人教版2017初中二年级(下册)数学 第十九章 一次函数 19.1.1 函数(第2课时)(PPT课件)
第十九章《一次函数》内容分析与教学建议

第十九章《一次函数》内容分析与教学建议广州市真光中学苏国东一、教材分析(一)本章地位和作用函数知识在中学数学教学中占有极为重要的地位,既是教学的重点,也是教学的难点之一。
本章学生第一次接触函数,是初中函数部分的起始章,是后续学习二次函数和反比例函数的基础。
对函数概念和函数图像的理解贯穿于整个函数的教学中,随着具体函数的学习而不断加深认识,同时对函数概念中体现的变化与对应思想的理解又决定了具体的一次函数、反比例函数、二次函数的学习能否顺利地进行。
一次函数是学生接触的第一类具体函数形式,由具体实例抽象出统一的函数形式、利用函数图像归纳函数性质、利用函数图像和性质解决实际问题,这种由特殊到一般再到特殊的研究方法是研究函数的基本方法。
变化对应、数形结合等思想方法贯穿函数学习的始终,要尽可能地使学生加深认识。
(二)新版教材的变动《一次函数》在旧版教材中是在初二上学期学习的内容,《反比例函数》是在初二下学期学习的内容。
而在新版教材中《一次函数》移至初二下学期,《反比例函数》移至初三下学期,使学生学习函数的难点后移。
新旧教材本章内容与课时安排有所调整,“用函数观点看方程(组)与不等式”并入“一次函数”一节,题目作了修改。
19.1节是基础部分,19.2节是重点内容,19.3节是拓展提高部分。
具体如下:k 的性质显得更为妥当。
二、本章知识结构框图三、内容分析(一)函数的相关概念1.理解函数的概念及对应关系:①两个变量相互联系,一个变量发生变化时另一个变量也随之变化;②函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的。
2.能根据实际问题列出解析式,写出自变量的取值范围(使解析式有意义、实际问题有意义),给出自变量的一个值,会求出相应的函数值(学生对函数与函数值可能混淆)。
3.能较准确地画出简单函数的图象,学会利用图象分析变量之间的数量关系。
函数图象直观反映变量间的单值对应关系,提供了数形结合地研究问题的方法。
人教版数学八年级下册《一次函数》19.1.1 函数的概念

y 与x的关系为y =
−
.
应用概念
(3)变量x、y满足|y|=x,则y是x的函数. (×)
当x=1时, =1,∴ y=±1.
应用概念
(4)在 =
中, 是常量,π和r是自变量,
V是r的函数. (× )
π是常量.
应用概念
例2. 汽车的油箱中有汽油50 升,如果不再加油,那
数),相对应的收费为y(元).
(2)并直接写出当x=2和x=6时,对应的y值.
解:当x=2时, y=8;
当x=6时, y= 1.8×6+2.6=13.4.
巩固练习
练习2. 某地白天乘坐出租车收费标准如下:乘坐里程不超
过3公里,一律收费8元;超过3公里时,超过3公里的部分,
每公里加收1.8元;设乘坐出租车的里程为x(公里)(x为整
么油箱中的油量y(单位:升)随行驶里程x(单位:
千米)的增加而减少,汽车行驶过程中的平均耗油量
为0.1 升/千米.
(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)汽车行驶200 千米时,油箱中还有多少油?
应用概念
例2. 解:
(1) y与x的函数关系为 y = 50 − 0.1x .
w t
(3) = π
π
S r
>
10 -1
y x
0<x<10的整数
y n
n为正整数
(4) y = 10 – x
(5) =
的整数
【问题3】 在每个变化过程中,对每个变量的取
值范围有限制吗?
关系式
《19.1 变量与函数》课件(含习题)

讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
人教版初二数学一次函数画函数图像(课件)

1. (1)画出函数y=2x-1的图象.
y -3 -1 1
1
-1 O 1
x
-1
(2)判断点A(2.5,4),B(1,3),C(2.5,4) 是否在函数y=2x-1的图象上.
课堂.归纳(一):
如何判断一点是否在某个函数的图象上?
若一个点在某个函数图象上,那么这一点的横、
纵坐标一定满足这个函数的解析式,反之则不 在。
四、总结归纳
1.画函数图象的三个步骤分别是什么? 2.如何从图象中了解函数的变化情况?
五、布置作业
1. 教材习题19.1第8题.
2.
(1)画出函数y=3x的图象. (2)在同一直角坐标系中画出函数 y=-x 与y=-x+6的图象;观察这两个图象的位置如何 . (3)在同一直角坐标系中画出函数 y=2x+6与y=-x+6的图象;观察这两个图象的位 置如何.
(1,2) , (3,3) , (—1, —1), (1.5,0) A、1 B、2 C、3 D、4
5、已知某一函数的图象如图所示,根据图象回答下列问题:
(1)确定自变量的取值范围;
解:自变量的取值范围是-4≤X≤4; (2)求当x=-4,-2,4时y的值是多少?
解:y的值分别是2, -2,0
(3)求当y=0,4时x的值是多少? 解:当y=0时,x的值是-3,-1或4 当y=4时,x=1.52Leabharlann (1)画出函数 y x2 的图象.
9
描点,连线.
(2)从图象 中观察,当x<0 时,y随x的增大 而增大,还是y 随x的增大而减 小?当x>0时呢 ?
4 1 0 1 49
y
y=x2
10
8
6
第十九章--一次函数章前目标及教案

第十九章一次函数一、教学目标1. 结合实例,了解常量与变量和函数的概念,体会变化与对应的思想,了解函数的三种表示方法,能利用图像分析简单的函数关系。
2. 理解正比例函数和一次函数的概念,会画它们的图像,能结合图像讨论这些函数的基本性质,能利用这些函数分析和解决简单的实际问题3. 能根据所给定的信息确定一次函数表达式,会作一次函数图像,并利用它们解决简单的实际问题。
4 .经历函数,一次函数等概念的抽象概括过程,体会函数的建模思想,进一步发展学生的抽象思维能力。
5. 经历一次函数的图像及性质的探索过程,在合作交流活动中发展学生的意识和能力6. 经历一次函数及其图像解决实际问题的过程,发展学生的数学应用能力,经历函数图像信息的识别与应用过程,发展学生的思维能力。
二、教学重点与难点:重点:理解函数的概念,识别函数图像,会应用一次函数的知识解决实际问题。
难点:理解函数的概念,一次函数的图像和性质,能把实际问题转化为函数模型,并解决实际问题。
三、课时安排:共13课时19.1 函数 4课时19.2 一次函数 5课时19.3 课题学习,选择方案 2课时小结 2课时课标对本节课的要求:探索简单实例中数量关系和变化规律,理解函数的概念,会确定自变量的取值范围并能求函数值。
)在下面的我国人口数统计表中,年份与人口数可以记作两个变与y,•对于表中每个确定的年进一深对变量课标对本节课的要求:会用描点法画函数图像。
课标对本节课的要求:会用函数图像解决简单的实际问题。
课标对本节课的要求:。
课标对本节课的要求:。
课标对本节课的要求:。
课标对本节课的要求:。
课标对本节课的要求:。
课标对本节课的要求:。
课标对本节课的要求:。
19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
19.1.2 第1课时 函数的图象及其画法
第1课时 函数的图象及其画法
9.2019·自贡 均匀地向一个容器内注水,在注满水的过程中,水面的
高度 h 与注水时间 t 的函数关系如图 19-1-10 所示,则该容器是图
19-1-11 中的( D )
图 19-1-10
图 19-1-11
[解析] 由图象可知,水面的高度 h 随注水时间 t 的变化规律是先快后慢,D 选项容
图 19-1-12
第1课时 函数的图象及其画法
[解析] A 项,根据图象可得,乙车前 4 秒行驶的路程为 12×4=48(米), 正确; B 项,根据图象可得,在 0 到 8 秒内甲车的速度每秒增加 4 米,正确; C 项,根据图象可得,两车到第 3 秒时行驶的路程不相等,错误; D 项,在 4 至 8 秒内甲车的速度都大于乙车的速度,正确.故选 C.
器的底面积由小变大,水面高度随注水时间变化符合先快后慢.故选 D.
第1课时 函数的图象及其画法 10.图 19-1-12 是甲、乙两车在某时段速度随时间变化的图象,下列 结论错误的是( C ) A.乙车前 4 秒行驶的路程为 48 米 B.在 0 到 8 秒内甲车的速度每秒增加 4 米 C.两车到第 3 秒时行驶的路程相等 D.在 4 至 8 秒内甲车的速度都大于乙车的速度
大致图象是( B )
图 19-1-9
第1课时 函数的图象及其画法
[解析] 小刚从家到学校行驶的路程 s(m)应随他行走的时间 t(min)的增大
而增大,因此 A 选项一定错误;而等车的时候行驶的路程不变,因此 C,D
选项错误,所以能反映小刚从家到学校行驶的路程 s(单位:m)与时间 t(单
位:min)之间函数关系的大致图象是 B.故选 B.
第1课时 函数的图象及其画法
函数的图象(精品课件)
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12
第1课时 变量与函数(1)(导学案)
第十九章一次函数19.1 函数19.1.1 变量与函数第1课时变量与函数(1)——变量与函数的意义及关系一、新课导入1.导入课题汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h.在这个过程中,哪些量变化,哪些量不变?这些量之间有什么关系?这就是我们今天要学习的“变量与函数(1)”(板书课题).2.学习目标(1)知道常量、变量,感受两个变量之间的变化关系.(2)了解函数的概念,知道函数是刻画变量之间对应关系的数学模型.3.学习重、难点重点:能判断常量和变量,感知两个变量之间的变化关系.难点:函数的概念的理解.二、分层学习1.自学指导(1)自学内容:P71到P72的内容.(2)自学时间:6分钟.(3)自学方法:仔细阅读课文内容,关键词语、重点内容做上记号.(4)自学参考提纲:①指出课本中四个问题中的变量和常量.②在同一个问题中,如果存在两个变量,那么这两个变量之间应存在什么关系?③完成P71的练习.④上面这些问题中的两个变量都有什么样的关系?⑤在圆的面积S和半径r中,r每取一个值,S都有唯一值与它对应吗?2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生对同一个问题中的两个变量的相关联系和一一对应关系的理解.②差异指导:对个性和共性问题进行分类指导.(2)生助生:小组研讨,帮助解决疑难问题.4.强化(1)强调常量与变量的意义.(2)组织学生交流练习中的问题的答案.(3)强调同一问题中的两个变量之间的对应关系.1.自学指导(1)自学内容:P73例1上面的部分.(2)自学时间:4分钟.(3)自学要求:完成思考中的两个问题的阅读理解,对函数定义进行逐词逐句研读领会其含义.(4)自学参考提纲:①分别指出思考中的两个问题的自变量和函数.②什么叫做函数值?③给出自变量x的一个值,函数y可以有两个以上的值吗?会不会存在自变量x的多个值对应的函数y的值都相同呢?2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生对思考中x与y的对应关系的确定与理解,是否能区别自变量与函数的意义.②差异指导:对学生学习中存在的疑问进行点拨、引导.(2)生助生:小组研讨,帮助解答疑难问题.4.强化(1)理解思考中的两个问题.(2)讲解归纳板书函数的定义.(3)展示本节所学知识点和数学思想方法.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己本节课的学习收获和存在的疑惑.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的态度、学习方式方法、学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时内容是学生的认知,由常量到变量的一个飞跃,教学时应根据学生的认知基础,创设丰富的现实情境,使学生感知变量存在的意义,体会变量间的相互依存关系和变化规律,掌握函数的知识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)某人要在规定的时间内加工100个零件,则工作效率p与时间t之间的关系,下列说法正确的是(C)A.数100和p,t都是变量B.数100和p都是常量C.p和t是变量D.数100和t都是常量2.(15分)下列关系式中,y不是x的函数的是(B)A.y+x=0B.|y|=2xC.y=|2x|D.y=2x2+43.(15分)下面分别给出了变量x,y之间的对应关系的图象,其中y是x的函数的是(D)4.(15分)在下表中,设x表示乘公共汽车的站数(站),y表示应付的票价(元).根据此表,下列说法正确的是(A)A.y是x的函数B.y不是x的函数C.x是y的函数D.以上说法都不对5.(15分)下列有序实数对中,是函数y=2x-1中自变量x与函数值y的一对对应值的是(D)A.(-2.5,4)B.(-0.25,0.5)C.(1,3)D.(2.5,4)二、综合运用(15分)6.如图,在一个半径为18 cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、函数各是什么?答案:小圆半径、圆环面积.(2)如果挖去的圆半径为x(cm),那么圆环的面积y(cm2)与x的关系式是y=324π-πx2;(3)当挖去圆的半径由1 cm变化到9 cm时,圆环面的面积由323πcm2变化到243πcm2.三、拓展延伸(15分)7.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30):(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是函数?答案:x是自变量,y是函数.(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?答案:13分钟(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?答案:2<x<13,13<x<20(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少?答案:52.9。
人教版《一次函数》_上课课件
对于表中每个确定的年 份x,都对应着一个确定的 人口数y.
年份 1984 1989 1994 1999 2010
人口数/亿 10.34 11.06 11.76 12.52 13.71
【获奖课件ppt】人教版《一次函数》 _上课 课件1- 课件分 析下载
【获奖课件ppt】人教版《一次函数》 _上课 课件1- 课件分 析下载
它们的关系为y=50-0.1x.
(2)指出自变量x的取值范围.
解:仅从式子y=50-0.1x看,x可以取任意实数. 但是考 虑到x代表的实际意义为行驶路程,因此x不能取负数. 行驶中的耗油量为0.1x,它不能超过油箱中现有汽油 量50,即0.1x≤50.
因此,自变量x的取值范围是0≤x≤500.
【获奖课件ppt】人教版《一次函数》 _上课 课件1- 课件分 析下载
八年级数学·下 新课标[人]
第十九章 一次函数
19.1.1 变量与函数 (第2课时)
学习新知
检测反馈
想一想
你听说过“两个铁球同时落地”的故事吗?站在 比萨斜塔顶部,让两个铁球自由下落,在铁球下落 的过程中,随着时间的变化,铁球下落的速度是怎 样变化的?铁球下落的速度v随下落的时间t的变化 而变化.这就是我们今天要继续学习的内容.
归纳总结
含分式的函数,自变量的取值范围应满足的 条件是:分母不为0;含二次根式的函数,自变量的 取值范围应满足的条件是:被开方数为非负数;既 含分式又含二次根式的函数,自变量的取值范围 应满足的条件是:分母不为0且被开方数为非负数.
【获奖课件ppt】人教版《一次函数》 _上课 课件1- 课件分 析下载
【获奖课件ppt】人教版《一次函数》 _上课 课件1- 课件分 析下载
(3)汽车行驶200 km时,油箱中还有多少汽油? 解:汽车行驶200 km时,油箱中的汽油量是函 数y=50-0.1x 在x=200时的函数值.