高分子材料的光学亮度和发光机制的研究进展,包括发光材料的分类、光学亮度的定义与评价以及不同发光机制的研究。
一、引言随着人们对材料性质的需求不断提升,高分子材料作为一类重要的功能材料,其在光电、显示、传感等领域得到了广泛应用。
而光学亮度作为一个重要的评价指标,在高分子材料的研究中占据着重要地位。
本文旨在探讨高分子材料的光学亮度与发光机制,为材料科学研究和应用提供参考。
二、高分子材料的光学亮度分类1. 荧光材料荧光材料是一类能够将电能或光能转化为荧光的材料,其具有良好的发光特性和较高的光电转换效率。
荧光材料的发光机制主要有激发态传能和自激励辐射两种方式。
以聚苯乙烯为代表的高分子荧光材料在有机光电器件和生物荧光成像等领域具有广阔的应用前景。
2. 磷光材料磷光材料是一类通过磷光激发产生发光的材料,其发光机制主要由磷光矢量耦合效应和电荷传输机制共同作用。
磷光材料的发光特性使其成为照明和显示领域的重要候选材料。
3. 共振发光材料共振发光材料是一类通过共振增强效应产生高强度发光的材料,其发光机制主要依赖于光学共振和多光子吸收。
共振发光材料可以在光学器件中实现高亮度和高效率的发光,因此在LED和激光器等领域有着广泛的应用。
三、光学亮度的定义与评价方法光学亮度是表征材料发光强度的物理量,通常用亮度单位流明/平方米(lm/m²)来表示。
光学亮度的评价可以从发光强度、光谱特征及色彩特性等方面进行。
常用的评价指标包括光谱辐射功率、亮度温度、色坐标等。
四、高分子材料的发光机制研究进展1. 激子共振激子共振是高分子材料中常见的一种发光机制,它由高分子材料中的载流子与激子相互作用而产生。
激子共振的发光机制主要包括激子重组和激子晶格耦合。
研究激子共振有助于提高高分子材料的光学亮度和发光效率。
高分子材料的研究进展

高分子材料的研究进展高分子材料是当今材料科学领域中的热门研究方向。
作为一种具有多种优良性质的材料,它的应用领域十分广泛,例如建筑、医学、电子、机械等领域。
在过去的几十年中,众多科学家和工程师们对高分子材料进行了大量的研究工作,在技术创新和应用推广等方面取得了丰硕成果。
目前,高分子材料的研究重点主要集中在以下几个方面:一、生物可降解高分子材料人们对社会和环境的关注程度日益提高,对于高分子材料的可持续性和环保性提出了更高的要求。
因此,生物可降解高分子材料已成为材料领域的研究热点。
生物可降解高分子材料能够在一定时间内被自然环境分解,不会对环境造成污染,具有很大的优势。
目前,生物可降解高分子材料的研究主要集中在增加降解速率和提高材料性能方面。
许多研究人员通过改变材料的化学结构来促进降解,同时保证其物理性能和机械性能。
二、智能高分子材料与传统的高分子材料相比,智能高分子材料具有更高的适应性和反应性。
智能高分子材料与外界环境发生交互作用后,可以调整自身的结构和性质,实现预期的物理或化学变化。
智能高分子材料可根据外界的温度、湿度、光线等条件进行响应性反应,因此被广泛应用于传感器、记忆材料、微机器人等领域。
同时,智能高分子材料也有着很好的潜力,未来的应用前景很广阔。
三、高性能高分子材料高性能高分子材料具有优异的力学、热学和电学性能,并且具有极强的耐化学腐蚀性和稳定的化学性质。
在工业和航空航天等领域中,高性能高分子材料的应用十分广泛。
高性能高分子材料的研究需要追求更高的材料性能和机械性能,如强度、硬度、耐磨性、耐热性等,同时还需要考虑材料的稳定性和重复性。
总的来说,高分子材料的研究尚有很大发展空间。
从实现高分子生物可降解化到开发新颖高性能高分子材料,这个领域的研究人员仍然在为寻找更好的材料和性质而进行努力。
随着科学技术的发展和人们对材料性能的不断追求,相信高分子材料必将在未来的科技发展中起到更大的作用。
高分子光致发光材料的研究现状

电子共有化运动
• 根据量子力学知识,单个原子中处于束缚态的电子能量是量化 的,只有当它脱离原子核的束缚成为自由电子后,其能量才是连续 的。在单个原子中,某一电子只受到原子核和同一原子中其他电子 的相互作用。原子组成晶体后,由于原子壳层的交叠,电子不再局 限在某一个原子上,而是在整个晶体中运动,这种运动称为电子的 共有化运动。电子共有化运动使能级分裂为能带。
电子性质与能带结构
• 固体的电子性质和能带结构密切相关。按能带模型,可将固体 划分为导体、半导体和绝缘体,它们之间的差别决定于:①各自的 能带结构;②价带是充满的还只是部分地被充满;③满带和空带之 间能隙的大小。
图2 简化的半导体能带模型
图3 固体材料的电性质及分类依据Leabharlann 高分子光致发光机理•
高分子在受到可见光、紫外光、X-射线等照射后吸收光能,高分子电子壳
聚苯撑乙烯类(PPV)光致发光材料
PPV是第一个被报道用作发光材料制备光致发光器件 的高分子,是目前研究得最多、最广泛、最深入,也被认 为是最有应用前途的异类高分子光致发光材料。经典的 PPV材料具有不溶与不熔的特点,不能满足发光器件的制 作要求。因此许多科学家都致力于通过化学改性和物理改 性来设计合成出结构、性能各异的PPV及其衍生物,以满
层内处于价带的电子向较高能级导带跃迁,形成空穴和电子。空穴可能沿高分
子移动,并被束缚在各个发光中心上,辐射是由于导带上的电子返回较低能量
级价带或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗
散,从而可以产生发光现象。
图4 光致发光机理示意图
光致发光材料研究现状
1 聚苯撑乙烯类(PPV)光致发光材料 2 聚芴类(PF)光致发光材料 3 聚噻吩类(PT)光致发光材料
我国高分子化工材料的研究进展

我国高分子化工材料的研究进展【摘要】近些年来,中国在世界工业领域的地位越来越高,甚至被不少国家称之为“世界工厂”,由此促使了社会对工业技术的重视,也让更多的人开始重视高分子化工材料的研究和应用。
本文先分析了高分子化工材料的定义和特点,结合当前研究现状分析了未来发展进程,旨在为同行工作提供参考。
【关键词】高分子化工材料;智能材料;聚乙烯材料;规划高分子材料是当今社会经济发展的基础性产业,是推动国民经济稳步发展的助力产业,是国家科技引导型产业,也是国家战略产业。
就目前高分子材料的发展情况进行分析,其在社会各行业的应用范围更加广泛,不仅是传统石化产业的延伸和优化,还是电子信息、国防建设、新型能源、航空航天等领域的主要配套材料,是一种技术含量高、附加值大、新能源要求高的现代化产业体系。
在当今社会发展中,高分子材料的研究越来越深入,在优化传统工艺的同时需要对其可持续发展进行深入分析。
文章具体分析了高分子化工材料的研究现状和进展。
一、高分子材料概述在当今化工材料研究中,高分子材料的重视度越来越高,其不仅是发展速度最快的产业,也是产能转化率最高的产业。
在当前高分子材料研发的时候,其最早起步于工业制造和生产,随着城市化发展进程的加快,高分子化工材料逐渐被应用在计算机、医学和生物学等多个领域,这也促使了越来越多的人对其进行深入研究。
为了更好的保证高分子材料的研究科学性和有效性,提前对理念和特点进行分析十分必要。
1、高分子材料的概念高分子化工材料是一种由聚合物的许多基本单元构成的综合性结构,是一种具备良好耐磨性、强韧性、绝缘性和高密度的化工材料。
伴随科学技术的发展,高分子化学材料的研究逐渐朝着精密化、多元化和综合化发展,其中有不少材料都是由植物提取出来的天然物质。
在目前,常见的高分子材料主要包含了合成纤维、塑料、橡胶以及聚乙烯材料等。
2、高分子材料的特点高分子材料是一种多元化、多功能化的材料,其通常都是通过加强内需和生产技术来提高材料的生产和加工效率。
新型光电功能高分子和改性材料的研究和应用

新型光电功能高分子和改性材料的研究和应用近年来,随着科技的不断进步和人们对于新型材料需求的不断增加,新型光电功能高分子和改性材料的研究和应用逐渐成为一个热门话题。
这些材料在太阳能电池、LED灯、智能材料、传感器、医疗领域等多个领域都有着广泛的应用前景。
一、光电功能高分子1、定义光电功能高分子是一种结构精密、功能丰富、性能优异的高分子材料。
它具备光电转换、发光、光电导、扩散、储存、控制等多种功能,可用于太阳能电池、显示器、灯光发光、激光器、生物医学等领域。
2、研究进展在研究方面,目前光电功能高分子的研究主要分为两个方向:一是加强光电性能,如提高电荷传输速率、降低光电转换损失等;另一个是开发新的材料,如手性共聚物、有机无机复合材料等来实现更好的光电转换和性能改善。
目前,随着材料科学和能源技术的快速发展,新型高分子太阳能电池已经成为研究的一个重要方向。
与传统的硅太阳能电池相比,高分子太阳能电池具有更高的可塑性和整合性,更适合于各种形状、大小、颜色的应用。
3、应用前景随着环保、绿色能源的日益受到重视,高分子太阳能电池的应用前景也非常广阔。
它不仅能够普及到日常生活中的小型电子设备,如电子表、手机、电脑,还能够在大型光伏电站、船舶、飞机、太空站等领域得到广泛应用。
高分子太阳能电池有着应用范围广泛、能源效率高、光学稳定性好、制造成本低等优势,是一种非常有前途的新型能源技术。
二、改性材料1、定义改性材料指的是对普通材料进行改性处理后,使其具备更好的性能。
改性的方式有很多种,例如添加复合材料、改变交联程度、改变粒径等等。
改性材料具有更好的机械强度、防腐能力、导电性能和光电性能等特点,可以应用于电子、光电、能源、化工、医药等领域。
2、研究进展在改性材料的研究中,有许多方法可供选择。
例如,利用高分子材料来制备改性材料,通过掺杂金属或半导体等添加物来改变材料的电学性能,用表面活性剂或二氧化硅纳米粒子等改变材料表面性质等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光活性高分子材料的研究进展
具有光学活性的高分子( 又称旋光性聚合物) 是上世纪五十年代中期发展起来的一类
新型功能高分子材料。
从结构上看, 旋光性聚合物分子主链上带有不对称因素, 它或者含有带手性原子的基团而具有构型上的特异性, 又或者可以形成相对稳定的单向螺旋链而具备
构象上的特异性。
这种结构上的特点赋予了聚合物材料的旋光性能, 即可以使通过它的偏振光发生偏转。
在自然界的生物体中, 旋光性大分子特有的不对称结构在维持生命过程、新陈代谢、物种繁衍、进化等方面都起着决定性的作用。
在人工合成领域, 旋光性聚合物也已经在手性识别和对映体拆分方面得到广泛应用, 并在手性催化剂、液晶、生物医药、光学开关和非线性光学等领域展现出良好的应用前景。
随着材料科学的飞速发展, 设计合成具有新型结构的聚合物, 并研究其独特的性质和功能已成为当今高分子科学领域研究的热点。
从聚合方法的角度, 可以把旋光性聚合物的合成方法分成几大类, 主要有自由基聚合、离子引发聚合、缩合聚合、催化偶联聚合、配位聚合、非旋光性聚合物的手性修饰法、模板印记聚合等方法。
其中, 通过缩合聚合的方法来获得旋光性聚合物的途径最为普遍。
对于具有羧基、氨基、酰氯、醇、酸酐等双活性基团的手性单体, 都可以通过缩合聚合的方法得到旋光性聚合物。
本文主要介绍由此类活性官能团单体聚合得到的高性能旋光性聚合物, 如聚酯酰亚胺、聚酰胺、聚酰胺酰亚胺等的研究进展。
一、螺旋链光活性高分子材料
自60年代烯类单体的Ziegler-Natta催化聚合得到立体规整性聚合物以来,聚合物的立体化学研究引起了广泛地兴趣。
我们知道很多有规立构的天然和合成高分子,其结晶的固态以螺旋结构存在,螺旋链结构是高聚物的基本结构之一。
然而,绝大部分全同立构螺旋链烯类聚合物像聚苯乙烯、聚丙烯在溶液中不具有光学活性,原因是由于这种高分子在熔融或溶液中很快达成热力学平衡而成无规线团。
然而,如果聚合物具有的侧基足够大,链旋转受到阻碍,以致能保持稳定的螺旋结构,那么,得到的螺旋聚合物具有光学活性。
具有单向螺旋链结构的新型光学活性高分子的出现,对于深人了解和研究高分子的立体化学有着重要学术意义之外,它们的实际应用前景也已引起关注。
Yuki和okamoto等人首先将具有单向螺旋链结构的光学活性高分子PTrMA作手性固定相,在高效液相色谱(H PLC ) 中用于各种不同外消旋化合物的拆分,日本Daicel化学工业公司己有商品名CHIRAPAK OT (+)的手性HPLC柱,可以分离20多种外消旋化合物,如碳烃类、酷类、酞胺和醇类等,特别是含有芳香基的外消旋化合物更为有效,它们当中有一些是不能采用其它固定相予以分离的。
光学活性的聚三氯乙醛作为吸附介质也成功地采用在消旋化合物色谱分离中阅。
进一步的应用可能包括:(l) 用于不对称合成的手性试剂;(2) 手性催化剂或模拟酶;(3) 作为合成功能膜和泡囊的组份。
在这些可能的应用中,从合成上可以将螺旋链光学活性结构( 即主链手性) 与侧链手性结构结合起来以进一步提高选择性。
一般来讲,可以预料一个纯的光学活性高分子的物理性质将会明显地不同于外消旋高分子混合物的物理性质,这种差异已在光
学活性的聚甲基丙烯酸,一甲基节醋中观察到。
因此,目前对这类新型的光学活性高分子的另一个特殊的兴趣是基于它们的压电、铁电和非给扰仁光学性质方面的可能的应用,目前,国际上有几个实验室正对光学活性高分子的非线性光学性质进行广泛的研究。
为了获得非线性效应,必须使高分子具有一个非中心对称相的结构,为此可以将取向的棒状分子排列形成薄层来解决,预计具有螺旋链结构的光学活性高分子也可以被采用。
二、可溶性研究
旋光性功能高分子在其优良的耐热性基础上又具有光学活性,因此在电子器件、光学开关、生物材料方面都具有巨大的潜在利用价值。
但是,由于聚酯酰亚胺类分子链本身的刚性、结构的规整性以及分子间的相互作用,使普通的聚酯酰亚胺类聚合物很难溶解,造成其加工和成型困难。
因此在保证耐热性的基础上,提高旋光性高分子的可溶性非常重要。
通过对结构控制,如引入柔性链、大的侧基、扭曲和非共平面结构等,都可以改善其可溶性。
通常的聚酯酰亚胺类高分子只有在强极性溶剂中才可溶解,如DMF、DMAc、NMP、H2SO4、DMSO 等。
Abdol R H对比了以PMDA-Lleu直接同二酚单体聚合所得的产物与PMDA-L-leu同带烷氧链的二醇反应后再同二酚聚合所得的产物,发现含有柔性烷氧链的共聚产物,其溶解性比直接聚合所得的产物好,共聚产物在常温下可以溶解在极性溶剂中,而直接缩聚产物在相同溶剂中加热条件下才能溶解。
三、热性能分析
聚酯酰亚胺、聚酰胺酰亚胺、聚酰胺类高分子通常具有较好的耐热性,在较高温度下可以保持性质的稳定,这主要归功于其分子主链上刚性的芳族结构。
优良的热稳定性可以为此类材料用做光学器件提供有力保证;同时在手性分离柱固定相方面,温度对手性柱的分离因子有重要影响,常温下难以分离的手性对映体通过适当提高温度可以实现分离,而且耐热性材料可以减少较高柱温时流动相对固定相的损耗,延长其使用寿命。
因此耐热性是旋光性高分子材料一个重要性能指标。
通常采用热重分析仪在氮气气氛下,以10℃/ min~ 20℃/ min 升温速率测量材料的热降解性能。
对于相同单元合成的旋光性聚合物,通常聚合度越高,材料的耐热性越好。
Shadpour E M以相同单体不同溶剂经溶液聚合得到相同单元的聚合物,发现以氯化亚砜/ 吡啶为溶剂所聚合得到的聚合物比以对甲苯磺酰氯/ DMF/ 吡啶为溶剂所得聚合物特性黏数大,且降解温度也随之提高。
氨基酸的种类对聚合物的热稳定性也有明显影响。
目前由于官能团的限制,引入到聚酯酰亚胺类旋光性高分子的氨基酸主要有亮氨酸、苯丙氨酸、甲硫氨酸、异亮氨酸、组氨酸等,其中含甲硫氨酸单体的聚合物热稳定性较差。
通常其5% 失重温度在300℃左右,10%失重温度在330℃左右;这可能是由于甲硫氨酸本身分解温度比较低,在聚合物中最先分解,影响了聚合物的整体热稳定性。
Abdol R H对全芳族聚酯酰亚胺与中间含烷氧链的聚酯酰亚胺进行比较,发现含烷氧链的聚合物热稳定性有所下降,说明柔性链段会降低聚合物的热稳定性。
而且,柔性链段的引入降低了聚合物的结晶度,有利于分子链段的运动,使聚合物出现
了明显的玻璃化转变。
四、旋光性研究
比旋光度是评价旋光性高分子材料的重要参数。
一般情况下,手性分子都呈现旋光性,所以很多学者认为手性结构的存在是聚合物具有旋光性的根本原因。
然而,某些手性分子却没有旋光性,如4-乙基癸烷、5-甲基-1-辛醇等。
尹玉英等认为导致这些聚合物具有旋光性的根本原因是分子链形成了一定的螺旋结构。
光学家导出了旋光度和旋光方向的螺旋模型计算公式,当分子中含有多个螺旋结构时,则所有螺旋旋光度的代数和为正是右旋的,为负是左旋的;但测定旋光度的溶剂不同及pH值微小变化都可能对螺旋结构进而对旋光度的值产生较大影响。
刘引烽等合成了一系列旋光性的聚酰胺,其旋光性与所用的单体的旋光方向相反,说明聚合物的旋光方向与单体构型间没有简单直接的对应关系。
所设计的聚合物的分子主链由2, 3-二乙酰氧基丁二酰氯和四种二胺( 乙二胺、丁二胺、己二胺或癸二胺) 组成;随着二胺单体中亚甲基个数的增加,聚酰胺的旋光度值减少;这是因为在聚合物分子结构中,亚甲基的个数增加会使不对称单元的密度有所降低,同时增加分子链柔性,使其在溶液中的构象稳定性降低。
刘引烽认为虽然构型的不对称性是导致聚合物旋光性的根本原因,但往往构象对旋光性的贡献会超过构型。