安徽省黄山市普通高中2019届高三数学(理科)11月“八校联考”试题及答案

合集下载

安徽省2019届高三皖南八校第一次联考数学理试卷附答案

安徽省2019届高三皖南八校第一次联考数学理试卷附答案

绝密★启用前安徽省2019届高三皖南八校第一次联考数学(理)试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.设集合,则A B=A.B.C.D.2.设是虚数单位,且,则实数k=A.2B.1C.0D.3.函数且是增函数的一个充分不必要条件是A.B.C.D.4.偶函数在上是增函数,且,则满足的实数的取值范围是A.(1,2)B.(-1,0)C.(0,1)D.(-1,1)5.如图在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,,F为AE的中点,则A.B.C.D.6.若函数在区间(-a,a)上是单调函数,则实数a的取值范围是A.B.C.D.7.设不等式组,所表示的平面区城为M,若直线的图象经过区域M,则实数k的取值范围是A.B.C.D.8.设是等差数列,,且,则=A.59B.64C.78D.869.函数的图象恒过定点A,若点A在直线上,且m>0,n>0,则3m+n的最小值为A.13B.16C.D.2810.函数的部分图象如图所示,将函数的图象向右平移个单位长度,再向上平移2个单位长度,得到的图象则)图象的一条对称轴为直线A.B.C.D.11.已知函数是定义在上的单调函数,若对任意恒成立,则的值是A.5B.6C.7D.812.设函数在R上存在导数,对任意的,有,且时,.若,则实数a的取值范围为A.B.C.D.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知是第二象限角,且,则14.用表示a、b两个数中的最小,设,则由函数的图象,x轴与直线x=和直线x=2所围成的封闭图形的面积为__________。

15.设函数的最大值为M,最小值为N,则M+N=___。

16.已知高数的周期为4,且时,,,若方程恰有5个实数解(其中m>0),则m的取值范围为_____________。

2019届高三数学11月“八校联考”试题 文

2019届高三数学11月“八校联考”试题 文

2019届高三数学( 文科 )试题注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号填写在相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设全集R =U ,集合{}1>=x x A ,集合{}3|x y x B -==,则B A =A.)0,(-∞B. )1,(-∞C. ),1[+∞D. ]3,1(2. 复数z 满足(12)7i z i -=+,则复数z 的共轭复数z = A.i31+ B. i 31-C. i +3D. i -33. 某选手参加选秀节目的一次评委打分如茎叶图所示,去掉一个最高分 和一个最低分后,所剩数据的平均数和方差分别为 A .5.86, 2.1 B .5.86, 5.1C .86, 2.1D .86, 5.14. 在等差数列{}n a 中,若前10项的和1060S =,77a =,则4a = A .4B .4-C .5D .5-5. 以抛物线x y 82=上的任意一点为圆心作圆与直线02=+x 相切,这些圆必过一定点, 则这一定点的坐标是A .)2,0(B .(2,0)C .(4,0)D . )4,0(6. 设0>ω,函数2)3sin(++=πωx y 的图象向右平移34π个单位后与原图象重合,则ω的最小值是 A.32 B. 34C.23D. 37. 已知βα,是两个不同的平面,n m ,是两条不同的直线,给出下列命题: ①若βα⊂⊥m m ,,则βα⊥ ②若,//,//,,ββααn m n m ⊂⊂则//αβ③如果n m n m ,,,αα⊄⊂是异面直线,那么n 与α相交④若m n m //,=βα ,且,,βα⊄⊄n n 则α//n 且β//n . 其中正确的命题是A. ①②B. ②③C. ③④D. ①④8. 已知)(x f 是定义在),(+∞-∞上的偶函数,且在]0,(-∞上是增函数,设)2.0(),3(log ),7(log 6.0214f c f b f a ===,则c b a ,,的大小关系是A. a b c <<B. a c b <<C. c a b <<D. c b a <<9. 函数()()112122x x f x ⎡⎤=+--⎣⎦的图象大致为10. 如右图,程序框图的输出值x =A.10B.11C.12D.13 11. 已知正三棱锥V ABC -的正视图、俯视图如下图所示,其中VA =4,AC =32,则该三棱锥的侧视 图的面积为A .9B .6C.33 D .3912. 已知()f x 为R 上的可导函数,且x R ∀∈,均有),(2)(x f x f <',则有A .)0()2017(),0()2017(40344034f e f f f e ><- B .)0()2017(),0()2017(40344034f e f f f e <<- C .)0()2017(),0()2017(40344034f e f f f e >>- D .)0()2017(),0()2017(40344034f e f f f e<>-第Ⅱ卷(非选择题 共90分)V4AD正视图CAB3233俯视图二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.) 13. 已知向量b a ,满足||=2,||=1,与的夹角为60 0,则|2-|等于 . 14. 已知等比数列{}n a 的各项都是正数,且1321,,22a a a 成等差数列,则91089a a a a ++= .15. 若过点(3,0)A 的直线l 与曲线 1)1(22=+-y x 有公共点,则直线l 倾斜角的取值范围为 .16. 已知实数y x ,满足4230y x x y x y ≥⎧⎪+≤⎨⎪+-≥⎩,则12xz y ⎛⎫=- ⎪⎝⎭的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知函数)sin 3(cos cos )(x x x x f +=. (Ⅰ)求)(x f 的最小值;(Ⅱ)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,若1)(=C f 且7=c ,4=+b a ,求ABC S ∆.18.(本小题满分12分)如图,边长为2的正方形ADEF 与梯形ABCD 所在 的平面互相垂直,其中BC CD BC AB CD AB =⊥,,//,M O DF AE AB ,,121===为EC 的中点. (Ⅰ)证明://OM 平面ABCD ;(Ⅱ)求BF 与平面ADEF 所成角的余弦值.19.(本小题满分12分)2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿素长势与海拔高度、土壤酸碱度、空气湿度的指标有很强的相关性.现将这三项指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 的值评定人工种植的青蒿素的长势等级;若能ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿素的长势情况.研究人员随机抽取了10块青蒿人工种植地,得到如表结果;(Ⅰ)若该地有青蒿人工种植地180个,试估计该地中长势等级为三级的个数;(Ⅱ)从长势等级为一级的青蒿人工种植地中随机抽取两个,求这两个人工种植地的综合指标ω均为4的概率.20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a b y a x 过点)23,1(,过右焦点且垂直于x 轴的直线截椭圆所得弦长是1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设点B A ,分别是椭圆C 的左,右顶点,过点(1,0)的直线l 与椭圆交于N M ,两点(N M ,与B A ,不重合),证明:直线AM 和直线BN 交点的横坐标为定值.21.(本小题满分12分)已知函数)(ln )2()(2R a x a x a x x f ∈---=. (Ⅰ)求函数)(x f y =的单调区间;(Ⅱ)当1=a 时,证明:对任意的2)(,02++>+>x x e x f x x.22.(本小题满分10分)已知函数12)(-=x x f . (Ⅰ)求不等式4)(<x f ;(Ⅱ)若函数)1()()(-+=x f x f x g 的最小值为a ,且)0,0(>>=+n m a n m ,求nm 12+的取值范围.黄山市2019届高三“八校联考” 数学( 文科 )参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1~6 D B C C B C , 7~12 D C A C B D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.) 13. 2 14. 21+ 15. ),65[]6,0[πππ16. [21,3]三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.) 17.解:(Ⅰ)x x x x x x x f cos sin 3cos )sin 3(cos cos )(2+=+===.…………………3分当时,f (x )取最小值为. …………5分(Ⅱ),∴.在△ABC 中,∵C ∈(0,π),,∴, …………8分又c 2=a 2+b 2﹣2ab cos C ,(a +b )2﹣3ab =7.∴ab =3.……………10分∴ ……………………………………………………12分18.证明:(Ⅰ)∵O ,M 分别为EA ,EC 的中点, ∴OM ∥AC .∵OM ⊄平面ABCD ,AC ⊂平面ABCD ….∴OM ∥平面ABCD …………………5分 解:(Ⅱ) ∵DC =BC =1,∠BCD =90°,∴∵. ∴BD ⊥DA .∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,BD ⊂平面ABCD , ∴BD ⊥平面ADEF∴∠BFD 的余弦值即为所求.……………………………………………………………9分在,∴….∴.………………………………………12分19.解:(1)计算10块青蒿人工种植地的综合指标,可得下表:由上表可知:满意度为三级(即0≤w≤1)的只有A1一块,其频率为.………3分用样本的频率估计总体的频率,可估计该地中长势等级为三级为180×=18个.…6分(2)设事件A为“从长势等级为一级的青蒿人工种植地中随机抽取两个,这两个人工种植地的综合指标ω均为4”.由(1)可知满意度是一级的(w≥4)有:A2,A3,A4,A6,A7,A9,共6块,从中随机抽取两个,所有可能的结果为:{A2,A3},{A2,A4},{A2,A6},{A2,A7},{A2,A9},{A3,A4},{A3,A6},{A3,A7},{A3,A9},{A4,A6},{A4,A7},{A4,A9},{A6,A7},{A6,A9},{A7,A9},共15种.…………………………………………………………………………………8分其中满意度指标ω=4有:A2,A3,A6,共3位,事件A发生的所有可能结果为:{A2,A3},{A2,A6},{A3,A6},共3种,………………………………………………………………10分所以P(A)==.……………………………………………………………12分20.解:(1)设椭圆C: +=1的右焦点为(c,0),令x=c,可得y=±b=±,即有=1,又 + =1,解方程组可得a=2,b=1,则椭圆C的标准方程为+y2=1;…………………………5分(2)证明:由椭圆方程可得A(﹣2,0),B(2,0),设直线l的方程为x=my+1,M(x1,y1),N(x2,y2),将直线的方程代入椭圆方程x2+4y2=4,可得(4+m2)y2+2my﹣3=0,y1+y2=﹣,y1y2=﹣,……………………………………………………… 7分直线AM:y=(x+2),BN:y=(x﹣2),联立直线AM,BN方程,消去y,可得x==,……………………………………………………………9分由韦达定理可得, =,即2my1y2=3y1+3y2,可得x==4.即直线AM和直线BN交点的横坐标为定值4.…………………………………………12分21.解:(Ⅰ)由题意知,函数f(x)的定义域为(0,+∞),由已知得.………2分当a≤0时,f'(x)>0,函数f(x)在(0,+∞)上单调递增,所以函数f(x)的单调递增区间为(0,+∞).当a>0时,由f'(x)>0,得,由f'(x)<0,得,所以函数f(x)的单调递增区间为,单调递减区间为.综上,当a≤0时,函数f(x)的单调递增区间为(0,+∞);当a>0时,函数f(x)的单调递增区间为,单调递减区间为.…6分(Ⅱ)证明:当a=1时,不等式f(x)+e x>x2+x+2可变为e x﹣ln x﹣2>0,……………7分令h(x)=e x﹣ln x﹣2,则,可知函数h'(x)在(0,+∞)单调递增,而,0所以方程h'(x)=0在(0,+∞)上存在唯一实根x0,即.当x∈(0,x0)时,h'(x)<0,函数h(x)单调递减;当x∈(x0,+∞)时,h'(x)>0,函数h(x)单调递增;…………………………10分所以.即e x﹣ln x﹣2>0在(0,+∞)上恒成立,所以对任意x>0,f(x)+e x>x2+x+2成立.………………………………………………12分22.解:(1)不等式f(x)<4,即|2x﹣1|<4,即﹣4<2x﹣1<4,求得﹣<x<,故不等式的解集为{x|﹣<x<}.………………………………………………………5分(2)若函数g(x)=f(x)+f(x﹣1)=|2x﹣1|+|2(x﹣1)﹣1|=|2x﹣1|+|2x﹣3|≥|(2x﹣1)﹣(2x﹣3)|=2,故g(x)的最小值为a=2,………………………………………………………………7分∵m+n=a=2(m>0,n>0),则+=+=1+++=++≥+2=+,故求+的取值范围为[+,+∞).……………………10分。

【精品】2019届安徽省黄山市高三第二次质量检测数学(理)试题(解析版)

【精品】2019届安徽省黄山市高三第二次质量检测数学(理)试题(解析版)

2019届安徽省黄山市高三第二次质量检测数学(理)试题一、单选题1.已知复数z满足,则复数在复平面内表示的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】化为的形式,由此确定所在象限.【详解】依题意,对应点在第一象限,故选 A.【点睛】本小题主要考查复数的除法运算,考查复数对应点所在的象限,属于基础题.2.已知,则的值为( )A.B.C.D.【答案】B【解析】先求得的值,然后利用,展开后计算得出正确选项.【详解】由于,所以.故,故选B.【点睛】本小题主要考查同角三角函数的基本关系式,考查化归与转化的数学思想方法,属于基础题.3.已知,则展开式中项的系数为( )A.B.C.D.【答案】D【解析】首先利用定积分求得,然后利用二项式展开式,求得所求的系数.【详解】依题意.二项式展开式中,还有的项为,故所求系数为,故选 D.【点睛】本小题主要考查定积分的计算,考查二项式展开式的中指定项的系数,属于基础题.4.已知双曲线的左焦点为,过的直线交双曲线左支于、B两点,则l 斜率的取值范围为()A.B.C.D.【答案】B【解析】根据双曲线渐近线的斜率,求得直线斜率的取值范围.【详解】双曲线的渐近线为,当直线与渐近线平行时,与双曲线只有一个交点.当直线斜率大于零时,要与双曲线左支交于两点,则需直线斜率;当直线斜率小于零时,要与双曲线左支交于两点,则需斜率.故选 B.【点睛】本小题主要考查双曲线的渐近线,考查直线和双曲线交点问题,属于基础题.5.已知向量满足,且,则在方向上的投影为( ) A.B.C.D.【答案】B【解析】根据得到两个向量数量积为零,由此列方程求得,再根据投影的计算公式求得投影的值.【详解】由于,故,即.故在方向上的投影为.【点睛】本小题主要考查平面向量垂直的数量积表示,考查投影的计算,属于基础题.6.已知部分图象如图,则的一个对称中心是( )A.B.C.D.【答案】D【解析】根据三角函数对称中心的对称性列等式,由此求得的一个对称中心.【详解】由图可知是的一个对称中心,是函数的最高点.设的一个对称中心为,根据图像的对称性得,解得.故选 D.【点睛】本小题主要考查三角函数图像的对称性,考查数形结合的数学思想方法,属于基础题. 7.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑中,平面,,且,为AD的中点,则异面直线与夹角的余弦值为()A.B.C.D.【答案】C【解析】作出异面直线所成的角,利用余弦定理计算出这个角的余弦值.【详解】设是中点,连接,由于分别是中点,是三角形的中位线,故,所以是两条异面直线所成的角.根据鳖臑的几何性质可知.故,在三角形中,由余弦定理得,故选 C.【点睛】本小题主要考查异面直线所成的角的余弦值的求法,考查空间想象能力,考查中国古典数学文化,属于基础题.8.设,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】将两个条件相互推导,根据能否推导的情况判断出正确选项.【详解】由于,当时,.当时,可能是负数,因此不等得出.故是的充分不必要条件.故选A.【点睛】本小题主要考查充分、必要条件的判断,考查不等式的性质,属于基础题.9.某空间几何体的三视图如图所示,其中正视图和俯视图均为边长为的等腰直角三角形,则此空间几何体的表面积是( )A.B.C.D.【答案】C【解析】根据三视图判断出原图的结构特征,并由此求得几何体的表面积.【详解】画出图像如下图所示,几何体为.其中,故几何体的表面积为.故选 C.【点睛】本小题主要考查三视图还原为原图,考查几何体表面积的计算,属于基础题.10.程序框图如图,若输入的,则输出的结果为( )A.B.C.D.【答案】C【解析】运行程序,当时退出循环结构,输出的值.【详解】运行程序,,,判断是,,判断是,,判断是,,判断是,,判断是,,判断是,……,以此类推,每三个为一个周期,每个周期的和为,,,判断是,,判断否,输出.故选 C.【点睛】本小题主要考查程序框图,考查利用周期性求和,属于基础题.则概11.将三颗骰子各掷一次,设事件=“三个点数互不相同”, =“至多出现一个奇数”,率等于( )A.B.C.D.【答案】C【解析】先求得所表示的事件,然后利用古典概型概率计算公式,求得所求的概率.【详解】事件表示“三个点数互不相同,且至多出现一个奇数”.基本事件总数有种,其中一个奇数两个偶数的事件有种,没有奇数的事件有种,故包含的事件有种,故所求概率为.故选 C. 【点睛】本小题主要考查古典概型的计算,考查分类讨论的数学思想方法,属于基础题. 12.已知定义在上的连续可导函数无极值,且,若在上与函数的单调性相同,则实数的取值范围是( )A.B.C.D.【答案】A【解析】根据连续可导且无极值,结合,判断出为单调递减函数.对求导后分离常数,利用三角函数的值域求得的取值范围.【详解】由于连续可导且无极值,故函数为单调函数.故可令,使成立,故,故为上的减函数.故在上为减函数.即在上恒成立,即,由于,故,,所以,故选A.【点睛】本小题主要考查函数的单调性与极值,考查利用导数求解不等式恒成立问题,属于中档题.二、填空题13.若整数x,y满足不等式组,则的最小值为_______.【答案】【解析】画出可行域,由此判断出可行域内的点和原点连线的斜率的最小值.【详解】画出可行域如下图所示,依题意只取坐标为整数的点.由图可知,在点处,目标函数取得最小值为.【点睛】本小题主要考查简单的线性规划问题,要注意不等式等号是否能取得,还要注意为整数,属于基础题.14.已知椭圆的焦点为,以原点为圆心、椭圆的焦距为直径的⊙与椭圆交于点,则________.【答案】【解析】根据椭圆焦点三角形的面积公式,直接计算出三角形的面积.【详解】直径所对的圆周角为直角,故.【点睛】本小题主要考查椭圆焦点三角形的面积计算公式,其中为对的角,考查圆的直径的几何性质,属于基础题.15.定义在上的函数满足,若,且,则______.【答案】4【解析】先化简的表达式,然后计算的表达式,结合的奇偶性可求得的值.【详解】依题意,故为奇函数..故,所以.【点睛】本小题主要考查函数的奇偶性,考查函数值的求法,属于基础题.16.已知是锐角的外接圆圆心,是最大角,若,则的取值范围为________.【答案】【解析】利用平面向量的运算,求得,由此求得的取值范围.【详解】设是中点,根据垂径定理可知,依题意,即,利用正弦定理化简得.由于,所以,即.由于是锐角三角形的最大角,故,故.【点睛】本小题主要考查平面向量加法、数量积运算,考查正弦定理,考查三角形的内角和定理等知识,综合性较强,属于中档题.三、解答题17.已知数列满足,.(Ⅰ)求数列的通项公式;(Ⅱ)令,数列的前项和为,求证:.【答案】(Ⅰ)();(Ⅱ)详见解析.【解析】(1)利用“退一作差法”求得数列的的通项公式.(2)利用裂项求和法求得的表达式,由此证得不等式成立.【详解】解:(Ⅰ)因为………………① 当时,,当时,…………②由①-②得:,因为适合上式,所以()(Ⅱ)由(Ⅰ)知,,即.【点睛】本小题主要考查“退一作差法”求数列的通项公式,考查裂项求和法求数列的前项和,属于中档题. “退一作差法”类似已知求这种类型的题目,利用来求得数列的通项公式.18.如图,已知四边形满足,,是的中点,将沿翻折成,使得,为的中点.(Ⅰ)证明:平面;(Ⅱ)求平面与平面所成锐二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】(I)连接交于点,连接,利用中位线证得,由此证得平面.(II)以、、所在的直线分别为轴建立空间直角坐标系,通过计算平面和平面的法向量,计算出所求锐二面角的余弦值.【详解】解:(Ⅰ)连接交于点,连接,由四边形为菱形,为的中点得,,平面,所以平面 .(Ⅱ)由第(Ⅰ)小题可知得,以、、所在的直线分别为轴建立空间直角坐标系(如图).则,,,,,,,设平面的法向量,则,令,解得,同理平面的法向量,,故平面与平面所成锐二面角的余弦值为 .【点睛】本小题主要考查线面平行的证明,考查利用空间向量法求二面角的余弦值的方法,属于中档题.19.某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格不合格合格总计性别男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:(Ⅰ)由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为:是否合格性别不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关. (Ⅱ)“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为,.的分布列为:20 15 10 5 0所以.(Ⅲ)由(Ⅱ)知:.故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.20.设函数.(Ⅰ)求函数单调递减区间;(Ⅱ)若函数的极小值不小于,求实数的取值范围.【答案】(Ⅰ)和;(Ⅱ).【解析】(I)先求得的表达式,然后利用导数求得的单调递减区间.(II)求得的解析式和它的导数.对分成两者情况,通过的单调区间,求得的极小值,根据极小值不小于列不等式,利用构造函数法解不等式求得的取值范围.【详解】解:(Ⅰ)由题可知,所以由,解得或.综上所述,的递减区间为和.(Ⅱ)由题可知,所以.(1)当时,,则在为增函数,在为减函数,所以在上没有极小值,故舍去;(2)当时,,由得,由于,所以,因此函数在为增函数,在为减函数,在为增函数,所以极小值即.令,则上述不等式可化为.上述不等式①设,则,故在为增函数.又,所以不等式①的解为,因此,所以,解得.综上所述.【点睛】本小题主要考查利用导数求函数的单调区间,考查利用导数求与函数极值有关的问题,考查化归与转化的数学思想方法,综合性很强,属于难题.21.选修4— 4:坐标系与参数方程设极坐标系与直角坐标系有相同的长度单位,原点为极点,轴正半轴为极轴,曲线的参数方程为(是参数),直线的极坐标方程为.(Ⅰ)求曲线的普通方程和直线的参数方程;(Ⅱ)设点,若直线与曲线相交于两点,且,求的值﹒【答案】(Ⅰ)曲线的普通方程为,直线的参数方程(是参数);(Ⅱ).【解析】(I)利用,消去,求得曲线的普通方程.先求得直线的直角坐标方程,然后利用直线参数方程的知识,写出直线的参数方程.(II)将直线参数方程代入切线的普通方程,写出韦达定理,利用直线参数方程参数的几何意义,列方程,解方程求得的值.【详解】解:(Ⅰ)由题可得,曲线的普通方程为.直线的直角坐标方程为,即由于直线过点,倾斜角为,故直线的参数方程(是参数)(直线的参数方程的结果不是唯一的.)(Ⅱ)设两点对应的参数分别为,将直线的参数方程代入曲线的普通方程并化简得:.所以, 解得.【点睛】本小题主要考查参数方程化为普通方程,极坐标方程化为参数方程的方法,考查直线参数方程参数的几何意义,所以中档题.22.选修4—5:不等式选讲已知.(Ⅰ)关于的不等式恒成立,求实数的取值范围;(Ⅱ)若,且,求的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(I)利用零点分段法去绝对值,将表示为分段函数的形式,由此求得的最小值,再解一元二次不等式求得的取值范围.(II)根据(I)得到的最大值,由此得到,由此求得的取值范围.【详解】解:(Ⅰ),所以,恒成立,则,解得.(Ⅱ)由(I知),,则,又,所以,于是,故.【点睛】本小题主要考查零点分段法求解含有绝对值的不等式,考查不等式恒成立问题的解法,属于中档题.。

2019年高三11月调研测试(半期)理数试题及参考答案

2019年高三11月调研测试(半期)理数试题及参考答案

log2
an ,数列{bn}的前 n
项和为 Sn ,求
S1
S2 2
S3 3
Sn n
的最大值及取最大值时 n
的值.
11 月调研测试卷(理科数学)第 3 页 共 4 页
20.(12 分)
如图,半圆 O 的直径 AB 2 ,点 C,P 均在半圆周上运动,点 P 位于 C,B 两点之间,且 CAP . 6
b2
4
b2
b
,由1
b
4
可得
b2
b
(0,12)
.
2
第 11 题:由 f (x) f (x 2) 知 f (x) 周期为 2 ,∵ f (x) f (| x |) ,∴ f (x) 为偶函数,当 x [1,1] 时,
f
(x)
2x, 2 x,
0 ≤ x ≤1, 即得 f (x) 一个周期内的图象, g(x) 的零点个数即为 f (x) 与 1≤ x ≤0.
11 月调研测试卷(理科数学)第 4 页 共 4 页
2020 年普通高等学校招生全国统一考试
11 月调研测试卷 理科数学
参考答案
一、选择题
1~6 BCDBDA
7~12 BACDBC
第 7 题: sin Acos C 1 sin C sin B sin(A C) , 2
∴ sin Acos C 1 sin C sin Acos C cos Asin C ,解得 cos A 1 ,即 A ,
2020 年普通高等学校招生全国统一考试 11 月调研测试卷 理科数学
理科数学测试卷共 4 页。满分 150 分。考试时间 120 分钟。
注意事项: 1. 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证 号填写在答题卡上。 2. 回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮 擦擦干净后,再选涂其它答案标号框。写在本试卷上无效。 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。

安徽省“八校联考”2019届高三数学(理)试题

安徽省“八校联考”2019届高三数学(理)试题

安徽省“八校联考”2019届高三数学(理科)试题本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题(本大题共12个小题,每小题5分,共60分.请在答题卡上答题.)1.设集合,则()A. B. C. 或 D.【答案】B【解析】,则故选B2.已知复数满足(是虚数单位),则的共轭复数是A. -1+iB. 1+iC. 1-2iD. 1-i【答案】B【解析】【分析】将变形,利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,由共轭复数的定义可得结果.【详解】因为,,,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.“”是“直线的倾斜角大于”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】设直线的倾斜角为,则.若,得,可知倾斜角大于;由倾斜角大于得,或,即或,所以“”是“直线的倾斜角大于”的充分而不必要条件,故选A.4.已知,则( )A. 1B.C.D.【答案】C【解析】【分析】利用两角和的正弦公式与两角差的余弦公式化简等式可得,利用二倍角的余弦公式以及同角三角函数的关系可得结果.【详解】由,可得,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.5.若是两条不同的直线,是两个不同的平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】选项A中,与的关系是或,故A不正确.选项B中,与的关系是或与相交但不垂直或.故B不正确.选项C中,与之间的关系是或相交.故C不正确.选项D中,由线面平行的性质可得正确.选D.6.下列命题正确的个数是()已知点在圆外,则直线与圆没有公共点.命题“”的否定是“” .已知随机变量服从正态分布,,则.实数满足约束条件,则目标函数的最小值为1.A. 个B. 个C. 个D. 个【答案】A【解析】【分析】利用直线与圆的位置关系判断;由特称命题的否定判断;由正态分布的对称性判断;由特值法判断.【详解】在圆外,,圆心到直线的距离为,即,直线与圆有公共点,不正确;特称命题“”的否定是全称命题,“” ,不正确;服从正态分布,,,由正态分布的对称性可得, 正确;取满足约束条件,而目标函数,不正确,故选A.【点睛】本题主要通过对多个命题真假的判断,主要综合考查直线与圆的位置关系、特称命题的否定、正态分布的性质以及线性规划的应用,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.7.函数的图象大致为()【答案】D【解析】试题分析:函数的定义域为.求导,令可得,结合定义域可知令可得,即函数在上单调递减,在上单调递增,由图可知选D.考点:1.利用导数研究函数的单调性;2.函数的图像.【方法点睛】求函数的单调区间的方法:(1)求导数;(2)解方程;(3)使不等式成立的区间就是递增区间,使成立的区间就是递减区间.由此再结合函数的图像即可判断出结果.8.等比数列的首项,前项和为,若,则数列的前项和为()A. B. C. D.【答案】A【解析】【分析】由的首项,前项和为,,求出,可得,再求数列前10项和.【详解】∵的首项,前项和为,,解得故数列的前项和为故选A.【点睛】本题考查等比数列的通项与求和,考查学生的计算能力,考查学生分析解决问题的能力,比较基础.9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】D【解析】【分析】化简函数,根据表示不超过的最大整数,可得结果.【详解】函数,当时,;当时,;当时,,函数的值域是,故选D.【点睛】本题考查指数的运算、函数的值域以及新定义问题,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.10.某多面体的三视图如图所示,则该几何体的体积与其外接球的表面积的数值之比为()A. B. C. D.【答案】B【解析】【分析】利用三视图画出几何体的直观图,将三棱锥的外接球转化为长方体的外接球,然后求解外接球的半径,即可求解结果.【详解】由三视图可知该几何体如图中的三棱锥,,三棱锥的外接球就是图中长方体的外接球,所以三棱锥外接球的直径,从而,于是,外接球的表面积为,所以该几何体的体积与外接球的表面积之比为,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.11.已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点和另一个点,且点在抛物线上,则该双曲线的离心率是()A. B. C. D.【答案】C【解析】【分析】设,利用抛物线的性质,双曲线的渐近线,直线平行的性质、圆的性质、联立方程组,建立的关系即可得到结论.【详解】如图,设抛物线的准线为,作于,双曲线的右焦点为,由题意可知为圆的直径,设,则,且,满足,将①代入②得,则,即或(舍去),将代入③,得,即,再将代入①得,,即,,解得,所以该双曲线的离心率是,故选C.【点睛】本题主要考查抛物线的定义、圆的性质、双曲线的方程与性质以及离心率的求解,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.12.已知函数在区间内任取两个实数,且,不等式恒成立,则实数的取值范围是 ( )A. B. C. D.【答案】C【解析】【分析】首先,由表示点与点连线斜率,然后得到函数图象上在区间内任意两点连线的斜率大于1 ,从而得到在内恒成立,分离参数后,转化成在内恒成立,从而求解得到的取值范围.【详解】的几何意义,表示点与点连线斜率,实数在区间内,故和在内,不等式恒成立,函数图象上在区间内任意两点连线的斜率大于1 ,故函数的导数大于1在内恒成立,在内恒成立,由函数的定义域知,,所以在内恒成立,由于二次函数在上是单调递增函数,故时,在上取最大值为,,,故选C.【点睛】本题主要考查导数在研究函数性质中的应用及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中,解答本题的关键是将不等式问题转化为斜率问题,再转化为不等式恒成立问题.二、填空题(本大题共4个小题,每小题5分,共20分.请在答题卡上答题.)13.一个盒子中装有6张卡片,上面分别写着如下六个定义域为的函数:, ,, ,,从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是 __________.【答案】【解析】【分析】本题是一个等可能事件的概率,试验发生包含的事件是从6张卡片中抽取2张,共有种结果,满足条件的事件是相乘得到奇函数,共有种结果,利用古典概型概率公式可得结果. 【详解】由题意知本题是一个等可能事件的概率,由函数的奇偶性可得函数, ,为奇函数;函数,为偶函数;为非奇非偶函数,试验发生包含的事件是从6张卡片中抽取2张,共有种结果,事件为“任取两张卡片,将卡片上的函数相乘得到的函数是奇函数”,因为一个奇函数与一个偶函数相乘得到的函数是奇函数,满足条件的事件相乘得到奇函数,共有种结果,,故答案为.【点睛】本题主要考查函数的奇偶性以及古典概型概率公式的应用,属于中档题. 在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.14.二项式的展开式中的系数为,则________.【答案】【解析】【分析】先利用二项式定理的展开式可得的值,再利用微积分基本定理即可得结果.【详解】二项式的展开式中通项公式:,令 ,则,的系数为,,解得,则,故答案为.【点睛】本题主要考查二项式定理与微积分基本定理的应用,属于中档题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15.在中,是的中点,是的中点,过点作一直线分别与边交于,若,,则的最小值是________.【答案】【解析】【分析】根据题意,画出图形,结合图形,利用与共线,求出与的表达式再利用基本不等式求出的最小值即可.【详解】中,为边的中点,为的中点,且,,,同理,,又与共线,存在实数,使,即,,解得,,当且仅当时,“=”成立,故答案为.【点睛】本题主要考查向量的几何运算及基本不等式的应用,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).16.不等式对恒成立,则实数的取值范围是________.【答案】【解析】【分析】令,原不等式等价于,对,;对,,,进而可得结果.【详解】令,则原函数化为,即,由,及知,,即,当时(1)总成立,对,;对,,从而可知,故答案为.【点睛】本题主要考查三角函数与二次函数的性质以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)若等差数列的公差不为零,,且、、成等比数列,求的前项和.【答案】(1);(2)【解析】【分析】(1)由根据正弦定理可得,由余弦定理可得,从而可得结果;(2)由(1)可得,再由、、成等比数列,列方程求得公差,从而得,则,利用裂项相消法可得结果.【详解】(1)由得,所以又(2)设的公差为,由(1)得,且,∴.又,∴,∴.∴∴【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.如图,在空间四面体中,⊥平面,,且.(1)证明:平面⊥平面;(2)求四面体体积的最大值,并求此时二面角的余弦值.【答案】(1)见解析;(2),【解析】【分析】(1)由勾股定理可得,由线面垂直的性质可得,由线面垂直的判定定理可得面,从而可得结果;(2)设,则,由棱锥的体积公式求得棱锥的体积,利用导数可得体积的最大值;以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求得平面与平面的法向量,利用空间向量夹角余弦公式求解即可.【详解】(1),故即又由、得故有平面⊥平面(2)设,则四面体的体积,故在单增,在单减易知时四面体的体积最大,且最大值是以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系则设平面的法向量为则由取,得平面的一个法向量为同理可得平面的一个法向量由于是锐二面角,故所求二面角的余弦值为【点睛】本题主要考查证明面面垂直以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.2018年7月24日,长春长生生物科技有限责任公司先被查出狂犬病疫苗生产记录造假,后又被测出百白破疫苗“效价测定”项不符合规定, 由此引发的疫苗事件牵动了无数中国人的心.疫苗直接用于健康人群,尤其是新生儿和青少年,与人民的健康联系紧密.因此,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为.(1)求2×2列联表中的数据的值;(2)能否有99.9%把握认为注射此种疫苗有效?(3)现从感染病毒的小白鼠中任意抽取三只进行病理分析,记已注射疫苗的小白鼠只数为,求的分布列和数学期望.附:,n=a+b+c+d.【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)由从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为,根据古典概型概率公式列方程可求得,进而可求得的值;(2)利用求得,与邻界值比较,即可得到结论;(3)的可能取值为结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【详解】(1)设“从所有试验小白鼠中任取一只,取到‘注射疫苗’小白鼠”为事件A,由已知得,所以(2)所以至少有99.9%的把握认为疫苗有效.(3)由已知的取值为的分布列为数学期望【点睛】本题主要考查独立性检验的应用以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20.已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是.(1)求椭圆的方程;(2)若是椭圆上不重合的四点,与相交于点,,且,求此时直线的方程.【答案】(1);(2)【解析】【分析】(1)根据离心率,面积的最大值是,结合性质,列出关于、、的方程组,求出、,即可得结果;(2)直线与曲线联立,根据韦达定理,弦长公式将用表示,解方程可得的值,即可得结果.【详解】(1)由题意知,当点是椭圆上、下顶点时,面积取得最大值此时,是,又解得,所求椭圆的方程为(2)由(1)知,由得,①当直线与有一条直线的斜率不存在时,,不合题意②当直线的斜率为(存在且不为0)时,其方程为由消去得设则所以直线的方程为,同理可得由,解得故所求直线的方程为【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.已知函数(1)若曲线在点处的切线方程是,求实数的值;(2)若,对任意,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)求出,求出的值,可得切线斜率,利用曲线在点处的切线方程是列方程可求得;(2)恒成立,可化为,设,则在是减函数,即在上恒成立,等价于对任意恒成立,求出最大值即可得结果.【详解】(1)因为,所以因曲线在点处的切线方程是,又切点为,得所以(2),,所以时,恒成立故函数在上单调递增不妨设,则可化为设则,即在是减函数即在上恒成立,等价于在上恒成立即对任意恒成立由于在是增函数,故最大值是故即实数的取值范围是【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22.在极坐标系中,曲线的极坐标方程为,曲线与曲线关于极点对称.(1)以极点为坐标原点,极轴为轴的正半轴建立直角坐标系,求曲线的极坐标方程;(2)设为曲线上一动点,记到直线与直线的距离分别为,求+的最小值.【答案】(1);(2).【解析】【分析】⑴建立极坐标系,求出曲线极坐标方程⑵运用极坐标进行计算,求出结果【详解】(1)设是曲线上任意一点,则关于原点的对称点在曲线上,且,将代入得,则,即曲线的极坐标方程为。

安徽省黄山市普通高中2019届高三11月“八校联考”数学(理)试题含答案

安徽省黄山市普通高中2019届高三11月“八校联考”数学(理)试题含答案

1 黄山市普通高中2019届高三“八校联考”
数学(理科)试题
注意事项:
1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.
2.答题前,考生务必将自己的姓名、准考证号填写在相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
第I 卷(选择题,共
60分)一、选择题(本大题共12个小题,每小题
5分,共60分.请在答题卡上答题.)1.设集合2{|40}A x x
,{|20}B x x ,则A B ()(A ){|2}x x (B ){|2}x x (C ){|22}x x x 或(D )1{|}2
x x 2.已知复数
z 满足(1)2i z i -?(i 是虚数单位),则z 的共轭复数是()
(A )1i -(B )1i +(C )12i -(D )1i -3.“1a <-”是“直线10ax y +-=的倾斜角大于4p
”的()
(A )充分而不必要条件
(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件
4.已知sin()cos()66
p p a a +=-,则cos 2a =() (A ) 1 (B )12
(C )0(D )1-5.若,m n 是两条不同的直线,
,是两个不同的平面,则下列命题正确的是( )(A)若
,m ,则m ∥(B)若,m n m ∥
,则n (C)若,,,m n m n ∥
∥,则∥(D)若,,m m n ∥I ,则m n
∥6.下列命题正确的个数是( )。

安徽省黄山市普通高中高三数学11月八校联考试题 文(含解析)

黄山市普通高中2018届高三“八校联考”数学(文科)试题第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设全集,集合,集合,则=A. B. C. D.【答案】D【解析】因为集合={x|x≤3},又集合A={x|x>1},所以A∩B={x|x>1}∩{x|x≤3}={x|1<x≤3},故选D.2. 复数满足则复数的共轭复数=A. B. C. D.【答案】B【解析】试题分析:根据题意可得,所以,故选B.考点:复数的运算.3. 某选手参加选秀节目的一次评委打分如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A. ,B. ,C. ,D. ,【答案】C【解析】试题分析:,,故选C.考点:根据茎叶图求平均数和方差.4. 在等差数列中,若前项的和,,则A. B. C. D.【答案】C【解析】试题分析:.考点:等差数列的基本概念.5. 以抛物线上的任意一点为圆心作圆与直线相切,这些圆必过一定点,则这一定点的坐标是A. B. (2,0) C. (4,0) D.【答案】B【解析】∵抛物线y2=8x的准线方程为x=-2,∴由题可知动圆的圆心在y2=8x上,且恒与抛物线的准线相切,由定义可知,动圆恒过抛物线的焦点(2,0),故选B.6. 设,函数的图象向右平移个单位后与原图象重合,则的最小值是A. B. C. D.【答案】C【解析】函数的图象向右平移个单位后所以有故选C7. 已知是两个不同的平面,是两条不同的直线,给出下列命题:①若,则②若则③如果是异面直线,那么与相交④若,且则且. 其中正确的命题是A. ①②B. ②③C. ③④D. ①④【答案】D【解析】若m⊥α,m⊥β,则α∥β,故①正确;若m⊂α,n⊂α,m∥β,n∥β,当m,n相交时,则α∥β,但m,n平行时,结论不一定成立,故②错误;如果m⊂α,n⊄α,m、n是异面直线,那么n与a相交或平行,故③错误;若α∩β=m,n∥m,n⊄α,则n∥α,同理由n⊄β,可得n∥β,故④正确;故正确的命题为:①④故选D8. 已知是定义在上的偶函数,且在上是增函数,设,则的大小关系是A. B. C. D.【答案】C【解析】由题意f(x)=f(|x|).∵log47=,=-log23<0<0.20.6<1,∴|log23|>|log47|>|0.20.6|.又∵f(x)在(-∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c>a>b.故选C.9. 函数的图象大致为A. B. C. D【答案】A【解析】试题分析:根据题意,由于函数根据解析式,结合分段函数的图像可知,在y轴右侧是常函数,所以排除B,D,而在y轴的左侧,是递增的指数函数,故排除C,因此选A.考点:本试题考查而来函数图像。

2019届高三“八校联考”

黄山市普通高中2019届高三“八校联考”英语试题本试卷分第I卷(选择题)和第II卷(非选择题)全卷150分,考试时间120分钟第I卷(选择题共100分)第一部分听力(共两节,满分30分)第一节(共5小题,每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一小题。

从题中所给的A,B,C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What is the man going to do?A. Go to the theater.B. Hold a party.C. Visit his uncle.2. How much memory does the man’ s notebook have now?A. 160 GB. B. 320GB.C. 480GB.3. Which program starts at nine tonight?A. Total Soccer.B. Nature Program.C. The Mighty Heroes.4. Why has Patrick moved out?A. To pay less money.B. To live in a quietplace. C. To be near the workplace5. How will the man travel to Miami this time?A. By air.B. By car.C. By train.第二节(共15小题,每小题1.5分,满分22.5分)请听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A,B,C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

请听第6段材料,回答第6、7题。

6. What has the man bought for Julie and Will?A. Cups.B. Plates.C. Houseplants.7. Why does the woman want to give Julie and Will a picture?A. It is famous.B. It is useful.C. It is unusual.请听第7段材料,回答第8、9题。

安徽省黄山市普通高中2019届高三11月“八校联考”数学(理)试题(含精品解析)

黄山市普通高中2019届高三“八校联考”数学(理科)试题一、选择题(本大题共12个小题,每小题5分,共60分.请在答题卡上答题.)1.设集合,则()A. B. C. 或 D.【答案】B【解析】,则故选B2.已知复数满足(是虚数单位),则的共轭复数是A. -1+iB. 1+iC. 1-2iD. 1-i【答案】B【解析】【分析】将变形,利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,由共轭复数的定义可得结果.【详解】因为,,,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.“”是“直线的倾斜角大于”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A设直线的倾斜角为,则.若,得,可知倾斜角大于;由倾斜角大于得,或,即或,所以“”是“直线的倾斜角大于”的充分而不必要条件,故选A.4.已知,则( )A. 1B.C.D.【答案】C【解析】【分析】利用两角和的正弦公式与两角差的余弦公式化简等式可得,利用二倍角的余弦公式以及同角三角函数的关系可得结果.【详解】由,可得,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.5.若是两条不同的直线,是两个不同的平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D选项A中,与的关系是或,故A不正确.选项B中,与的关系是或与相交但不垂直或.故B不正确.选项C中,与之间的关系是或相交.故C不正确.选项D中,由线面平行的性质可得正确.选D.6.下列命题正确的个数是()已知点在圆外,则直线与圆没有公共点.命题“”的否定是“” .已知随机变量服从正态分布,,则.实数满足约束条件,则目标函数的最小值为1.A. 个B. 个C. 个D. 个【答案】A【解析】【分析】利用直线与圆的位置关系判断;由特称命题的否定判断;由正态分布的对称性判断;由特值法判断. 【详解】在圆外,,圆心到直线的距离为,即,直线与圆有公共点,不正确;特称命题“”的否定是全称命题,“” ,不正确;服从正态分布,,,由正态分布的对称性可得, 正确;取满足约束条件,而目标函数,不正确,故选A.【点睛】本题主要通过对多个命题真假的判断,主要综合考查直线与圆的位置关系、特称命题的否定、正态分布的性质以及线性规划的应用,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.7.函数的图象大致为()【答案】D【解析】试题分析:函数的定义域为.求导,令可得,结合定义域可知令可得,即函数在上单调递减,在上单调递增,由图可知选D.考点:1.利用导数研究函数的单调性;2.函数的图像.【方法点睛】求函数的单调区间的方法:(1)求导数;(2)解方程;(3)使不等式成立的区间就是递增区间,使成立的区间就是递减区间.由此再结合函数的图像即可判断出结果.8.等比数列的首项,前项和为,若,则数列的前项和为()A. B. C. D.【答案】A【解析】【分析】由的首项,前项和为,,求出,可得,再求数列前10项和.【详解】∵的首项,前项和为,,解得故数列的前项和为故选A.【点睛】本题考查等比数列的通项与求和,考查学生的计算能力,考查学生分析解决问题的能力,比较基础.9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】D【解析】【分析】化简函数,根据表示不超过的最大整数,可得结果.【详解】函数,当时,;当时,;当时,,函数的值域是,故选D.【点睛】本题考查指数的运算、函数的值域以及新定义问题,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.10.某多面体的三视图如图所示,则该几何体的体积与其外接球的表面积的数值之比为()A. B. C. D.【答案】B【解析】【分析】利用三视图画出几何体的直观图,将三棱锥的外接球转化为长方体的外接球,然后求解外接球的半径,即可求解结果.【详解】由三视图可知该几何体如图中的三棱锥,,三棱锥的外接球就是图中长方体的外接球,所以三棱锥外接球的直径,从而,于是,外接球的表面积为,所以该几何体的体积与外接球的表面积之比为,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.11.已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点和另一个点,且点在抛物线上,则该双曲线的离心率是()A. B. C. D.【答案】C【解析】【分析】设,利用抛物线的性质,双曲线的渐近线,直线平行的性质、圆的性质、联立方程组,建立的关系即可得到结论.【详解】如图,设抛物线的准线为,作于,双曲线的右焦点为,由题意可知为圆的直径,设,则,且,满足,将①代入②得,则,即或(舍去),将代入③,得,即,再将代入①得,,即,,解得,所以该双曲线的离心率是,故选C.【点睛】本题主要考查抛物线的定义、圆的性质、双曲线的方程与性质以及离心率的求解,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.12.已知函数在区间内任取两个实数,且,不等式恒成立,则实数的取值范围是 ( )A. B. C. D.【答案】C【解析】【分析】首先,由表示点与点连线斜率,然后得到函数图象上在区间内任意两点连线的斜率大于1 ,从而得到在内恒成立,分离参数后,转化成在内恒成立,从而求解得到的取值范围.【详解】的几何意义,表示点与点连线斜率,实数在区间内,故和在内,不等式恒成立,函数图象上在区间内任意两点连线的斜率大于1 ,故函数的导数大于1在内恒成立,在内恒成立,由函数的定义域知,,所以在内恒成立,由于二次函数在上是单调递增函数,故时,在上取最大值为,,,故选C.【点睛】本题主要考查导数在研究函数性质中的应用及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中,解答本题的关键是将不等式问题转化为斜率问题,再转化为不等式恒成立问题.二、填空题(本大题共4个小题,每小题5分,共20分.请在答题卡上答题.)13.一个盒子中装有6张卡片,上面分别写着如下六个定义域为的函数:, ,,,,从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是__________.【答案】【解析】【分析】本题是一个等可能事件的概率,试验发生包含的事件是从6张卡片中抽取2张,共有种结果,满足条件的事件是相乘得到奇函数,共有种结果,利用古典概型概率公式可得结果.【详解】由题意知本题是一个等可能事件的概率,由函数的奇偶性可得函数, ,为奇函数;函数,为偶函数;为非奇非偶函数,试验发生包含的事件是从6张卡片中抽取2张,共有种结果,事件为“任取两张卡片,将卡片上的函数相乘得到的函数是奇函数”,因为一个奇函数与一个偶函数相乘得到的函数是奇函数,满足条件的事件相乘得到奇函数,共有种结果,,故答案为.【点睛】本题主要考查函数的奇偶性以及古典概型概率公式的应用,属于中档题. 在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.14.二项式的展开式中的系数为,则________.【答案】【解析】【分析】先利用二项式定理的展开式可得的值,再利用微积分基本定理即可得结果.【详解】二项式的展开式中通项公式:,令,则,的系数为,,解得,则,故答案为.【点睛】本题主要考查二项式定理与微积分基本定理的应用,属于中档题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15.在中,是的中点,是的中点,过点作一直线分别与边交于,若,,则的最小值是________.【答案】【解析】【分析】根据题意,画出图形,结合图形,利用与共线,求出与的表达式再利用基本不等式求出的最小值即可.【详解】中,为边的中点,为的中点,且,,,同理,,又与共线,存在实数,使,即,,解得,,当且仅当时,“=”成立,故答案为.【点睛】本题主要考查向量的几何运算及基本不等式的应用,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).16.不等式对恒成立,则实数的取值范围是________.【答案】【解析】令,原不等式等价于,对,;对,,,进而可得结果.【详解】令,则原函数化为,即,由,及知,,即,当时(1)总成立,对,;对,,从而可知,故答案为.【点睛】本题主要考查三角函数与二次函数的性质以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)若等差数列的公差不为零,,且、、成等比数列,求的前项和.【答案】(1);(2)【解析】(1)由根据正弦定理可得,由余弦定理可得,从而可得结果;(2)由(1)可得,再由、、成等比数列,列方程求得公差,从而得,则,利用裂项相消法可得结果.【详解】(1)由得,所以又(2)设的公差为,由(1)得,且,∴.又,∴,∴.∴∴【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.如图,在空间四面体中,⊥平面,,且.(1)证明:平面⊥平面;(2)求四面体体积的最大值,并求此时二面角的余弦值.【答案】(1)见解析;(2),【解析】【分析】(1)由勾股定理可得,由线面垂直的性质可得,由线面垂直的判定定理可得面,从而可得结果;(2)设,则,由棱锥的体积公式求得棱锥的体积,利用导数可得体积的最大值;以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求得平面与平面的法向量,利用空间向量夹角余弦公式求解即可.【详解】(1),故即又由、得故有平面⊥平面(2)设,则四面体的体积,故在单增,在单减易知时四面体的体积最大,且最大值是以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系则设平面的法向量为则由取,得平面的一个法向量为同理可得平面的一个法向量由于是锐二面角,故所求二面角的余弦值为【点睛】本题主要考查证明面面垂直以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.2018年7月24日,长春长生生物科技有限责任公司先被查出狂犬病疫苗生产记录造假,后又被测出百白破疫苗“效价测定”项不符合规定, 由此引发的疫苗事件牵动了无数中国人的心.疫苗直接用于健康人群,尤其是新生儿和青少年,与人民的健康联系紧密.因此,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为.(1)求2×2列联表中的数据的值;(2)能否有99.9%把握认为注射此种疫苗有效?(3)现从感染病毒的小白鼠中任意抽取三只进行病理分析,记已注射疫苗的小白鼠只数为,求的分布列和数学期望.附:,n=a+b+c+d.【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)由从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为,根据古典概型概率公式列方程可求得,进而可求得的值;(2)利用求得,与邻界值比较,即可得到结论;(3)的可能取值为结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【详解】(1)设“从所有试验小白鼠中任取一只,取到‘注射疫苗’小白鼠”为事件A,由已知得,所以(2)所以至少有99.9%的把握认为疫苗有效.(3)由已知的取值为的分布列为数学期望【点睛】本题主要考查独立性检验的应用以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20.已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是.(1)求椭圆的方程;(2)若是椭圆上不重合的四点,与相交于点,,且,求此时直线的方程.【答案】(1);(2)【解析】【分析】(1)根据离心率,面积的最大值是,结合性质,列出关于、、的方程组,求出、,即可得结果;(2)直线与曲线联立,根据韦达定理,弦长公式将用表示,解方程可得的值,即可得结果.【详解】(1)由题意知,当点是椭圆上、下顶点时,面积取得最大值此时,是,又解得,所求椭圆的方程为(2)由(1)知,由得,①当直线与有一条直线的斜率不存在时,,不合题意②当直线的斜率为(存在且不为0)时,其方程为由消去得设则所以直线的方程为,同理可得由,解得故所求直线的方程为【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 21.已知函数(1)若曲线在点处的切线方程是,求实数的值;(2)若,对任意,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)求出,求出的值,可得切线斜率,利用曲线在点处的切线方程是列方程可求得;(2)恒成立,可化为,设,则在是减函数,即在上恒成立,等价于对任意恒成立,求出最大值即可得结果.【详解】(1)因为,所以因曲线在点处的切线方程是,又切点为,得所以(2),,所以时,恒成立故函数在上单调递增不妨设,则可化为设则,即在是减函数即在上恒成立,等价于在上恒成立即对任意恒成立由于在是增函数,故最大值是故即实数的取值范围是【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22.在极坐标系中,曲线的极坐标方程为,曲线与曲线关于极点对称.(1)以极点为坐标原点,极轴为轴的正半轴建立直角坐标系,求曲线的极坐标方程;(2)设为曲线上一动点,记到直线与直线的距离分别为,求+的最小值.【答案】(1);(2).【解析】【分析】⑴建立极坐标系,求出曲线极坐标方程⑵运用极坐标进行计算,求出结果【详解】(1)设是曲线上任意一点,则关于原点的对称点在曲线上,且,将代入得,则,即曲线的极坐标方程为。

2018-2019学年安徽省黄山市八校联考高三(上)11月月考数学试卷(文科)

2018-2019学年安徽省黄山市八校联考高三(上)11月月考数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|40}A x x =->,{|20}B x x =+<,则(A B = )A .{|2}x x >B .{|2}x x <-C .{|2x x <-或2}x >D .12x x ⎧⎫<⎨⎬⎩⎭2.已知复数z 满足:3()(12)z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( ) A .15-B .25-C .45 D .353.下列函数中,既是偶函数,又在(,0)-∞内单调递增的为( ) A .42y x x =+B .||2x y =C .22x x y -=-D .12log ||1y x =-4.如图,在矩形区域ABCD 中,2AB =,1AD =,且在A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常),若在该矩形区域内随机选一地点,则该地点无信号的概率是( )A .22π-B .12π- C .14π-D .4π5.“1a <-”是“直线10ax y +-=的倾斜角大于4π”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.为得到函数cos(2)3y x π=+的图象,只需将函数sin 2y x =的图象( )A .向左平移512π个长度单位 B .向右平移512π个长度单位 C .向左平移56π个长度单位 D .向右平移56π个长度单位 7.设n S 是等比数列{}n a 的前n 项和,425S S =,则2538a a a 的值为( )A .12±B .2±C .2±或1-D .12±或1-8.若m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若αβ⊥,m β⊥,则//m α B .若//m α,n m ⊥,则n α⊥C .若//m α,//n α,m β⊂,n β⊂,则//αβD .若//m β,m α⊂,n αβ=,则//m n9.已知sin()cos()66ππαα-=+,则cos 2(α= )A .1B .1-C .12D .010.设sin5a π=,b =,231()4c =,则( )A .a c b <<B .b a c <<C .c a b <<D .c b a <<11.已知点(0,2)A ,抛物线2:2(0)C y px p =>的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N,若||||FM MN =,则p 的值等于( ) A .18B .14C .2D .412.定义在(0,)+∞上的函数()f x 满足2()10x f x '+>,f (1)6=,则不等式1()5f lgx lgx<+的解集为( ) A.,0)B .(0,10)C .(10,)+∞D .(1,10)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.) 13.平面向量a 与b 的夹角为60︒,(2,0)a =,||1b =,则b = ,|2|a b += . 14.设变量x ,y 满足约束条件211y x y x y ⎧⎪+⎨⎪-⎩………,则目标函数31()3x y z +=的最小值为 .15.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器----商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x 为 .16.在ABC ∆中,60B ∠=︒,b =,则当2c a +取最大值时sin C = .三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤.)(一)必考题:60分.17.设数列{}n a 的前n 项和为n S ,且232n S n n =-. (1)求证:数列{}n a 为等差数列;(2)设n T 是数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求n T .18.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷.现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.(Ⅰ)已知抽取的100个使用A 款订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(Ⅱ)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数; (Ⅲ)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?19.如图,在四面体ABCD 中,AD ⊥平面ABC ,AB BC AC ==,且4AD BC +=. (1)证明:平面ABD ⊥平面BCD ; (2)求四面体ABCD 的体积的最大值.20的椭圆2222:1(0)x y C a b a b +=>>,过椭圆上点(2,1)P 作两条互相垂直的直线,分别交椭圆于A ,B 两点. (1)求椭圆C 方程;(2)求证:直线AB 过定点,并求出此定点的坐标.21.函数21()(1)2()2f x lnx ax a x a R =-++--∈.(1)求()f x 的单调区间; (2)若0a >,求证:3()2f x a-…. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标系中,曲线C 的极坐标方程为4cos ρθ=,曲线C 与曲线D 关于极点对称. (1)以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,求曲线D 的直角坐标方程; (2)设P 为曲线D 上一动点,记P 到直线sin 3ρθ=-与直线cos 2ρθ=的距离分别为1d ,2d 求12d d +的最小值.[选修4-5:不等式选讲]23.已知函数()|2||2|f x x x a =-++,a R ∈. (1)当1a =时,解不等式()5f x …;(2)若存在0x 满足00()|2|3f x x +-<,求a 的取值范围.2018-2019学年安徽省黄山市八校联考高三(上)11月月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|40}A x x =->,{|20}B x x =+<,则(A B = )A .{|2}x x >B .{|2}x x <-C .{|2x x <-或2}x >D .12x x ⎧⎫<⎨⎬⎩⎭【解答】解:集合2{|40}{|2A x x x x =->=>或2}x <-, {|20}{|2}B x x x x =+<=<-,则{|2}A B x x =<-,故选:B .2.已知复数z 满足:3()(12)z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( ) A .15-B .25-C .45 D .35【解答】解:3()(12)z i i i -+=(其中i 为虚数单位), (12)2212(12)(12)555i i i i iz i i i i ----∴-====-++-, 2455z i ∴=+, ∴复数z 的虚部等于45, 故选:C .3.下列函数中,既是偶函数,又在(,0)-∞内单调递增的为( ) A .42y x x =+B .||2x y =C .22x x y -=-D .12log ||1y x =-【解答】解:对于A ,不是偶函数,不合题意; 对于B ,0x <时,函数递减,不合题意;对于C ,函数是奇函数,在(,0)-∞内单调递减,不合题意,对于D ,函数是偶函数,0x <时,2log ()1y x =---,是增函数,符合题意, 故选:D .4.如图,在矩形区域ABCD 中,2AB =,1AD =,且在A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常),若在该矩形区域内随机选一地点,则该地点无信号的概率是( )A .22π-B .12π- C .14π-D .4π【解答】解:扇形ADE 的半径为1,圆心角等于90︒ ∴扇形ADE 的面积为211144S ππ=⨯⨯=, 同理可得扇形CBF 的面积24S π=,又长方形ABCD 的面积212S =⨯=,∴在该矩形区域内随机地选一地点,则该地点无信号的概率是:122()()44124S S S P Sπππ-+-+===-.故选:C .5.“1a <-”是“直线10ax y +-=的倾斜角大于4π”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:直线10ax y +-=的倾斜角大于4π,∴直线斜率1k >或0k <,又k a =-,1a ∴<-或0a >, 11a a <-⇒<-或0a >, 1a <-或0a >推不出1a <-,∴ “1a <-”是“直线10ax y +-=的倾斜角大于4π”的充分而不必要条件.故选:A .6.为得到函数cos(2)3y x π=+的图象,只需将函数sin 2y x =的图象( )A .向左平移512π个长度单位 B .向右平移512π个长度单位 C .向左平移56π个长度单位 D .向右平移56π个长度单位 【解答】解:55cos(2)sin(2)sin 2()3612y x x x πππ=+=+=+, 只需将函数sin 2y x =的图象向左平移512π个单位得到函数cos(2)3y x π=+的图象. 故选:A .7.设n S 是等比数列{}n a 的前n 项和,425S S =,则2538a a a 的值为( )A .12±B .2±C .2±或1-D .12±或1-【解答】解:n S 是等比数列{}n a 的前n 项和,425S S =,∴4211(1)(1)511a q a q q q --=⨯--, 解得2q =±或1q =-,∴228512738111a a q a a a q a q q==, ∴2538a a a 的值为12±或1-. 故选:D .8.若m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若αβ⊥,m β⊥,则//m α B .若//m α,n m ⊥,则n α⊥C .若//m α,//n α,m β⊂,n β⊂,则//αβD .若//m β,m α⊂,n αβ=,则//m n【解答】解:若αβ⊥,m β⊥,则m 与α可能平行也可能相交,故A 错误; 若//m α,n m ⊥,则n α⊂或//n α或n 与α相交,故B 错误;若//m α,//n α,m β⊂,n β⊂,则//αβ或α与β相交,故C 错误; 若//m β,m α⊂,n αβ=,则//m n ,故D 正确.故选:D .9.已知sin()cos()66ππαα-=+,则cos 2(α= )A .1B .1-C .12D .0【解答】解:sin()cos()66ππαα-=+,∴11cos sin 22αααα=-, cos sin αα∴=-,|sin ||cos |αα∴==则2cos 22cos 10αα=-=, 故选:D .10.设sin5a π=,b =,231()4c =,则( )A .a c b <<B .b a c <<C .c a b <<D .c b a <<【解答】解:1sin sin 1265a ππ=<=<,1b =>=,2433111()()422c ==<,c a b ∴<<.故选:C .11.已知点(0,2)A ,抛物线2:2(0)C y px p =>的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若||||FM MN =,则p 的值等于( ) A .18B .14C .2D .4【解答】解:依题意F 点的坐标为(2p,0), 设M 在准线上的射影为K 由抛物线的定义知||||MF MK =,∴||||FM MN =, 则||:||2:1KN KM =,02402FN k p p -==--, 42p∴-=-,求得2p =, 故选:C .12.定义在(0,)+∞上的函数()f x 满足2()10x f x '+>,f (1)6=,则不等式1()5f lgx lgx<+的解集为( )A .,0)B .(0,10)C .(10,)+∞D .(1,10)【解答】解:定义在(0,)+∞上的函数()f x 满足2()10x f x '+>, 可得:21()0f x x '+>,构造函数1()()5g x f x x =--,则21()()0g x f x x '='+>,所以()g x 在(0,)+∞上是增函数,f (1)6=,g ∴(1)0=,故()0g x <的解集为:(0,1).即1()5f x x<+的解集为(0,1),由01lgx <<, 可得110x <<.所求不等式的解集为:(1,10). 故选:D .二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.)13.平面向量a 与b 的夹角为60︒,(2,0)a =,||1b =,则b = 1(,2. ,|2|a b += . 【解答】解:设(,)b x y =,1=,221cos60a b x ==⨯⨯︒,解得12x =,y = ∴1(,2b =±. 2(3,3)a b +=±.2|2|33a b +=+=.故答案分别为:1(,2;. 14.设变量x ,y 满足约束条件211y x y x y ⎧⎪+⎨⎪-⎩………,则目标函数31()3x y z +=的最小值为 111()3 . 【解答】解:作出不等式对应的平面区域如图,由目标函数31()3x y z +=,设3u x y =+,得3y x u =-+, 平移直线3y x u =-+,由图象可知当直线3y x u =-+,经过点A 时,直线3y x u =-+的截距最大,此时z 最小.由21y x y =⎧⎨-=⎩,解得(3,2)A , 时目标函数31()3x y z +=的最小值为:111()3. 故答案为:111()3.15.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器----商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x 为 3 .【解答】解:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得: 21(5.4 1.6)1() 1.612.62x π-⨯+⨯=, 3π=.解得3x =,故答案为:3.16.在ABC ∆中,60B ∠=︒,b =,则当2c a +取最大值时sin C【解答】解:60B ∠=︒,b =,∴2sin sin a c A C ===. 2sin c C ∴=,2sin a A =,222sin 4sin 4sin()2sin 3c a C A C C π∴+=+=-+4sin C C =+)C C =+)C ϕ=+,其中cosϕ=,sin ϕ=,(0,)2πϕ∈.当sin()1C ϕ+=时,可得:sin cos C ϕ==.∴当2c a +取最大值时sin C =.三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤.)(一)必考题:60分.17.设数列{}n a 的前n 项和为n S ,且232n S n n =-.(1)求证:数列{}n a 为等差数列;(2)设n T 是数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求n T . 【解答】解:(1)由已知得1n =,111a S ==,当2n …时,则2211(32)[3(1)2(1)]65n n n a S S n n n n n -=-=-----=-, 1n =时满足上式,所以.65n a n =-.(2)由(1)可知122111()(65)(61)36561n n a a n n n n +==--+-+, ∴11111111(1)3771313196561n T n n =-+-+-+⋯+--+ 112(1)36161n n n =-=++. 18.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷.现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.(Ⅰ)已知抽取的100个使用A 款订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(Ⅱ)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数; (Ⅲ)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?【解答】解:(Ⅰ)使用A 款订餐软件的商家中“平均送达时间”不超过20分种的商家共有:1000.06106⨯⨯=个,分别记为甲、a ,b ,c ,d ,e ,从中随机抽取3家的情况有20种,分别为:{甲,a ,}b ,{甲,a ,}c ,{甲,a ,}d ,{甲,a ,}e ,{甲,b ,}c ,{甲,b .}d ,{甲,b ,}e ,{甲,c ,}d ,{甲,c ,}e ,{甲,d ,}e ,{a ,b ,}c ,{a ,b ,}d ,{a ,b ,}e ,{a ,c ,}d ,{a ,c ,}e ,{a ,d ,}e ,{b ,c ,}d ,{b ,c ,}e ,{b ,d ,}e ,{c ,d ,}e ,甲商家被抽到的情况有10种,分别为:{甲,a ,}b ,{甲,a ,}c ,{甲,a ,}d ,{甲,a ,}e ,{甲,b ,}c ,{甲,b .}d ,{甲,b ,}e ,{甲,c ,}d ,{甲,c ,}e ,{甲,d ,}e , ∴甲商家被抽到的概率101202p ==. (Ⅱ)依题意,使用A 款订餐软件的商家中“平均送达时间”的众数为55,平均数为:150.06250.34350.12450.04550.4650.0440⨯+⨯+⨯+⨯+⨯+⨯=.(Ⅲ)使用B 款订餐软件的商家中“平均送达时间”的平均数为:150.04250.2350.56450.04550.4650.043540⨯+⨯+⨯+⨯+⨯+⨯=<,以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择B 款订餐.19.如图,在四面体ABCD 中,AD ⊥平面ABC ,AB BC AC ==,且4AD BC +=. (1)证明:平面ABD ⊥平面BCD ;(2)求四面体ABCD 的体积的最大值.【解答】(1)证明:AD ⊥平面ABC ,BC ⊂平面ABC ,AD BC ∴⊥由AB BC AC ==,得222AB BC AC +=, AB BC ∴⊥,又AB AD A ∴=,BC ∴⊥平面ABD ,BC ⊂平面BCD ,∴平面ABD ⊥平面BCD .(2)解:设BC x =,则04x <<,2111(4)326V AB BC AD x x =⨯⨯⨯⨯=-,令21()(4)6f x x x =- 则241()32f x x x '=-,由()0f x '=得83x =, ∴803x <<时,()0f x '>,()f x 单调递增; ∴843x <<时,()0f x '<,()f x 单调递减. 所以,当83x =时,()f x 取最大值8128()381f =, 即四面体ABCD 的体积的最大值为12881.20的椭圆2222:1(0)x y C a b a b +=>>,过椭圆上点(2,1)P 作两条互相垂直的直线,分别交椭圆于A ,B 两点.(1)求椭圆C 方程;(2)求证:直线AB 过定点,并求出此定点的坐标.【解答】解:()I依题意:有22411a b c a⎧+=⎪⎪⋯⋯⋯⋯⎨⎪=⎪⎩解得26a =,23b =,所以椭圆C 的方程为:22163x y +=⋯⋯⋯⋯ ()II 易知直线AB 的斜率是存在的,故设直线AB 方程为:y kx m =+, 由22163y kx m x y =+⎧⎪⎨+=⎪⎩得:222(21)4260k x mkx m +++-=, 设1(A x ,1)y ,2(B x ,2)y ,则122421mk x x k +=-+,21222621m x x k -=⋯⋯⋯⋯+(9分) 设0PA PB =得1212(2)(2)(1)(1)0x x y y --+--=,即1212(2)(2)(1)(1)0x x kx m kx m --++-+-=,得221212(1)(2)()250k x x km k x x m m ++--++-+=代入可得:即22384210m mk k m ++--=⋯⋯⋯⋯(11分)即(321)(21)0m k m k +++-=,因直线AB 不过点P ,知210m k +-≠,故3210m k ++=⋯⋯⋯⋯y kx m =+即132m y x m +=-+,即13(1)022x y m x ++-=, 由1023102x y x ⎧+=⎪⎪⎨⎪-=⎪⎩,解得2313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 所以直线AB 过定点2(3,1)3-⋯⋯⋯⋯ 21.函数21()(1)2()2f x lnx ax a x a R =-++--∈. (1)求()f x 的单调区间;(2)若0a >,求证:3()2f x a-…. 【解答】解:(1)21(1)1(1)(1)()(1)ax a x ax x f x ax a x x x+---+'=-++-==. ⋯(1分) ①当0a …时,()0f x '<,则()f x 在(0,)+∞上单调递减;⋯②当0a >时,由()0f x '>解得1x a >,由()0f x '<解得10x a<<.即()f x 在1(0,)a 上单调递减;()f x 在1(,)a+∞上单调递增; 综上,0a …时,()f x 的单调递减区间是(0,)+∞;0a >时,()f x 的单调递减区间是1(0,)a ,()f x 的单调递增区间是1(,)a+∞. ⋯ (2)由(1)知()f x 在1(0,)a 上单调递减;()f x 在1(,)a+∞上单调递增, 则11()()12min f x f lna a a==--. ⋯ 要证3()2f x a -…,即证13122lna a a ---…,即110lna a +-…, 即证11lna a-….⋯ 构造函数1()1a lna a μ=+-,则22111()a a a a a μ-'=-=, 由μ'(a )0>解得1a >,由μ'(a )0<解得01a <<,即μ(a )在(0,1)上单调递减;μ(a )在(1,)+∞上单调递增; ∴1()(1)1101min a ln μμ==+-=, 即110lna a+-…成立. 从而3()2f x a -…成立.⋯ (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标系中,曲线C 的极坐标方程为4cos ρθ=,曲线C 与曲线D 关于极点对称.(1)以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,求曲线D 的直角坐标方程;(2)设P 为曲线D 上一动点,记P 到直线sin 3ρθ=-与直线cos 2ρθ=的距离分别为1d ,2d 求12d d +的最小值.【解答】解:(1)曲线C 的极坐标方程为4cos ρθ=,24cos ρρθ∴=,∴曲线C 的直角坐标方程224x y x +=,即22(2)4x y -+=.∴曲线D 的直角坐标方程为22(2)4x y ++=.(2)由(1)设(22cos ,2sin )P αα-+,[0α∈,2)π,直线sin 3ρθ=-与直线cos 2ρθ=的直角坐标方程分别为3y =-,2x =,12sin 3d α∴=+,22(22cos )42cos d αα=--+=-,122sin 342cos 7)4d d πααα+=++-=+-,12d d ∴+的最小值为7- [选修4-5:不等式选讲]23.已知函数()|2||2|f x x x a =-++,a R ∈.(1)当1a =时,解不等式()5f x …;(2)若存在0x 满足00()|2|3f x x +-<,求a 的取值范围.【解答】解:(1)当1a =时,()|2||21|f x x x =-++,.由()5f x …得2||21|5x x -++….当2x …时,不等式等价于2215x x -++…,解得2x …,所以2x …; ⋯(1分) 当122x -<<时,不等式等价于2215x x -++…,即2x …,所以此时不等式无解;⋯(2分) 当12x -…时,不等式等价于2215x x ---…,解得43x -…,所以43x -….⋯ 所以原不等式的解集为(-∞,4][23-,)+∞.⋯ (2)()|2|2|2||2||24||2||2(24)||4|f x x x x a x x a x a x a +-=-++=-+++--=+⋯…(7分) 因为原命题等价于(()|2|)3min f x x +-<,⋯(9分)所以|4|3a +<,所以71a -<<-为所求实数a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄山市普通高中2019届高三“八校联考”数学( 理科 )试题注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 2. 答题前,考生务必将自己的姓名、准考证号填写在相应的位置. 3. 全部答案在答题卡上完成,答在本试题上无效.第I 卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分.请在答题卡上答题.) 1.设集合2{|40}A x x =->,{|20}B x x =+<,则A B = ( )(A ){|2}x x > (B ){|2}x x <- (C ){|22}x x x <->或 (D )1{|}2x x <2.已知复数z 满足(1)2i zi -?(i 是虚数单位),则z 的共轭复数是( ) (A )1i - (B )1i + (C )12i - (D )1i - 3.“1a <-”是“直线10ax y +-=的倾斜角大于4p”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 4.已知sin()cos()66p pa a +=-,则cos 2a =( ) (A ) 1 (B )12(C ) 0 (D )1- 5.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) (A)若,m αββ⊥⊥,则m α∥ (B)若,m n m α⊥∥,则n α⊥(C)若,,,m n m n ααββ⊂⊂∥∥,则αβ∥ (D)若,,m m n βααβ⊂=∥I ,则m n ∥ 6.下列命题正确的个数是( )1:p 已知点(,)M a b 在圆22:1O x y +=外, 则直线1ax by +=与圆O 没有公共点.2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥” .3:p 已知随机变量X 服从正态分布2(3,)N σ,(4)0.8P X ≤=,则(2)0.2P X ≤=.4:p 实数,x y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,则目标函数2z x y =-的最小值为1.(A )1个 (B )2个 (C )3个 (D )4个 7.函数2ln xy x=的图象大致为( )8.等比数列{}n a 的首项14a =,前n 项和为n S ,若639S S =,则数列{}2log n a 的前10项和为( )(A ) 65 (B ) 75 (C )90 (D )1109.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如: []2.13-=-, []3.13=,已知函数()121123x xf x +=-+,则函数)]([x f y =的值域是( )(A ) {}0,1 (B ){}1,1- (C ){}1,0- (D ){}1,0,1- 10.某多面体的三视图如图所示,则该几何体的体积与其外接球的表面积的数值之比为( ) (A )13π (B )19π (C )23π (D )29π11.已知点()(),00F c c ->是双曲线22221x y a b-=的左焦点,过F 且平行于双曲线渐近线的直线与圆222x y c +=交于点F 和另一个点P ,且点P 在抛物线24y cx =上,则该双曲线的离心率是( )12.已知函数2()ln(1)f x a x x =+-在区间(0,1)内任取两个实数,p q ,且p q ¹,不等式(1)(1)1f p f q p q+-+>-恒成立,则实数a 的取值范围是 ( )(A )[11,)+∞ (B )[13,)+∞ (C )[15,)+∞ (D ) [17,)+∞第II 卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分.请在答题卡上答题.)13.一个盒子中装有6张卡片,上面分别写着如下六个定义域为R 的函数:31f (x)=x ,2()f x x =,3()sin f x x =, 4()cos f x x =,5()2xf x =,612()12xxf x -=+从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是 .14.二项式6ax ⎛ ⎝⎭的展开式中5x 0=⎰________. 15.在ABC ∆中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边,AB AC 交于,M N ,若A M x A B =⋅ ,AN y AC =⋅,则4x y +的最小值是________. 16.不等式2(cos 3)sin 3a x x -≥-对x R ∀∈恒成立,则实数a 的取值范围是________.三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤.) (一)必考题:60分。

17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,且sin a b C +=. (Ⅰ)求角A 的大小;(Ⅱ)若等差数列{}n a 的公差不为零,1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.如图,在空间四面体ABCD 中, AD ⊥平面ABC ,AC BC AB 22==,且6AD BC +=.(Ⅰ)证明:平面ABD ⊥平面BCD ;(Ⅱ)求四面体ABCD 体积的最大值,并求此时二面角B CD A --的余弦值.19.2018年7月24日,长春长生生物科技有限责任公司先被查出狂犬病疫苗生产记录造假,后又被测出百白破疫苗“效价测定”项不符合规定,由此引发的疫苗事件牵动了无数中国人的心.疫苗直接用于健康人群,尤其是新生儿和青少年,与人民的健康联系紧密.因此,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为5.(Ⅰ)求2×2列联表中的数据,,,x y A B的值;(Ⅱ)能否有99.9%把握认为注射此种疫苗有效?(III)现从感染病毒的小白鼠中任意抽取三只进行病理分析,记已注射疫苗的小白鼠只数为ξ,求ξ的分布列和数学期望.附:K2=n ad-bc 2a+b a+c c+d b+d,n=a+b+c+d.20.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,离心率12e =,点P 是椭圆上的一个动点,12PF F D面积的最大值是. (Ⅰ)求椭圆的方程;(Ⅱ)若,,,A B C D 是椭圆上不重合的四点,AC 与BD 相交于点1F ,0AC BD ⋅=,且967AC BD += ,求此时直线AC 的方程.21.已知函数2ln ()m x n m R -+∈f(x)=x(Ⅰ)若曲线()y f x =在点1x =处的切线方程是10x y --=,求实数,m n 的值; (Ⅱ)若20m -≤<,对任意(]12,0,2x x ∈,不等式121211()()f x f x tx x -≤-恒成立,求实数t 的取值范围.(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,曲线C 的极坐标方程为θρcos 4=,曲线C 与曲线D 关于极点对称. (Ⅰ)以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,求曲线D 的极坐标方程; (Ⅱ)设P 为曲线D 上一动点,记P 到直线3sin -=θρ与直线2cos =θρ的距离分别为1d ,2d ,求1d +2d 的最小值.23.已知函数 ()|2||2|f x x x a =-++,a R ∈ (Ⅰ)当1a=时,解不等式()5f x ≥;(Ⅱ)若存在0x 满足00()|2|3f x x +-<,求实数a 的取值范围.黄山市普通高中2019届高三“八校联考”数学(理科)参考答案及评分标准一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)二、填空题(本大题共4小题,每小题5分,满分20分.)13. 14. 15. 16.三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(Ⅰ)由得…………………2分,所以又…………………6分(Ⅱ)设的公差为,由得,且,∴.又,∴,∴. (8)分∴…………………10分∴……………12分18.解:(Ⅰ),故即……………3分又由、得故有平面⊥平面……………5分(Ⅱ)设,则四面体的体积,故在单增,在单减易知时四面体的体积最大,且最大值是………8分以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系则设平面的法向量为则由取,得平面的一个法向量为………10分同理可得平面的一个法向量由于是锐二面角,故所求二面角的余弦值为…………12分19.解:(Ⅰ)设“从所有试验小白鼠中任取一只,取到‘注射疫苗’小白鼠”为事件A,由已知得,所以……4分(Ⅱ)所以至少有99.9%的把握认为疫苗有效. …………8分(III)由已知的取值为…………10分的分布列为数学期望…………12分20. 解:(Ⅰ)由题意知,当点是椭圆上、下顶点时,面积取得最大值此时,是,又………2分解得,所求椭圆的方程为 --------- 4分(Ⅱ)由(Ⅰ)知,由得,①当直线与有一条直线的斜率不存在时,,不合题意②当直线的斜率为(存在且不为0)时,其方程为由消去得………6分设则所以………8分直线的方程为,同理可得……9分由解得故所求直线的方程为……12分21.解: (Ⅰ)因为,所以因曲线在点处的切线方程是,又切点为,得所以…………4分(Ⅱ),,所以时,恒成立故函数在上单调递增…………6分不妨设,则可化为设则,即在是减函数…………8分即在上恒成立,等价于在上恒成立即对任意恒成立…………10分由于在是增函数,故最大值是故即实数的取值范围是…………12分22. 解:(1)设是曲线上任意一点,则关于原点的对称点在曲线上,且,将代入得,则,即曲线的极坐标方程为。

(5)分(2)由曲线的极坐标方程为得直角坐标方程为,设,直线与直线的直角坐标方程分别为,从而,故的最小值为………………10分23. 解(1)当时,,由,得。

当时,不等式等价于,解得,所以;当时,等价于,解得,所以无解;当时,不等式等价于,解得,所以。

相关文档
最新文档