人教版八年级数学上学期期末考试优质好题精选-位置与坐标【最新】
2023-2024学年全国初二上数学人教版期末试卷(含答案解析)

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 一个等腰三角形的底边长是12厘米,腰长是8厘米,那么这个三角形的周长是()厘米。
A. 20B. 28C. 36D. 443. 一个正方形的边长是5厘米,那么它的面积是()平方厘米。
A. 10B. 15C. 20D. 254. 在一个等差数列中,首项是2,公差是3,那么第五项是()。
A. 11B. 12C. 13D. 145. 一个圆的半径是4厘米,那么它的周长是()厘米。
A. 8πB. 16πC. 32πD. 64π二、判断题(每题1分,共5分)1. 一个等腰三角形的两个底角相等。
()2. 一个正方形的对角线长度是边长的根号2倍。
()3. 在一个等差数列中,任意两项的差都是公差。
()4. 一个圆的周长是直径的π倍。
()5. 一个等腰三角形的底边长是腰长的两倍。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角都是____度。
2. 一个正方形的面积是边长的____倍。
3. 在一个等差数列中,首项是a,公差是d,那么第n项是____。
4. 一个圆的面积是半径的____倍。
5. 一个等腰三角形的底边长是腰长的____倍。
四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。
2. 简述正方形的性质。
3. 简述等差数列的性质。
4. 简述圆的性质。
5. 简述等腰三角形的判定方法。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是8厘米,求这个三角形的周长。
2. 一个正方形的边长是6厘米,求这个正方形的面积。
3. 在一个等差数列中,首项是2,公差是3,求第五项。
4. 一个圆的半径是5厘米,求这个圆的周长。
5. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。
六、分析题(每题5分,共10分)1. 分析等腰三角形的性质,并说明如何利用这些性质解决实际问题。
2022-2023学年八年级上学期数学:位置与坐标(附答案解析)

2022-2023学年八年级上学期数学:位置与坐标
一.选择题(共5小题)
1.点(3,﹣4)到x轴的距离是()
A.3B.4C.5D.7
2.如果点P(2,b)和点Q(a,3)关于x轴对称,则a+b的值是()A.1B.﹣1C.5D.0
3.经过点P(﹣4,3)垂直于x轴的直线可以表示为()
A.直线x=3B.直线y=﹣4C.直线x=﹣4D.直线y=3
4.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“炮”的坐标为(3,﹣2),则棋子“马”的坐标为()
A.(1,1)B.(﹣1,1)C.(1,﹣1)D.(﹣1,﹣1)5.如图是天安门周围的景点分布示意图.在图中,分别以正东,正北方向为x轴,y轴的正方向建立平面直角坐标系.如果表示景山的点的坐标为(0,4),表示王府井的点的坐标为(3,1),则表示人民大会堂的点的坐标为()
A.(3,2)B.(﹣1,2)C.(﹣1,﹣1)D.(﹣1,﹣2)二.填空题(共5小题)
6.经过点Q(1,﹣3)且垂直于y轴的直线可以表示为直线.
7.在平面直角坐标系中,若点P(m,m﹣n)与点Q(2,1)关于原点对称,则点M(m,
第1页(共18页)。
2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
2019-2020年初中八年级上学期数学位置与坐标 期末复习试题(含答案)

2019-2020学年初中八年级(上)数学位置与坐标期末复习卷一、选择题(每题3分,共30分)1.已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.已知点A(-1,-3)和点B(3,m),且AB平行于x轴,则点B坐标为( )A.(3,-3) B.(3,3)C.(3,1) D.(3,-1)3.在平面直角坐标系中的坐标轴上,到原点的距离为2的点有( )A.1个B.2个C.3个D.4个4.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于()A.y轴对称B.x轴对称C.原点对称D.直线y=x对称5.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则a+b=( )A.-1 B.1 C.-7 D.76.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1) B.(-2,-1) C.(-4,1) D.(-1,-2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中(AB⊥x轴),若点D(6,3),则A 点的坐标为()A.(5,3) B.(4,3)C.(4,2) D.(3,3)8.在平面直角坐标系中,对于平面内任一点(a,b),规定以下三种变换:①△(a,b)=(-a,b);②O(a,b)=(-a,-b);③Ω(a,b)=(a,-b).按照以上变换有:△(O(1,2))=(1,-2),那么O(Ω(3,4))等于()A.(3,4) B.(3,-4)C.(-3,4) D.(-3,-4)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是() A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34) B.(67,33)C.(100,33) D.(99,34)二、填空题(每题3分,共24分)11.已知点A在x轴上,且OA=3,则点A的坐标为__________.12.若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,21题8分,20,23题每题9分,22题10分,其余每题12分,共66分)19.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m记作50,图中点A 记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点C(60°,-30)和点D(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420 m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系.(2)李华同学是用什么来描述牡丹园的位置的?(3)请用张明同学所用的方法,描述出公园内其他地方的位置.21.已知点P(2x,3x-1)是平面直角坐标系内的点.(1)若点P在第三象限,且到两坐标轴的距离和为11,求x的值;(2)已知点A(3,-1),点B(-5,-1),点P在直线AB的上方,且到直线AB的距离为5,求x的值.22.如图,在平面直角坐标系中,O,A,B,C的坐标分别为(0,0),(-1,2),(-3,3)和(-2,1).(1)将图中的各个点的纵坐标不变,横坐标都乘-1,与原图形相比,所得图形有什么变化?画出图形并说明一下变化.(2)将图中的各个点的横坐标不变,纵坐标都乘-1,与原图形相比,所得图形有什么变化?画出图形并说明一下变化.23.如图,A,B,C为一个平行四边形的三个顶点,且A,B,C三点的坐标分别为(3,3),(6,4),(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.24.在平面直角坐标系中,横坐标、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为每秒1个单位长度,且整点P只做向右或向上运动,则运动1秒后它可以到达(1,0),(0,1)2个整点;运动2秒后它可以到达(2,0),(1,1),(0,2)3个整点;运动3秒后它可以到达(3,0),(2,1),(1,2),(0,3)4个整点……请探索并回答下面问题:(1)当整点P从点O出发4秒后可以到达的整点共有________个;(2)在如图所示的直角坐标系中描出整点P从点O出发8秒后所能到达的整点,并观察这些整点,说出它们所在位置上有什么特点;(3)当整点P从点O出发________秒后可到达整点(13,5)的位置.25.先阅读下面这段文字,再回答问题:已知在平面直角坐标系内两点的坐标分别为P1(x1,y1),P2(x2,y2),则该两点间的距离公式为P1P2=(x2-x1)2+(y2-y1)2.同时,当两点在同一坐标轴上或所在直线平行于x轴或垂直于x轴时,两点间的距离公式可化简成|x2-x1|或|y2-y1|.(1)若已知两点A(3,5),B(-2,-1),试求A,B两点间的距离.(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离.(3)已知一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),你能判断此三角形的形状吗?试说明理由.参考答案一、1.A 2.A 3.D 4.B 5.B 6.C 7.D 8.C 9.D 10.C二、11. (3,0)或(-3,0) 12.(-5,4)或(-5,-4) 13.(2,4) 14.(-9,2) 15.二 16.(3,0)或(9,0) 17.(2,1) 18.(2n ,1)三、19.解:(1)(-75°,-15)表示南偏东75°距O 点15 m 处,(10°,-25)表示南偏西10°距O 点25 m 处. (2)如图.20.解:(1)张明同学是以中心广场为原点、正东方向为x 轴正方向、正北方向为y 轴正方向建立平面直角坐标系的,图略.(2)李华同学是用方向和距离描述牡丹园的位置的.(3)用张明同学所用的方法,描述如下:中心广场(0,0),音乐台(0,400),望春亭(-200,-100),游乐园(200,-400),南门(100,-600).21.解:(1)当点P 在第三象限时,点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x. 故1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53.22.解:(1)将各个点的纵坐标不变,横坐标都乘-1,得到新的坐标分别为(0,0),(1,2),(3,3),(2,1).在平面直角坐标系中描出各点,再连接各点,如图所示.所得图形与原图形关于y 轴对称.(2)将各个点的横坐标不变,纵坐标都乘-1,得到新的坐标分别为(0,0),(-1,-2),(-3,-3),(-2,-1).在平面直角坐标系中描出各点,再连接各点,如图所示.所得图形与原图形关于x 轴对称.23.解:(1)(7,7)或(1,5)或(5,1).(2)这个平行四边形的面积S =4×4-12×3×1×4-2=8. 24.解:(1)5(2)如图,共有9个点,它们在同一直线上.(3)1825.解:(1)AB=(-2-3)2+(-1-5)2=61.(2)AB=|-1-5|=6.(3)能.理由:因为AB=(-3-0)2+(2-6)2=5,BC=[3-(-3)]2+(2-2)2=6,AC=(3-0)2+(2-6)2=5,所以AB=AC.所以△ABC为等腰三角形.。
八上数学期末专题复习--图形与坐标答案
八上数学期末专题复习--图形与坐标答案一.点与平面直角坐标系:例1.(1)在平面直角坐标系中,点()6,2所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:点()6,2的横坐标为60>,纵坐标为20>, ∴在平面直角坐标系中,点()6,2所在的象限是第一象限,故选:A .(2)点(),2P a 在第二象限,则()3,Q a -在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:∵点P (a ,2)在第二象限, ∴a <0,则点Q (-3,a )在第三象限. 故选:C .(3)在平面直角坐标系内有一点A ,若点A 到x 轴的距离为3,到y 轴的距离为1.且点A 在第二象限,则点A 坐标为( )A .(1,3)B .(1,3)-C .(3,1)--D .(3,1)-解析:点A 到x 轴的距离为3,到y 轴的距离为1.且点A 在第二象限, 所以横坐标为1-,纵坐标为3, ∴A (1,3)-. 故选B .(4)在平面直角坐标系中,已知点M (m -1,2m +3)在y 轴上,则m =______ 解析:根据点在y 轴上的点横坐标为0,得:m -1=0, 解得:m =1. 故答案为:1.(5)已知点P (8-2m ,m -1).若点P 在x 轴上,则______=m ;若点P 在第一象限,且到两坐标轴的距离相等,则P 点的坐标为_______________ 解析:∵点P (8-2m ,m -1)在x 轴上, ∴m -1=0,解得:m =1;解:∵点P 在第一象限,且到两坐标轴的距离相等, ∴8-2m =m -1, 解得:m =3, ∴P (2,2).1.已知点()3,24A a a +-,(1)点A 在x 轴上,由A 点坐标为_____________,(2)经过点A ,()3,4B -的直线与y 轴平行,则A 点的坐标为______________ 解析:(1)由题意,得240a -=,解得2a =. ∴3235a +=+=. ∴点A 的坐标为()5,0;(2)由题意,得33a +=-,解得6a =-. ∴()2426416a -=⨯--=-. ∴点A 的坐标为()3,16--. 2.已知,点(26,2)P m m -+.(1)若点P 在y 轴上,P 点的坐标为_______________;(2)若点P 的纵坐标比横坐标大6,则点P 在第________________象限;(3)若点P 和点Q 都在过()2,3A 点且与x 轴平行的直线上,3PQ =,求Q 点的坐标. 解析:(1)∵点P 在y 轴上, ∴26=0-m , ∴m =3, ∴m +2=3+2=5, ∴P 点的坐标为(0,5); 故答案为:(0,5)(2)解析:∵点P 的纵坐标比横坐标大6, ∴2662m m -+=+, 解得2m =,∴P 点的坐标为(2,4)-, ∴点P 在第二象限;(3)解析:∵点P 和点Q 都在过(2,3)A 点且与x 轴平行的直线上,∴点P 和点Q 的纵坐标都为3, ∴(4,3)P -, ∵3PQ =,∴Q 点的横坐标为1-或7-, ∴Q 点的坐标为(1,3)-或(7,3)-.3.对于平面直角坐标系xOy 中的点,)Pa b (,若点P '的坐标为,)a mb ma b ++((其中m 为常数,且m ≠0),则称点P '为点P 的“m 属派生点”,例如:1,4)P(的“2属派生点”为124,214)'+⨯⨯+P (,即9,6)'P (.(1)点2,3)P-(的“2属派生点” P '的坐标为 ; (2)若点P 的“4属派生点” P '的坐标为2,7)-(,求点P 的坐标; (3)若点P 在y 轴的正半轴上,点P 的“m 属派生点”为P '点,且3PP OP '=,求m 的值. 解析:(1)将2,3,2a b m =-==代入点P '的坐标,)a mb ma b ++(中, 得2234,2231a mb ma b +=-+⨯=+=-⨯+=-, 所以点2,3)P-(的“2属派生点” P '的坐标为4,1)-(, 故答案为4,1)-(. (2)设,)P a b (,由定义可得4247a b a b +=⎧⎨+=-⎩,解方程组,得21a b =-⎧⎨=⎩,所以点P 的坐标为2,1)P-(. (3)设0,)Pb (,则点P 的“m 属派生点” 点P '的坐标为,)mb b (, 因为3PP OP '=,所以2222()()30mb b b b +-=+, 所以||||3||m b b =,因为点P 在y 轴的正半轴上, 所以0b >, 所以||3m =, 解得3m =±.二.点的轴对称和平移:例2.(1)将点()2,3-先向左平移4个单位长度﹐再向下平移4个单位长度,得到的点的坐标是( )A .()6,1--B .()6,7-C .()2,1-D .()2,7解析:点()2,3-先向左平移4个单位长度﹐再向下平移4个单位长度, 得到的点的坐标是(24,34)---,即(6,1)--, 故选:A .(2)在平面直角坐标系中,己知点(1,2),(1,0)A B -,平移线段AB ,使点A 落在点1(2,3)A 处,则点B 的对应点1B 的坐标为_____________解析:由点(1,2)A -平移后1(2,3)A 可得坐标的变化规律是:横坐标加3,纵坐标加1, ∴点(1,0)B 的对应点B 1的坐标()4,1. 故答案为:()4,1.(3)在平面直角坐标系中,点A 的坐标为(4,1),点B 的坐标为(1,﹣2),将线段AB 平移至OM ,使A 与O 重合,则点M 坐标为______解析:如图,点A (4,1)向左平移4个单位长度,再向下平移1个单位长度,使点A 与点O 重合, 故点B 平移后使与点M 重合, 故平移后点M 的坐标为(-3,-3), 故答案为(-3,-3).(4)点 M (−6,−2) 向____平移____个单位所对应的点的坐标是(−6,4). 解析:横坐标没有变化;纵坐标的变化为:4-(-2)=6,说明向上平移了6个单位长度. 故答案为:上,6.(5)如图,在平面直角坐标系中,平移△ABC 至△A 1B 1C 1的位置.若顶点A (﹣3,4)的对应点是A 1(2,5),则点B (﹣4,2)的对应点B 1的坐标是________解析:∵顶点A (﹣3,4)的对应点是A 1(2,5), 又352,415-+=+=∴平移ABC ∆至111A B C ∆的规律为:将ABC ∆向右平移5个单位,再向上平移1个单位即可得到111A B C ∆ ∵B (﹣4,2)∴1B 的坐标是(-4+5,2+1),即(1,3) 故答案为:(1,3)(6)如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是()()()2,1,1,2,3,3A B C ---.(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △; (2)请画出与ABC 关于y 轴对称的222A B C △; (3)请写出点12C B ,的坐标.解析:如图所示,111A B C △为所作的图形.(2)如图所示,222A B C △,为所作的图形.(3)由图形可知,12(3,1),(1,2)C B --.1.在平面直角坐标系中,(1,2)P --关于x 轴的对称点的坐标是( )A .(1,2)-B .(1,2)C .(1,2)-D .(2,1)--解析:点(1,2)P --关于x 轴对称的点的坐标为(1,2)-. 故选:C .2.点A (5)x -,和点B (2)y -,关于y 轴对称,则x y +的值为( ) A .7 B .7- C .3- D .2解析:∵点A (5)x -,与点B (2)y -,关于y 轴对称, ∴25x y ==-,, 则253x y +=-=-. 故选:C .3.如图,已知ABC 关于直线l (直线l 上各点的纵坐标都是1)对称,C 到AB 的距离为2.AB 的长为6.则点A 、点B 的坐标分别为 _____解析:由题可知:可得A 、B 的连线与1y =垂直,且两点到直线1y =的距离相等, ∵6AB =,∴A 、B 两点的纵坐标分别为2-和4又∵C 到AB 的距离为2, ∴A 、B 两点的横坐标都为2,∴A 、B 两点的坐标分别为()2,2-,()2,4.4.如图,在ABC 中,已知点()0,4A ,()2,2B -,()1,1C -.(1)作出ABC 关于y 轴对称的111A B C △,(点1A ,1B ,1C 分别是点A ,B ,C 的对应点)并写出点1A ,1B ,1C 的坐标:_______;(2)作出ABC 向右平移6个单位后的222A B C △,(点2A ,2B ,2C 分别是点A ,B ,C 的对应点)并写出点2A ,2B ,2C 的坐标,_________;(3)观察111A B C △和222A B C △,它们是否关于某条直线对称?若是,请在图中直接画出对称轴,不留痕迹.解析:ABC 关于y 轴对称的111A B C △如图所示,∴()10,4A ,()12,2B ,()11,1C .(2)ABC 向右平移6个单位后的222A B C △如图所示,∴()26,4A ,()24,2B ,()25,1C .(3)直线MN 是111A B C △和222A B C △的对称轴如图所示,∴111A B C △和222A B C △是对称图形,对称轴是直线MN .三.坐标系中图形的面积:例3.如图,已知()2,2A -,()4,2B ,()2,3C -.(1)写出点C 到x 轴的距离______; (2)连接AB 、BC 、AC ,求ABC 的面积;(3)点P 在y 轴上,当ABP △的面积是6时,求出点P 的坐标. 解析:(1)∵()2,3C -,∴点C 到x 轴的距离是3, 故答案为:3; (2)如图,165152ABCS=⨯⨯=,(3)设点P 的坐标为()0,b ,则点P 到AB 的距离为2b -, ∵6AB =, ∴16262ABPSb =⨯⨯-=, 解得0b =或4b =,∴点P 的坐标为()0,0或()0,4.如图,在平面直角坐标系中.(1)作△ABC 关于x 轴对称的111A B C △;(2)求出△ABC 的面积;(3)在x 轴上是否存在一点P ,使得1AA P ∆与△ABC 面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.解析:(1)如图所示,111A B C △即为所求;(2)1119353312252222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=;(3)存在,设点P 坐标为(a ,0), 根据题意,得:194122a ⨯⨯-=,解得:a =134或a =54-,∴点P 的坐标为(134,0)或(54-,0).。
人教版初二上册第一学期数学《平面直角坐标系及一次函数》期末复习要点(附练习答案)
第五章:平面直角坐标系知识点:1、由点怎样找坐标或由坐标怎样找点!方向:先向x轴作垂线,再向y轴作垂线。
2、各象限坐标的特点与坐标轴上坐标的特点!3、坐标与距离的关系!如(a,b)到轴的距离是b,到y的距离是a4、线段AB垂直x轴或y轴,或者说平行,则线段AB上坐标的特点!方法:垂直于谁,谁相同。
5、各象限角平分线上坐标的特点:第一、三象限的角平分线的点是横纵坐标相等,第二、四象限的角平分线的点是互为相反数。
6、三角形面积的求法:割补法两类:1类是底与高比较明确2类是底与高不能确定!7、如何建立平面直角坐标系:关键在于找到原点。
8、对称的规律:关于谁对称,谁不变,另一个变为它的相反数;关于原点对称,x、y都变。
9、平移:本章方法:数形结合!着重让学生数与形结合起来考虑问题!题型:一.知识点1:各象限坐标的特点与坐标轴上坐标的特点!1.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限在第()象限.2.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1﹣a,﹣b)在第()象限.点在第二象限,则A点坐标为何?()5.平面直角坐标系中点P(a,b)到x轴的距离是2,到y轴的距离是3,则点P坐标是()6、M(1,3)与N(x,3)的距离为5,求x7.点A(﹣6,8)到x轴的距离为_________,到y轴的距离为_________,到原点的距离为_________.8,已知平面直角坐标系中有一点M(m-1,2m+3),当m为何时,点M到x轴的距离为1?当m为何时,点M到y轴的距离为2?知识点3:线段AB垂直x轴或y轴,或者说平行,则线段AB上坐标的特点!方法:垂直于谁,谁相同。
9.已知点A(a+2,5)、B(﹣4,1﹣2a),若AB平行于x轴,则a的值为()A.﹣6 B.2C.3D.﹣210.己知:B(2,1),AB∥ y,且AB=4,则A的坐标是()A.(2,5)B.(6,1)C.(﹣2,1)D.(2,﹣3)或(2,5)11.已知点A(﹣5,m+4)和点B(4m+15,﹣8)是平行于y轴的直线上的两点,求A,B两点的坐标.12.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)知识点4:三角形面积的求法:割补法两类:1类是底与高比较明确2类是底与高不能确定!13.已知点A(1,0),B(0,2),点P在x轴上,且△ PAB的面积为5,则点P的坐标为()14.在平面直角坐标系中,点A(0,3),B(0,﹣2),点C在x轴上,如果S△ ABC=15,求点C的坐标.16.直角坐标系中,有三点O(0,0),M(﹣2,3),N(3,﹣1),则△ MON的面积是()17.平面直角坐标系中有A(﹣2,﹣1),B(﹣4,3),C(0,0),则三角形ABC的面积()18.已知三角形ABC的三个顶点分别为A(2,﹣1)、B(1,﹣3)、C(4,﹣3.5).求出三角形ABC 的面积.19.在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,﹣1),B(5,-1),C(2,2)求△ABC 的面积。
人教版八年级上册数学期末考试试卷带答案
人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.当1x =时,下列分式没有意义的是()A .1x x +B .1xx -C .1x x-D .1x x +3.下列各组数可能是一个三角形的边长的是()A .4,4,9B .4,5,6C .2,6,8D .1,2,34.某病毒的直径约为80~120纳米,1纳米=91.010-=⨯米,若用科学记数法表示110纳米,则正确的结果是()A .91.110-⨯米B .81.110-⨯米C .71.110-⨯米D .61.110-⨯米5.六边形的外角和是()A .360°B .540°C .720°D .900°6.下列计算正确的是()A .224x x x +=B .()222x y x y -=-C .()326=x yx y D .235()x x x -⋅=7.计算11x x x +-的结果为()A .1B .x C .1x D .2x x +8.已知7a b +=,8a b -=则22a b -的值是()A .11B .15C .56D .609.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD10.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④若AC=4BE ,则S △ABC =8S △BDE 其中正确的有()A .1个B .2个C .3个D .4个二、填空题11.因式分解:4x 2﹣9=_____.12.点M (-5,3)关于x 轴对称的点N 的坐标是________.13.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.14.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.15.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若CD =8,点E 是AB 上一动点,DE 的最小值为_________.16.分式3232a b c 与246a b a b c-的最简公分母是_____.17.把一副三角板按如图所示的方式放置,则图中钝角α是______o .三、解答题18.计算:2202001()(1)(4)2π----+-.19.解分式方程:3211x x x +=--20.先化简,再求值:1x x +÷(x -1x ),其中x=3.21.如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法).(2)在(1)的条件下,连接AE ,若∠B =45°,求∠AEC 的度数.22.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.23.如图1所示,边长为a 的正方形中有一个边长为b 的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S 1,如图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1,S 2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+124.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A 沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为1cm/s,当到达终点时停止运动,设它们的运动时间为t秒,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP.(2)求证:点P、Q在运动的过程中,∠CMQ的度数不变化,并求出∠CMQ的度数.(3)当t为何值时△PBQ是直角三角形?25.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是元.26.如图,∠DAB=∠CAE,AD=AB,AC=AE.(1)求证△ABE≌△ADC;(2)设BE与CD交于点O,∠DAB=30°,求∠BOC的度数.27.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.参考答案1.D【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意;故选:D .【点睛】本题考查了轴对称图形,熟记轴对称图形的定义是解题关键.2.B【分析】由分式有意义的条件分母不能为零判断即可.【详解】1x x ,当x=1时,分母为零,分式无意义.故选B.【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件.3.B【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【详解】解:A 、4+4<9,不能组成三角形,故此选项不符合题意;B 、5+4>6,能组成三角形,故此选项符合题意;C 、2+6=8,不能组成三角形,故此选项不符合题意;D 、1+2=3,不能组成三角形,故此选项不符合题意.故选:B.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.4.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:110纳米=110×10-9米=1.1×10-7米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.A【分析】根据多边形外角和都是360°即可得出答案.【详解】∵多边形的外角和都是360°,∴六边形的外角和是360°.故选:A.【点睛】本题主要考查多边形外角和,掌握多边形外角和都是360°是解题的关键.6.D【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.【详解】x2+x2=2x2,A错误;(x-y)2=x2-2xy+y2,B错误;(x2y)3=x6y3,C错误;(-x)2•x3=x2•x3=x5,D正确;故选:D.【点睛】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.7.A【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【详解】解:原式=11111 x x xx x x x++--===.故选:A.考点:分式的加减法【点睛】本题主要考查分式的加减运算,掌握运算法则是解题关键.8.C【分析】直接利用平方差公式将a2-b2分解为(a+b)(a-b),代入数据后即可得出结论.【详解】解:∵a+b=7,a-b=8,∴a2-b2=(a+b)(a-b)=7×8=56.故选:C.【点睛】本题考查了平方差公式的应用,公式法因式分解.解题的关键是利用平方差公式将a2-b2分解为(a+b)(a-b).9.D【详解】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10.B【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【详解】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.(2x+3)(2x﹣3).【分析】根据平方差公式进行分解即可.【详解】原式=22(2)3x -=(2x+3)(2x ﹣3),故答案为(2x+3)(2x ﹣3).12.(-5,-3).【详解】根据平面直角坐标系内关于x 轴对称,纵坐标互为相反数,横坐标不变,点M (-5,3)关于y 轴的对称点为(-5,-3).13.20【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.14.③【分析】根据全等三角形的判定可即可求解.【详解】解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.【点睛】本题考查了全等三角形的条件,解题的关键是需要注意的是只靠一个角或两条边不能等得到全等.15.8【分析】过点D 作DE ⊥AB 于E ,根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,再根据角平分线的性质即可求解.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,∵∠C =90°,AD 平分∠BAC ,CD =8,∴DE=CD=8,故答案为:8.16.6a 3b 4c【分析】取各分式分母中系数的最小公倍数与各字母因式最高次幂的乘积作公分母,叫最简公分母.【详解】解:先分离出两个分式的分母2a 3b 2c,6a 2b 4c ,其中a 、b 、c 的最高次幂分别为3、4、1故分式3232a b c ,246a b a b c-的最简公分母是6a 3b 4c .故答案为6a 3b 4c.17.105【分析】利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°-30°-45°=105°,故答案为105.18.4【分析】原式分别化简21()2=4--,2020(1)=1-,0(=14)π-,然后再进行加减运算即可得到答案.【详解】解:2202001()(1)(4)2π----+-=4﹣1+1=419.1x =-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:3211x x x +=--去分母得,()321x x +-=,解得,1x =-,经检验,1x =-是原方程的解.所以,原方程的解为:1x =-.20.11x -;12【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x 的值代入计算可得答案.【详解】解:1x x+÷(x -1x )=211x x x x +-÷=()()111x x x x x +⨯+-=11x -当x=3时,原式=131-=12.21.(1)作图见解析(2)90°【分析】(1)依据垂直平分线的作图方法,即可得到边AB 的垂直平分线DE ;(2)依据垂直平分线的性质,即可得到∠BAE=∠B ,再根据三角形外角性质,即可得到∠AEC 的度数.(1)如图所示DE 为所求;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =45°,∵AEC ∠是ABE ∆的外角,∴∠AEC =∠EAB ﹢∠B =90°.【点睛】本题主要考查了线段垂直平分线的的性质以及基本作图,解决问题的关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.22.(1)证明见解析;(2)∠D=75°【分析】(1)易证得ABE DCF△≌△,即可得AB CD=;(2)易证得ABE DCF△≌△,即可得AB CD=,又由AB=CF,∠B=30°,即可证得△ABE 是等腰三角形,解答即可.【详解】证明:(1)∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∠A=∠D∠C=∠B AE=DF,∴ABE DCF AAS≌().∴AB=.(2)解:∵ABE DCF△≌△,∴AB=CD,∵AB=CF,∴CD=CF.∴△CDF是等腰三角形,∵∠C=∠B=30°,∴∠D=12×(180°−30°)=75°.【点睛】本题考查全等三角形问题和等腰三角形的性质,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答.23.(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)216.【分析】(1)直接计算两个图形的面积即可;(2)根据两个图形面积相等可得(a+b)(a-b)=a2-b2;(3)从左到右依次利用平方差公式即可求解.【详解】解:(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.24.(1)证明见解析(2)证明见解析;∠CMQ=60°(3)当第43秒或第83秒时,△PBQ为直角三形【分析】(1)利用等边三角形的性质可知AB=AC,∠B=∠CAP=60°,结合AP=BQ即可得证;(2)由△APC≌△BQA知∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(3)可用t分别表示出BP和BQ,分∠PQB=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值.(1)∵△ABC是等边三角形,∴AB=AC,∠B=∠CAP=60°,又AP=BQ,∴△ABQ≌△CAP(SAS).(2)∵△ABQ≌△CAP,∴∠BAQ=∠ACP,又∠CMQ=∠ACP﹢∠CAM∴∠CMQ=∠BAQ﹢∠CAM=∠BAC=60°.(3)由题意知AP=BQ=t,PB=4﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4﹣t=2t,解得t=4 3;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,即t=2(4﹣t),解得t=8 3;综上所述,当第43秒或第83秒时,△PBQ为直角三形.25.(1)商场两次共购进这种运动服600套;(2)240【分析】(1)设商场第一次购进x套运动服,则第二次购进2x套运动服,抓住每套进价多了10元列分式方程求解即可.(2)求出两次购进运动服的进价,根据“第二批售完后获利比第一批售完后获利多12000元”可列出一元一次方程得解.【详解】(1)设商场第一次购进x套运动服,由题意得:680003200010 2x x-=.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为32000200=160(元),第二批运动服的进价为68000400=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为240.26.(1)见解析;(2)150°.【分析】(1)先利用角的和差证出∠DAC=∠BAE,再利用SAS证△ABE≌△ADC即可;(2)设AB与OD交于点F,根据(1)中全等可得:∠ABE=∠D,根据三角形的内角和定理可证∠BOF=∠DAB=30°,从而求出∠BOC的度数.【详解】解:(1)∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠BAE在△ABE和△ADC中AB AD BAE DAC AE AC ⎧⎪∠=∠⎨⎪⎩==∴△ABE ≌△ADC ;(2)设AB 与OD 交于点F∵△ABE ≌△ADC∴∠ABE=∠D∵∠BFO=∠DFA∴∠BOF=180°-∠ABE -∠BFO=180°-∠D -∠DFA=∠DAB=30°∴∠BOC=180°-∠BOF=150°27.(1)证明见解析;(2)BE=AF ,证明见解析.【分析】(1)连接AD ,根据等腰三角形的性质可得出AD=BD 、∠EBD=∠FAD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△BDE ≌△ADF (ASA ),再根据全等三角形的性质即可证出BE=AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD 、BD=AD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△EDB ≌△FDA (ASA ),再根据全等三角形的性质即可得出BE=AF .【详解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC ,∴△ABC 为等腰直角三角形,∠EBD=45°.∵点D 为BC 的中点,∴AD=12BC=BD ,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF .在△BDE 和△ADF 中,EBD FADBD AD BDE ADF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△ADF (ASA ),∴BE=AF ;(2)BE=AF ,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA .在△EDB 和△FDA 中,EBD FADBD AD EDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB ≌△FDA (ASA ),∴BE=AF .。
(好题)初中数学八年级数学上册第三单元《位置与坐标》测试(答案解析)
一、选择题1.如图,圆柱形容器中,高为1.2 m ,底面周长为1m ,在容器内壁离容器底部0.3 m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为( )m(容器厚度忽略不计).A .1.8B .1.5C .1.2D .1.32.若点Р位于平面直角坐标系第四象限,且点Р到x 轴的距离是1,到y 轴的距离是2,则点P 的坐标为( )A .()1,2-B .()1,2-C .()2,1-D .()2,1- 3.已知点Q 与点(3,)P a 关于x 轴对称点是(,2)Q b -,那么点(,)a b 为( ) A .(2,3)- B .(2,3) C .(3,2) D .(3,2)- 4.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 5.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.平面直角坐标系中,点P (-2,1)关于y 轴对称点P 的坐标是( ) A .()2,1- B .()2,1- C .()2,1-- D .()2,1 7.如图,在平面直角坐标系上有个点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1,A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2019次跳动至点2019A 的坐标是( )A .()505,1009-B .()505,1010C .()504,1009-D .()504,10108.平面直角坐标系中,P (-2a -6,a -5)在第三象限,则a 的取值范围是( )A .a >5B .a <-3C .-3≤a ≤5D .-3<a <5 9.如下图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2020次运动到点( )A .()2020,2-B .()2020,0C .()2019,1D .()2019,0 10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,,这样依次得到点1A ,2A ,3A ,,n A ,.若点1A 的坐标为(2,4),点2020A 的坐标为( ) A .(-3,3)B .(-2,-2)C .(3,-1)D .(2,4) 11.如图,半径为1的圆,在x 轴上从原点O 开始向右滚动一周后,落定点M 的坐标为( )A .(0,2π)B .(2π,0)C .(π,0)D .(0,π) 12.关于点P (-2,0)在直角坐标平面中所在的象限说法正确的是( )A .点P 在第二象限B .点P 在第三象限C .点P 既在第二象限又在第三象限D .点P 不在任何象限 二、填空题13.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A 的坐标可表示为()1,2,5,点B 的坐标可表示为()4,3,1,按此方法,若点C 的坐标为()3,,1m m -,则m =__________.14.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________15.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角) 16.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.17.在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应该是________.18.为了培养学生社会主义核心价值观,张老师带领学生去 参观天安门广场的升旗仪式.如图是张老师利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为 x 轴、 y 轴的正方向,表示金水桥的点的坐标为(1,﹣2),表示本仁殿的点的坐标为(3,﹣1),则表示乾清门的点的坐标是______.19.已知点(,)P m n 在y 轴的左侧,(,)P m n 到x 轴的距离是5,到y 轴的距离是3,则Р点坐标是________________.20.如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,……,按这样的运动规律,动点P 第2018次运动到点的坐标是________.三、解答题21.在平面直角坐标系中,O 为坐标原点,点(445)A a --,位于第二象限,点(4,1)B a ---位于第三象限,且a 为整数.(1)求点A 和点B 的坐标.(2)若点(,0)C m 为x 轴上一点,且ABC 是以BC 为底的等腰三角形,求m 的值. 22.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.23.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.24.在如图所示的平面直角坐标系中,描出点A(3,2)和点B (-1,4).(1)求点A (3,2)关于x 轴的对称点C 的坐标;(2)计算线段BC 的长度.25.如图,已知△ABC 的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形111A B C ∆,并写出点1A 的坐标;(2)作出点C 关于直线m 对称的点2C ,并写出点2C 的坐标;(3)在x 轴上画出点P ,使PA +PC 最小.26.如图,在平面直角坐标系中,点(2,3)A -,直线//AB y 轴,且4AB =,将点A 向右平移3个单位得到点C .请根据所学相关知识解决下列问题:(1)直接写出B、C两点的坐标;(2)求出三角形ABC的面积;(3)连接OA,若在坐标轴...上有一点D,使三角形ABC的面积与三角形ADO的面积相等,请直接写出点D的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将容器侧面展开,找出A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:∵高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,∴A′D=0.5m,BD=1.2−0.3+0.3=1.2m,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B= 1.3(m).故选:D.【点睛】本题考查了平面展开−−−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D【分析】可先判断出点的坐标的符号,再跟据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到具体坐标即可.【详解】】解:∵P到x轴的距离为1,到y轴的距离为2,∴P纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴P坐标为(2,-1).故选:D.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3.B解析:B【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案.【详解】解:∵点P(3,a)关于x轴的对称点为Q(b,-2),∴a=2,b=3,∴点(a,b)的坐标为(2,3),故选:B.【点睛】此题主要考查了关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.4.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A (a ,-b )在第三象限,∴a <0,-b <0,∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.5.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵点()3,4-,∴点()3,4-在第二象限,故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).6.D解析:D【分析】直接利用关于y 轴对称点的特点得出答案.【详解】点P (﹣2,1)关于y 轴对称点P 的坐标是:(2,1).故选D .【点睛】此题主要考查了关于y 轴对称点的特点,正确记忆横纵坐标的符号是解题关键. 7.B解析:B【分析】设第n 次跳动至点A n ,根据部分点A n 坐标的变化找出变化规律“A 4n (-n-1,2n ),A 4n+1(-n-1,2n+1),A 4n+2(n+1,2n+1),A 4n+3(n+1,2n+2)(n 为自然数)”,依此规律结合2019=504×4+3即可得出点A 2019的坐标.【详解】解:设第n 次跳动至点A n ,观察,发现:A (-1,0),A 1(-1,1),A 2(1,1),A 3(1,2),A 4(-2,2),A 5(-2,3),A 6(2,3),A 7(2,4),A 8(-3,4),A 9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2019=504×4+3∴A2019(504+1,504×2+2),即()505,1010.故选:B.【点睛】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”是解题的关键.8.D解析:D【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.【详解】∵点P在第三象限,∴26050aa--<⎧⎨-<⎩,解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.9.D解析:D【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2020除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:20204505÷=,∴动点P第2020次运动为第505个循环组的第4次运动,横坐标505412019⨯-=,纵坐标为0,∴点P此时坐标为(2019,0).故选:D.【点睛】本题考查了规律型:点的坐标,本题为平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.10.C解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.【详解】∵A1的坐标为(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1).故选:C【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.11.B解析:B【分析】运用圆的周长公式求出周长即可.【详解】解:C=πd=2π.则M(2π,0)故选:B.【点睛】本题主要考查了圆的周长及实数与数轴,解题的关键是求出圆的周长.12.D解析:D【分析】根据点的坐标特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)求解即可.【详解】解:点P(-2,0)不在任何象限,故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题13.3【分析】根据题目中定义的新坐标系中点坐标的表示方法求出点C坐标即可得到结果【详解】解:根据题意点C的坐标应该是∴故答案是:3【点睛】本题考查新定义解题的关键是理解题目中新定义的坐标系中点坐标的表示 解析:3【分析】根据题目中定义的新坐标系中点坐标的表示方法,求出点C 坐标,即可得到结果.【详解】解:根据题意,点C 的坐标应该是()3,3,2,∴3m =.故答案是:3.【点睛】本题考查新定义,解题的关键是理解题目中新定义的坐标系中点坐标的表示方法. 14.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.15.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC ∥BD ∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC ∥BD ,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.16.【分析】分析点P 的运动规律找到循环次数即可【详解】分析图象可以发现点P 的运动每4次位置循环一次每循环一次向右移动四个单位∵1000=4×250∴当第250循环结束时点P 位置在(10000)∵2019解析:()1000,0 ()2019,2【分析】分析点P 的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∵1000=4×250,∴当第250循环结束时,点P位置在(1000,0),∵2019=4×504+3,∴当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),故答案为(1000,0);(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.17.21:05【分析】根据镜子中的成像与实际物体是相反的原理可利用轴对称性质作出图像向左或向右的对称【详解】因为镜子中的成像与实际物体是相反的利用轴对称性质作出图像向右的对称图故填:21:05【点睛】本解析:21:05【分析】根据镜子中的成像与实际物体是相反的原理,可利用轴对称性质作出图像向左或向右的对称.【详解】因为镜子中的成像与实际物体是相反的,利用轴对称性质作出图像向右的对称图故填:21:05.【点睛】本题主要考查轴对称图形在实际生活中的问题,解题的关键是要知道:在镜子中的像与现实中的像恰好是左右颠倒.18.(13)【详解】分析:根据金水桥的点的坐标(1-2)确定坐标原点的位置然后建立坐标系进而可确定乾清门的点的坐标位置详解:如图所示:乾清门的点的坐标是(13)故答案为(13)点睛:此题主要考查了坐标确解析:(1,3)【详解】分析:根据金水桥的点的坐标(1,-2)确定坐标原点的位置,然后建立坐标系,进而可确定乾清门的点的坐标位置.详解:如图所示:乾清门的点的坐标是(1,3),故答案为(1,3).点睛:此题主要考查了坐标确定位置,关键是正确建立坐标系.19.(-35)或(-3-5)【分析】根据点到x 轴的距离等于纵坐标的长度到y 轴的距离等于横坐标的长度解答【详解】∵点P (mn )在y 轴的左侧∴m <0∵到x 轴的距离是5∴点P 的纵坐标为±5∵到y 轴的距离是3∴解析:(-3,5)或(-3,-5)【分析】根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【详解】∵点P (m ,n )在y 轴的左侧,∴m <0,∵到x 轴的距离是5,∴点P 的纵坐标为±5,∵到y 轴的距离是3,∴点P 的横坐标是-3,∴点P 的坐标为:(-3,5)或(-3,-5),故答案为:(-3,5)或(-3,-5).【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度也很重要.20.【分析】先根据运动规律可得出第246次运动到的点的坐标再归纳类推出一般规律由此即可得【详解】由图可知第2次运动到点即第4次运动到点即第6次运动到点即归纳类推得:第n 次运动到点(其中且为偶数)因为且为 解析:()2017,0【分析】先根据运动规律可得出第2、4、6次运动到的点的坐标,再归纳类推出一般规律,由此即可得.【详解】由图可知,第2次运动到点(1,0),即(21,0)-,第4次运动到点(3,0),即(41,0)-,第6次运动到点(5,0),即(61,0)-,归纳类推得:第n 次运动到点(1,0)n -(其中2n ≥,且为偶数),因为20182>,且为偶数,所以第2018次运动到点(20181,0)-,即(2017,0),故答案为:(2017,0).【点睛】本题考查了点坐标规律探索,依据题意,正确归纳类推出一般规律是解题关键.三、解答题21.(1)(4,4),(4,1)A B ---;(2)7m =-或1-【分析】(1)根据点A 位于第二象限,点B 位于第三象限, 可得到45010a a ->⎧⎨--<⎩,再根据a 为整数,求解即可;(2)根据题干可知AB x ⊥,设垂足为D ,利用勾股定理可求得CD ,进而可求出m 的值.【详解】解:(1)由题意得45010a a ->⎧⎨--<⎩, 解得415a -<<, ∵a 为整数,∴0a =,∴()()4,4,4,1A B ---;(2)由题意知,AB x ⊥轴,假设点C(m ,0)位置如图,AB x ⊥交x 轴于点D ,∴D(-4,0),∵△ABC 是以BC 为底的等腰三角形,∴54AC AB AD ===,,∴223CD AC AD =-=,∴34CD m ==+,∴7m =-或1-.【点睛】本题考查坐标与图形的性质、勾股定理、等腰三角形的性质及绝对值的性质,解题的关键是综合运用相关知识解题.22.(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】b-=可以求得,a b的值,根据长方形的性质,可以求试题分析:(160.得点B的坐标;(2)根据题意点P从原点出发,以每秒2个单位长度的速度沿着O C B A O的线路移动,可以得到当点P移动4秒时,点P的位置和点P的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.试题b-=(1)∵a、b60.∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.23.(1)1或﹣5;(2)(2,6)【分析】m+,解出m的值即可;(1)由点P与x轴的距离为9可得36=9(2)由点P在过点A(2,-3)且与y轴平行的直线上可得2-m=2,解出m的值即可.【详解】(1)点P(2-m,3m+6),点P在x轴的距离为9,∴|3m+6|=9,解得:m=1或-5.答:m的值为1或-5;(2)点P 在过点A (2,-3)且与y 轴平行的直线上,∴2-m =2,解得:m =0,∴3m +6=6,∴点P 的坐标为(2,6).【点睛】本题主要考查点到坐标轴的距离以及在与坐标轴平行的直线上点的坐标的特点,熟练掌握点到坐标轴的距离的意义以及与坐标轴平行的直线上点的坐标的特点是解题关键. 24.点A 和点B 的位置如图,见解析;(1)点A 关于x 轴的对称点C 的坐标为(3,-2);(2)BC=213.【分析】先根据已知描出点A 和点B 的位置;(1)根据平面内两个关于x 轴对称的点,横坐标不变,纵坐标互为相反数即可确定C 的坐标;(2)直接用两点距离公式即可求解.【详解】解:点A 和点B 的位置如图:(1)点A 关于x 轴的对称点C 的坐标为(3,-2);(2)()()22243152213⎡⎤--+--==⎣⎦. 【点睛】本题考查的主要是平面直角坐标系内点的计算,掌握点的对称规律以及两点距离公式是解题的关键.25.(1)图见解析,A (-2,-2);(2)图见解析,C 2(7,1);(3)图见解析【分析】(1)根据轴对称关系确定点A 1、B 1、C 1的坐标,顺次连线即可;(2)根据轴对称的性质解答即可;(3)连接AC 1,与x 轴交点即为点P .【详解】(1)如图,A 1(-2,-2);(2)如图,C2的坐标为(7,1);(3)连接AC1,与x轴交点即为所求点P.【点睛】此题考查轴对称的性质,利用轴对称关系作图,确定直角坐标系中点的坐标,最短路径问题作图,正确理解轴对称的性质是解题的关键.26.(1)(2,1)B --或(2,7)-,(1,3)C ;(2)6;(3)(4,0)D -、(4,0)D 、(6,0)D 、(6,0)D -【分析】(1)根据AB//y 轴且AB=4,写出B 的两种情况的坐标,再根据点的平移写出C 点坐标; (2)以AB 为高,AC 为底求ABC 的面积;(3)分情况讨论,D 在x 轴或y 轴上,根据条件已知三角形的面积和高,求出底,从而得到D 的坐标.【详解】解:(1)如图,∵AB//y 轴,()2,3A -,∴B 的横坐标也是-2,∵AB=4,∴(2,1)B --或(2,7)-∵C 点是A 点向右平移3个单位得到,∴(1,3)C ;(2)如图,两种情况下的ABC 的面积是一样的, 1143622ABC AB A S C =⋅=⨯⨯=△, 所以三角形ABC 的面积为6;(3)①D 在x 轴上,ADO △的面积可以以DO 为底,A 到x 轴的距离为高去算, ∵ADO △的面积等于ABC 的面积等于6,且A 到x 轴的距离为3,∴底DO 的长=6234⨯÷=,则(4,0)D -、(4,0)D ,②D 在y 轴上,ADO △的面积可以以DO 为底,A 到y 轴的距离为高去算,∵ADO △的面积等于ABC 的面积等于6,且A 到y 轴的距离为2,∴底DO 的长=6226⨯÷=,则(6,0)D 、(6,0)D -.【点睛】本题考查平面直角坐标系中点的坐标,点的平移,以及三角形面积的求解,解题的关键是掌握平面直角坐标系中点坐标的性质,由点坐标构成的三角形面积的计算方法,需要注意在写点坐标的时候要考虑多种情况.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期期末考试八年级数学优质好题精选
专题4 位置与坐标
一、单选题
1.(江西省萍乡市芦溪县2017-2018学年八年级上学期期中考试)如果点P(m+3,m+1)在轴上,则点P的坐标为()
A. (0,2)
B. (2,0)
C. (4,0)
D. (0,﹣4)
2.(江苏省句容市初中崇明片合作共同体2017-2018学年八年级上学期第二次月考)已知点P在第四象限,且到轴的距离为4,到y轴的距离是2,则点P的坐标为()
A. (4,﹣2)
B. (﹣4,2)
C. (﹣2,4)
D. (2,﹣4)
3.(浙江省宁波市东钱湖九校2017-2018学年八年级上学期期中联考)已知点A(﹣3,2)与点B(,y)在同一条平行轴的直线上,且B点到y轴的距离等于2,则B点的坐标是()
A. (﹣2,2)
B. (2,﹣2)
C. (﹣2,2)或(﹣2,﹣2)
D. (﹣2,2)或(2,2)4.(浙江省宁波市东钱湖九校2017-2018学年八年级上学期期中联考)如图,笑脸盖住的点的坐标可能为()
A. (5,2)
B. (-2,3)
C. (-4,-6)
D. (3,-4)
5.(江苏省洪泽县黄集中学2017-2018学年八年级上学期第三次月考)在平面直角坐标系中,若点P坐标为(2,-3),则它位于第几象限
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
6.(江西省萍乡市芦溪县2017-2018学年八年级上学期期中考试)在平面直角坐标系中,点P(﹣1,2+2)一定在()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
7.(四川省射洪县柳树中学2018届九年级上学期调考数学试卷)如果点P(m,1-2m)在第四象限,那么m的取值范围是()
A.
1
2
m> B.
1
2
m
-<< C. 0
m< D.
1
2
m
<<
8.(吉林省德惠市第二十九中学2018届九年级上学期期中考试)甲、乙两名同学下棋,甲执圆子,乙执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示,甲将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,甲放的位置是()
A. (-2,1)
B. (-1,1)
C. (-1,0)
D. (-1,2)
9.(江苏省东台市第四教育联盟2017-2018学年八年级上学期第二次质量检测(12月月考)数学试题)
在平面直角坐标系中,已知直线y=-3
4
+3与轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把
坐标平面沿直线AC折叠,使点B刚好落在轴上,则点C的坐标是()
A. (0,3)
B. (0,4)
C. (0,3
4
) D. (0,
4
3
)
10.(江苏省洪泽县黄集中学2017-2018学年八年级上学期第三次月考数学试题)在平面直角坐标中,点P(1,﹣3)关于轴的对称点坐标是()
A. (1,﹣3)
B. (﹣1,3)
C. (﹣1,﹣3)
D. (1,3)
11.(福建省永春县第一中学2016-2017学年八年级下学期期中考试数学试题)已知点A(3,-2),将点A向左平移4个单位长度得到点B,则点B在()
A. 第一象限;
B. 第二象限;
C. 第三象限;
D. 第四象限.
12.(广东省深圳市耀华实验学校2017-2018学年八年级上学期期中考试数学试题)如图,将正方形OABC
放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()
A. 1)
B. (﹣1,)
C. ,1)
D. ,﹣1)
13.(安徽省宿州市第十一中学2018届九年级11月份阶段考试题数学试题)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是()
A. (﹣1,﹣2)
B. (―1,1)
C. (-1,-1)
D. (1,―2)
14.(湖北省潜江市十校联考2017-2018学年八年级上学期期中考试)在平面直角坐标系中,点P关于y
轴的对称点为P 1(-3,6),则点P 的坐标为( )
A. (-3、-6)
B. (3、6)
C. (3、-6)
D. (6、-3)
15.(江苏省东台市第一联盟2018届九年级上学期期中考试)如图,将正六边形ABCDEF 放置在直角坐标系内,A(-2,0),点B 在原点,把正六边形ABCDEF 沿轴正半轴作无滑动的连续翻转,每次翻转60°,经过2016次翻转之后,点C 的坐标是( )
A. (4032,0)
B. (4032,2)
C. (4031,)
D. (4033,)2·
16.(安徽省蚌埠六中、新城实验中学、慕远学校等经开区2017-2018学年八年级上学期期中考试)如图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动一个单位至点A 1(-1,1),紧接着第2次向右跳动2个单位至点A 2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2017次跳动至点A 2017的坐标是( )【
A. (-504,1008)
B. (-505,1009)
C. (504,1009)
D. (-503,1008)
17.(广东省揭阳市揭西县第三华侨中学2017-2018学年八年级上学期期中考试)点P ()3,1m m +-在x 轴上,则m 的值为( )
A. 1
B. 2
C. -1
D. 0
18.(吉林省第二实验学校2017-2018学年第一学期期中考试八年级数学试卷)在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是( )
A. (﹣2,1)
B. (﹣2,2)
C. (﹣1,1)
D. (﹣1,2)
19.(江苏省连云港市灌云县西片2016-2017学年八年级上学期第二次月考数学试题)如图,是雷达探测器测得的结果,图中显示在点A ,B ,C ,D ,E ,F 处有目标出现,目标的表示方法为(r ,α),其中,r 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.例如,点A ,D 的位置表示为A (5,30°),D (4,240°).用这种方法表示点B ,C ,E ,F 的位置,其中正确的是( )
A. B(2,90°)
B. C(2,120°)
C. E(3,120°)
D. F(4,210°)
20.(2016-2017学年河北省石家庄市长安区八年级下学期期中质量检测)如图是医院、公园和超市的平面示意图,超市B在医院O的南偏东25︒的方向上,且到医院的距离为300m,公园A到医院O的距离为400m.若∠90
AOB=︒,则公园A在医院O的()
A.北偏东75︒方向上
B.北偏东65︒方向上
C.北偏东55︒方向上
D.北偏西65°方向上。