2018-2019年聊城市初中分班数学模拟试题(46)附详细答案

合集下载

2023年山东省聊城市小升初分班数学应用题达标模拟试卷三含答案及解析

2023年山东省聊城市小升初分班数学应用题达标模拟试卷三含答案及解析

2023年山东省聊城市小升初分班数学应用题达标模拟试卷三含答案及解析姓名:________ 考号:________ 得分:________一、应用题(精选150道题;要求一、审题:在开始解答前,应仔细阅读题目,理解题目的意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用楷书,尽量避免连笔,字迹稍大,并注意排版;四、π一律取值3.14。

)1.某饲养场养鹅180只,比鸡的只数少55%,鸭的只数是鸡的80%。

饲养场养鸭多少只?2.五年级和六年级参加植树活动,一共种了480棵树,两个班植树棵数比为3:5,两个班各植树了多少棵树?3.一个养鸡场上午孵出320只小鸡,下午比上午多孵出35%.这个养鸡场下午孵出多少只小鸡?这一天共孵出多少只小鸡?4.甲、乙两辆汽车同时从东西两地相向而行,甲车每小时行56千米,乙车每小时行48千米.行了一段时间后在离中点16千米处相遇.东、西两地相距多少千米?5.甲、乙两艘轮船同时分别从相距760千米的两地出发,相向而行,甲船每小时行45千米,乙船每小时行75千米,几小时后两船还相距40千米(未相遇)?6.小华爸爸在银行里存入8000元,存定期3年,年利率是3.69%,到期时可以得本金和利息一共多少元?7.一个工厂需生产300个零件,由甲批工人做完,如果甲批工人每天做55个零件,那么需要多少天?8.食堂买来大米78.6千克,比买来的面粉的2倍少17.4千克,食堂买来的面粉多少千克?9.养鸡场内公鸡的只数比母鸡少80%,公鸡与母鸡的只数比是多少,公鸡的只数与鸡的总数的比是多少?10.甲、乙两汽车从相距600千米的两个城市相对开出,甲每小时65千米,乙汽车的速度是甲汽车的11/13,两车开出几小时后相遇?11.甲、乙两辆汽车在与铁路并行的道路上相向而行.一列长180米的火车以60千米/小时的速度与甲车同向前进,火车从追上甲车到遇上乙车,相隔5分钟.若火车从追上到超过甲车用时30秒,从与乙车相遇到离开用时6秒.求乙车遇到火车后再过多少分钟与甲车相遇?12.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米.现由甲工程队先修3天.余下的路段由甲、乙两队合修,正好花6天时间修完.问:甲、乙两个工程队每天各修路多少米?13.今天五年级有4人缺勤,116人出勤,缺勤的和出勤的人数各占全年级人数的几分之几?14.五年级种向日葵270棵,是三年级的棵树的3倍.两个年级共种向日葵多少棵?15.一批产品的合格率是96%,已知合格产品有192件,不合格产品有多少件?16.甲乙两车从相距126千米的两地同时同向而行,甲车在前,每小时行驶43千米;乙车在后,每小时行驶61千米,乙车追上甲车需要几小时?17.仓库里原有水果1吨,第一天售出3/4吨后,第二天又运进若干吨,这时仓库里共有水果6吨.问第二天运进了多少吨?(用方程解)18.甲、乙、丙三个数的和是102,甲数比乙数大24,乙数比丙数大12,求三个数的最大公约数和最小公倍数.19.某机器厂原计划一年生产机器2000台,前3个月实际生产570台,照这样计算,全年超过计划多少台?20.小麦的出粉率是80%,要磨出面粉640千克,需要多少千克小麦?21.师徒二人共同生产一种零件,师父比徒弟每小时多生产10个,师傅生产了7小时,徒弟生产了4小时,正好完成这种零件的生产任务.完成任务时,徒弟生产零件的个数是师傅的10/21,师徒共生产这种零件多少个?22.甲、乙两辆汽车同时从相距100千米两地出发,相背而行,4小时后相距460千米.乙车的速度是52千米/小时,求甲车的速度.23.为保护环境,学校号召学生们回收废电池,六年级共回收废电池847个,五年级共回收764个.六年级比五年级多回收百分之几?(百分号前保留一位小数)24.一辆汽车每小时能行27千米,火车的速度比汽车要快4/9.火车每小时要比汽车快多少千米?火车每小时行多少千米?25.建筑工地有一堆圆锥形的沙子,测得底面面积为50.24平方米,高3米.现在用每次装4立方米的运沙车装运,几次运完?26.某车间计划生产400条红领巾,第一天生产了60条,第二天生产了80条.生产了计划的多少百分数?27.学校买来的630本科技书,按5:4的比例分给六年级和五年级,这两个年级各分得多少本?28.某工程队修筑一条马路.第一天修了全长的3/10,第二天修了全长的2/5,第二天比第一天多修了150米.这条马路全长多少米?29.一列客车以每小时行52千米的速度从甲站开往乙站,同时有一列货车以每小时42千米的速度从乙站开往甲站,经过3.5小时两车相遇.甲乙两站之间的铁路长多少千米?30.一个长方形游泳池,长50米,宽25米.沿游泳池走一周是多少米?31.植树节到了,某市举行大型植树活动,共有1430人参加植树,要把人数分成相等的若干队,且每队人数在100至200之间,则有分法多少种?32.商店运进215箱饮料,已经卖出160箱.(1)卖出的每箱售价54元,一共收入多少钱?(2)剩下的按每箱50元售出,还能收入多少元?33.在一个长50厘米,宽4分米的长方体玻璃缸中,放入一块棱长20厘米的正方体铁块,这时水深25厘米.若把这个铁块从缸中取出,缸中的水面高多少厘米?34.一个工程队修筑一条公路,前4天每天修1.75千米,第5、6、7天共修4.1千米,已知第8天修完后,使得后4天的平均工作效率高于所有8天的平均工作效率,那么第8天至少要修多少千米?(精确到0.1千米)35.商店进了150个中国结,卖了2天还剩12个,平均每天大约卖多少个?36.甲、乙两个仓库,己知甲仓库存粮的重量是乙仓库的3倍,如果甲仓库运进30吨,乙仓库运进100吨,这时甲仓库存粮的重量是乙仓库的2倍,现在乙仓库存粮多少吨?37.一桶油,第一次倒出20%,第二次倒出19千克,第三次倒出的是前两次的总和,此时还剩下这桶油的12.5%,这桶油原有多少千克?38.工程队修一段长376.5米的路,每天修52.5米,已经修了4天,剩下的3天修完,平均每天修多少米?39.五年级有学生76人,其中13个女生与男生的一半参加数学竞赛,剩下的男、女生人数相等,这个年级的男生比女生多多少人.40.甲、乙两个工程修复510米长的一段公路,甲队每天计划修45米,乙队每天计划修40米.7月25日两队同时各在一端开工,8月1日前能否修复这段公路?41.甲、乙两车分别从A、B两地出发,相向而行.出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%这样,当甲到达B地时,乙离A地还有10千米.那么A、B两地相距多少千米?42.王老师帮学校买了篮球和足球各3个,共花了180元.篮球每个34.5元,足球每个多少钱?43.一堆货物有364吨,用8辆货车运走一部分货物后,还剩4吨货物,平均每辆货车运货物多少吨?44.甲、乙两地相距532千米,一辆汽车从甲地开往乙地,2小时行了152千米.用这样的速度行驶,这辆汽车还需要多少小时到达乙地?45.纺织厂要生产一批布,每台机器每小时织28米,5台机器8个小时才织完,这批布有多少米?46.甲乙两车分别从AB两地同时相向而行,按原定速度3小时相遇,由于两车都比原定速度每小时少行25千米,结果5小时相遇,求AB两地距离?47.东方路小学组织学生参观美术展览,四年级去了65人;五年级去的人数是四年级的2倍少35 人;六年级去的人数比四、五年级的人数和还多23人。

2018-2019年聊城市小升初数学模拟试卷整理(3)附答案附答案

2018-2019年聊城市小升初数学模拟试卷整理(3)附答案附答案

小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。

2018-2019年聊城市小升初数学模拟试题整理(4)附答案

2018-2019年聊城市小升初数学模拟试题整理(4)附答案

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.。

聊城市新初一分班数学试卷含答案

聊城市新初一分班数学试卷含答案

聊城市新初一分班数学试卷含答案一、选择题1.甲乙两地实际距离是320千米,地图上量得的距离是4厘米,这幅地图的比例尺是( )。

A .1:80B .1:8000C .1:800000D .1:80000002.如图,李明的座位用数对表示为(1,3),张英的座位在李明东偏南45°方向上,张英的座位用数对表示可能是( )。

A .(0,2)B .(2,2)C .(2,4)3.7路公共汽车的行驶路线全长8 km ,每相邻两站的距离是1 km .一共有几个车站?正确的算式是( ) A .7÷1+1 B .7÷1-1 C .8÷1+1 D .8÷1-14.一个三角形三个内角度数的比是5:3:1,这个三角形是( )。

A .钝角三角形B .直角三角形C .等腰三角形5.一架飞机每小时飞行1350千米,比火车的速度的19倍还多172千米.求火车的速度.设火车每小时行x 千米,列出方程正确的是( ) A .19-1721350x = B .191350172x =+ C .191721350x +=D .191721350x +=()6.观察如图,与字母B 和字母F 相对的面分别是( )。

A .C 、DB .A 、EC .D 、E D .A 、E7.六年级书屋各类书籍情况统计如图所示,其中文学类有240本。

下面说法错误的是( )。

A.六年级书屋共有800本书B.科技类的书最多C.漫画类的书占总数的20% D.其他类的书有144本8.井盖平面轮廓采用圆形的一个原因是圆形井盖怎么放都不会掉到井里,并且能恰好盖住井口。

这是应用了圆特征中()。

A.圆心角决定圆的位置B.半径决定圆的大小C.同一圆内所有直径都相等D.圆是曲边图形9.一家药店经营的防暑药品,在连日高温的情况下提价100%,物价部门查处后,限定其提价只能是原价的10%,则该药品现在应降价的百分率是().A.45% B.50% C.90% D.95%10.拼一个三角形用3根小棒,想一想,第8个图形需要用()根小棒。

2018-2019年聊城市小升初数学模拟试卷整理(4)附答案附答案

2018-2019年聊城市小升初数学模拟试卷整理(4)附答案附答案

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.。

山东省聊城市2019初中学生学业水平考试数学试题(含答案)-精品

山东省聊城市2019初中学生学业水平考试数学试题(含答案)-精品

二O 一九年山东省聊城市初中学生学业水平考试数 学 试 题一、选择题(本题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.的相反数是 A.2-B.2C. D2.如图所示的几何体的左视图是3.如果分式11x x -+的值为0,那么x 的值为A .﹣1B .1C .﹣1或1D .1或04.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是 A .96分,98分 B .97分,98分 C .98分,96分 D .97分,96分5.下列计算正确的是 A .66122aa a += B .25822232-÷⨯= C .223331()(2)2ab a b a b -⋅-= D .271120()a a a a ⋅-⋅=- 6.下列各式不成立的是 A= B= C.52== D=7.若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为A .m ≤2B .m <2C .m ≥2D .m >28.如图,BC 是半圆O 的直径,D ,E 是BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠A =70°,那么∠DOE 的度数为 A .35° B .38° C .40° D .42° 9.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为 A .0k ≥ B .0k ≥且2k ≠ C .32k ≥D .32k ≥且2k ≠ 10.某快递公司每天上午9:00~10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲,乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为 A .9:15 B .9:20 C .9:25 D .9:3011.如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是 A .AE +AF =AC B .∠BEO +∠OFC =180°C .OE +OF =2BC D .S 四边形AEOF =12S △ABC 12.如图,在Rt △ABO 中,∠OBA =90°,A(4,4),点C 在边AB 上,且AC CB =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为 A .(2,2) B .(52,52) C .(83,83) D .(3,3)二、填空题(本题共5个小题,每小题3分,共15分,只要求填写最后结果) 13.计算:115()324--÷= .14.如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为 . 15.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A ,B ,C ,D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是 . 16.如图,在Rt △ABC 中,∠ACB=90°,∠B =60°,DE 为△ABC 的中位线,延长BC 至F ,使CF =12BC ,连接FE 并延长交AB 于点M .若BC =a ,则△FMB 的周长为 . 17.数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次眺动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处.按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n (n ≥3,n 是整数)处,那么线段A n A 的长度为 (n ≥3,n 是整数).三、解答题(本题共8个小题,共69分,解答题应写出文字说明,证明过程或推演步骤)18.(本题满分7分)计算:221631()3969a a a a a +-+÷+--+.19.(本题满分8分)学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数.20.(本题满分8分)某商场的运动服装专柜,对A,B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?21.(本题满分8分)在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.(1)求证:△ABF≌△DAE;(2)求证:DE=BF+EF.22.(本题满分8分)某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A 处测得大楼部分楼体CD的顶端C点的仰角为45°,底端D点的仰角为30°,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为63.4°(如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到1米)(参考数据:sin63.4°≈0.89,cos63.4°≈0.45,t an63.4°≈2.00,≈1.41,≈1.73)23.(本题满分8分)如图,点A(32,4),B(3,m )是直线AB 与反比例函数(0)ny x x=>图象的两个交点,AC ⊥x 轴,垂足为点C ,已知D(0,1),连接AD ,BD ,BC .(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2﹣S 1.24.(本题满分10分)如图,△ABC 内接于⊙O ,AB 为直径,作OD ⊥AB 交AC 于点D ,延长BC ,OD 交于点F ,过点C 作⊙O 的切线CE ,交OF 于点E .(1)求证:EC =ED ;(2)如果OA =4,EF =3,求弦AC 的长.25.(本题满分12分)如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点A(﹣2,0).点B(4,0),与y 轴交于点C(0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线,线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 的坐标; (3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.。

聊城市2019年初中学业水平测试数学模拟测试题3(含答案)

聊城市2019年初中学业水平测试数学模拟测试题3(含答案)1.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x 立方米的水,下列方程正确的是( )A .1.2×20+2(x ﹣20)=1.5xB .1.2×20+2x =1.5xC .D .2x ﹣1.2×20=1.5x2.如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连接BD ,∠GBC =50°,则∠DBC 的度数为A .50°B .60°C .75°D .80°3.在三边分别为下列长度的三角形中,是直角三角形的是( )A .9,12,14B .4,3,5C .4,3,D .2, 4.若()()1221255m m n n a b a b a b +++=,则m n +的值为( )A .1B .2C .3D .―35.某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场( )A .不赔不赚B .赔100元C .赚100元D .赚360元6.若 | x | =-x ,则x 一定是( )A .负数B .正数C .负数或0D .07.将方程组239{241x y x y -=+=-中的x 消去后得到的方程是( )A .y =8B .7y =10C .-7y =8D .-7y =108.已知10=,则x 等于( ) A .4 B .±2 C .2 D .±49.下列各式变形正确的是( )A .B .10.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④11.若P(m,a),Q(,b)两点均在函数y=﹣的图象上,且﹣1<m<0,则a﹣b的值为()A.正数B.负数C.零D.非负数12.某商家销售某种商品,当单价为10元时,每天能卖出200个.现在采用提高售价的方法来增加利润,已知商品单价每上涨1元,每天的销售量就少10个,则每天的销售金额最大为( )A.2500元B.2250元C.2160元D.2000元13.将直线沿着轴正向向右平移个单位,所得直线的解析式为_______:14.15-的倒数是__________ 计算:|1﹣3|=________.15.已知则第个等式为____________.16.某地气象统计资料表明,高度每增加1 000m,气温就降低大约6度. 现在地面的气温是35度,则10 000m高空的气温大约是__________度.17.母线长为2㎝,底面圆的半径为1㎝的圆锥的侧面积为__________.18.将长方形ABCD沿AE折叠,得到如图所示的图形,∠CED’=56︒,则∠AED=________.19.红红有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1) 从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是_________(2) 从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是_________(3) 从中取出除0以外的其他4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使运算结果为24(注:每个数字只能用一次,如:23×[1-(-2)],请另外写20.若甲、乙两数之和为﹣2015,其中甲数是﹣20,求乙数.21.A厂一月份产值为16万元,因管理不善,二、三月份产值的月平均下降率为x(0<x<1).B厂一月份产值为12万元,二月份产值下降率为x,经过技术革新,三月份产值增长,增长率为2x.三月份A、B两厂产值分别为y A、y B(单位:万元).(1)分别写出y A、y B与x的函数表达式;(2)当y A=y B时,求x的值;(3)当x为何值时,三月份A、B两厂产值的差距最大?最大值是多少万元?22.如图,∠ACB=90°,CD⊥AB,垂足为D.求证:∠ACD=∠B.23.计算:(1)4x2-7x+5-3x2+2+6x;(2)-x+(2x-2)-(3x+5).24.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,每件商品降价多少元时,商场日盈利可到达2100元?25.如图,直线与轴交于点B,与轴交于点C,已知二次函数的图象经过点B、C和点A(-1,0).(1)求该二次函数的关系式;(2)若抛物线的对称轴与轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.答案1.A解:由“所交水费的平均价格为1.5元每立方米”可知,该月用水量x 立方米超过了20立方米,超过部分为(x -20)立方米,则该月水费由和两部分组成,根据两部分水费之和为1.5x ,可得:. 故选A.2.D解:如图,∵,,,A B C D 四点共圆,50GBC ADC ∴∠=∠=,AE CD ⊥,90AED ∴∠=,905040EAD ∴∠=-=,延长AE 交⊙O 于点M ,∵AO ⊥CD ,∴CM ˆ=DM ˆ,280.DBC EAD ∴∠=∠=故选D.3.B解:A. 92+122=225≠142,故该选项错误;B. 42+32=25=52,故该选项正确;C. 42+32=25≠2,故该选项错误;D. 22+2=6≠2,故该选项错误.故选B.4.B解:∵()()1221255m m n n a b a b a b +++=,∴a m +2n +2b 2m +n +2=a 5b 5225{ 225m n m n ++=++=①②+② 得3m +3n +4=10,∴m +n =2故选B.解:设盈利商品进价为x 元,亏本商品进价为y 元,列方程得:x+50%x=1200,解得x=800,y−20%y=1200,解得y=1500,成本为800+1500=2300元,售价为1200×2=2400元,2400−2300=100元,即赚了100元.故选:C.6.C解:∵| x | =-x ,即一个数的绝对值是它的相反数,∴满足条件的数为负数或0.故选C.7.D 解:根据加减消元法,直接用第二个方程减去第一个方程可得7y=-10或用第一个方程减去第二个方程可得-7y=10. 故选:D.8.C 解:已知10=,∴x >0,∴原式可化简为:10=,2=,两边平方得:2x =4,∴x =2,故选C .9.D 解:因为x y x y x y x y-+-=--+,所以A 错误;因为2a b c d -+不能再化简,所以B 错误;因为0.20.032030.40.05405a b a b c d c d--=++,所以C 错误;因为,所以D 正确;故选:D.10.C 解:∵x =1时,y =0,∴a +b +c =0,所以①正确;∵x ==-1,∴b =2a ,所以②错误;∵点(1,0)关于直线x =-1对称的点的坐标为(-3,0),∴抛物线与x 轴的交点坐标为(-3,0)和(1,0),∴ax 2+bx +c =0的两根分别为-3和1,所以③正确;∵抛物线与y 轴的交点在x 轴下方,∴c <0,而a +b +c =0,b =2a ,∴c =-3a ,∴a -2b +c =-3b ,∵b >0,∴-3b <0,所以④错误.故选C解:把P(m,a),Q(,b)代入y=﹣得a=﹣,b=﹣=﹣2m,所以a﹣b=﹣+2m=﹣2•,因为﹣1<m<0,所以1﹣m2>0,所以a﹣b>0.故选A.12.B解:设售价上涨x元,获得的利润y元,y=(10+x)(200-10x)=2000-100x+200x-10x2=-10x2+100x+2000=-10(x-5)2+2250(0<x< 20)所以当x=5时y有最大值为2250;即当单价为15元时,每天的销售金额最大值为2250元.故选B.13.解:因为直线y=3x向右平移2个单位,所以到直线的解析式为:y=3(x-2),即y=3x-6;故答案为:y=3x-6。

聊城市2019年初中学业水平测试数学模拟测试题2(含答案)

聊城市2019年初中学业水平测试数学模拟测试题2(含答案)1.某班级举行元旦联欢会,有m 位师生,购买了n 个苹果.若每人发3个,则还剩5个苹果,若每人发4个,则最后还缺30个苹果.下列四个方程:①3m+5=4m -30;②3m -5=4m+30; ③=;④=.其中符合题意的是( ) A .①③ B .②④ C .①④ D .②③2.若代数式2x x +在实数范围内有意义,则x 的取值范为是( ) A .x≥-2 B .x≠2 C .x≠0 D .x≠-23.如图,Rt △ABC 中,∠C =90°,AB =5,AC =3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为【 】A .78B .67C .56D .1 4.下列方程中,没有实数根的是( )A .3x 2+2=0B .4x 2+4x +1=0C .x 2-3x -4=0D 2-x -1=05.联合国宽带委员会2016年9月15日发布了《2016年宽带状况》报告,报告显示,中国以7.21亿网民人数成为全球第一大互联网市场,7.21亿用科学记数法表示为( )A .7.21×107B .7.21×108C .7.21×109D .721×1066.如图,在平行四边形ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连接CE 、CF ,EF ,则以下四个结论一定正确的是:①△CDF ≌△EBC ;②∠CDF=∠EAF ;③△ECF是等边△;④CG ⊥AE ( )A .只有①②B .只有①②③C .只有③④D .①②③④7.一列火车长m 米,以每秒n 米的速度通过一个长为p 米的桥洞,用代数式表示它通过桥洞所需的时间为( )A .p n秒 B .p m n -秒 C .p mn n +秒 D .p m n +秒 8.下列说法中,正确的有( )①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④能够完全重合的图形是全等形.A .1个B .2个C .3个D .4个9.关于x 的一元二次方程2410x kx +-=根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断10.10.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD 上滑动,当DM为时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④B.①②⑤C.②③④D.③④⑤12.下列解方程步骤正确的是A.由2x+4=3x+1,得2x+3x=1+4B.由7(x–1)=2(x+3),得7x–1=2x+3C.由0.5x–0.7=5–1.3x,得5x–7=5–13xD.由−=2,得2x–2–x–2=1213.若a 、b 互为相反数,c 、d 互为倒数,x 的相反数是它本身,则(a+b )2+cd+x(a+b+c+d)= ___________.14.近似数2.13万精确到__________位,0.02951≈_________(精确到0.001).15.如图,是⊙O 的直径,点、在⊙O 上,,,则=_______16.a 是一个两位数,b 是一个三位数,把b 放在a 的左边得到的五位数是____.17.一个圆锥的侧面积是底面积的3倍,则此圆锥侧面展开图的圆心角为_______.18.第三象限内的点(),P x y ,满足5x =, 29y =,则点P 的坐标是________.19.画出下列几何体的三视图20.已知:如图,在△ABC 中,∠B >∠C ,AE 为∠BAC 的平分线,AD ⊥BC 于点D.求证:∠DAE =(∠B -∠C ).21.先化简,再求值:2(x +1)(x -1)-(2x -1)²其中x =-222.(1)解方程: 2101x x -=+ ;(2)解不等式组: 32{123x x +>-≤-. 23.如图,已知△ABC 是锐角三角形.⑴ 利用直尺与圆规画出△ABC 的外接圆⊙O.(保留作图痕迹)⑵ 利用直尺与圆规画出(1)中经过点B 的⊙O 的切线l.(保留作图痕迹)24.将一个底面半径为6 cm ,高为40 cm 的“痩长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少?25.(8分)先化简,再求值:5 x2-[3 x -2(2 x-3)+7 x2],其中x=-126.某市为提高学生参与体育活动的积极性,2015年9月围绕“你喜欢的体育运动项目(只写一篇)”这一问题,对初一新生进行随机抽样调查。

2018-2019年聊城市小升初数学模拟试卷整理(2)附答案附答案

小升初数学综合模拟试卷2一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?答案一、填空题:1.(1/5)2.(44)[1×(1+20%)×(1+20%)-1]÷1×100%=44%3.(偶数)在121+122+…+170中共有奇数(170+1-121)÷2=25(个),所以121+122+…+170是25个奇数之和再加上一些偶数,其和为奇数,同理可求出在41+42+…+98中共有奇数29个,其和为奇数,所以奇数减奇数,其差为偶数.4.(27)(40+7×2)÷2=27(斤)5.(19)淘汰赛每赛一场就要淘汰运动员一名,而且只能淘汰一名.即淘汰掉多少名运动员就恰好进行了多少场比赛.即20名运动员要赛19场.6.(301246)设这六位数是301240+a(a是个一位数),则301240+a=27385×11+(5+a),这个数能被11整除,易知a=6.7.(20)每个小圆的半径未知,但所有小圆直径加起来正好是大圆的直径。

2018-2019年聊城市初中分班数学模拟试题(44)附详细答案

小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学综合模拟试卷46
一、填空题:
1.8+88+888+8888+88888=______.
2.如图,阴影部分S1的面积比阴影部分S2的面积大12平方厘米,且BD=4厘米,DC=1厘米,则线段AB=______厘米.
3.一个人在河中游泳,逆流而上,在A处将帽子丢失,他向前游了15分后,才发现帽子丢了,立即返回去找,在离A处15千米的地方追到了帽子,则他返回来追帽子用了______分.
4.乒乓球单打决赛在甲、乙、丙、丁四位选手中进行,赛前,有些人预测比赛结果,A说:甲第4;B说:乙不是第2,也不是第4;C说:丙的名次在乙的前面;D说:丁将得第1.比赛结果表明,四个人中只有一人预测错了.那么,甲、乙、丙、丁四位选手的名次分别为:_______.
5.如图,正立方体边长为2,沿每边的中点将每个角都切下去,则所得到的几何体有______条棱.
6.一本书,如果每天读50页,那么5天读不完,6天又有余;如果每天读70页,那么3天读不完,4天又有余;如果每天读n页,恰可用n天读完(n是自然数).这本书的页数是______.
使每一横行,每一竖行,两对角线斜行中三个数的和都相等.
8.有本数学书共有600页,则数码0在页码中出现的次数是______.
9.张明骑自行车,速度为每小时14千米,王华骑摩托车,速度为每小时35千米,他们分别从A、B 两点出发,并在A、B两地不断往返行驶,且两人第四次相遇(两人同时到达同一地点叫做相遇)与第五次相遇的地点恰好相距120千米,那么,A、B两地之间的距离是______千米.
10.某次数学竞赛原定一等奖8人,二等奖16人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1.2分,得一等奖的学生的平均分提高了4分,那么原来一等奖平均分比二等奖平均分多______分.
二、解答题:
1.学校要建一段围墙,由甲、乙、丙三个班完成,已知甲班单独干需要20小时完成,乙班单独干需要24小时完成,丙班单独干需要28小时完成,如果先由甲班工作1小时,然后由乙班接替甲班干1小时,再由丙班接替乙班干1小时,再由甲班接替丙班干1小时,……三个班如此交替着干,那么完成此任务共用了多少时间?
2.如图甲、乙、丙三个皮带轮的半径比分别为:5∶3∶7,求它们的转数比.当甲轮转动7圈时,乙、丙两轮各转多少圈?
3.甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙,各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?
4.甲容器中有纯桔汁16升,乙容器中有水24升,问怎样能使甲容器中纯桔汁含量为60%,乙容器中纯桔汁含量为20%,甲、乙容器各有多少升?
答案,仅供参考。

一、填空题:
1.98760
原式=111110-(2+12+112+1112+11112)
=111110-10-12340
=98760
或:原式=8×(1+11+111+1111+11111)
=8×12345
=98760
2.8厘米.
AB=8(厘米)
3.设水流速度为v0,人游泳速度为υ,所以,丢失帽子15分钟后,他与帽子相距:15×(v0+υ- v0)=15υ千米,然后他返回寻找,每分钟比帽子多走:υ+ v0- v0=υ千米,故需要15分钟.4.4,3,1,2
5.24条棱
6.256页
由已知:250<页数<300
210<页数<280
因为:页数=n2,由152=225,172=289,得页数为162=256.
7.
对于分数很难求和,若将它们扩大12倍,则得到6,4,3,2,8,9,1,5,7,这样就好填了.8.111
将1~600分为六组,1~100;101~200,…501~600,在1~100中共出现11次0,其余各组每组比1~100多出现9次0,即每组出现20次0,20×5+11=111.
9.210千米
张明与王华的车速之比是14∶35=2∶5,把AB间的公路平均分成2+5=7段,设各分点依次为:A1,A2,A3,A4,A5,A6,那么,张明走2段,王华就走5段.
第一次,两人相遇在A2;张继续往前走,王走到A后返回追张,当张走了3段时,王走7.5段,在这段中第二次相遇;张走1段,王走2.5段,在A6点第三次相遇;张走4段,王走10段,正好在A4第四次相遇;张再走4段,王再走10段,在A第五次相遇,AA4距离为120千米,所以,每段距离为:120÷4=30千米,则总长为:30×7=210千米.
10. 根据题意:
前四人平均分=前八人平均分+4
这说明在计算前八人平均分时,前四人共多出4×4=16(分)来弥补后四人的分数,因此,后四人的平均分比前八人平均分少:16÷4=4(分),即:
后四人平均分=前八人平均分-4……①
当后四人调整为二等奖,这样二等奖共有16+4=20(人),平均每人提高1.2分,也就是由调整进来的四个人来供给,每人平均供给:
1.2×20÷4=6(分)
因此,
四人平均分=原来二等奖平均分+6……②
与前面①式比较,原来一等奖平均分比原来二等奖平均分多:4+6=10(分).
二、解答题:
三个班可完成全部任务的:
班交替干21小时可完成全部任务的:
由半径比可知,甲、乙、丙的周长比也为5∶3∶7,根据转数与周长成反比的关系可知,它们的转数比有:甲∶乙=3∶5,乙∶丙=7∶3,现将两个单比化成连比,乙在两个比中所占的份数分别为5和7,而5和7的最小公倍数是35,则:
甲∶乙=21∶35,乙∶丙=35∶15所以:甲∶乙∶丙=21∶35∶15
圈。

3.69块,39块,24块
经三次重新分配后,甲、乙、丙三个小孩各有糖44块.第三次分配是丙给甲、乙,各给甲、乙所有数少4块,后甲、乙、丙才各有44块糖的,在第三次分配前:
甲有:(44+4)÷2=24(块)
乙有:(44+4)÷2=24(块)
丙有:44+(44-24)×2=84(块)
同上,第二次分配前:
甲有:(24+4)÷2=14(块)
丙有:(84+4)÷2=44(块)
乙有:24+(24-14)+(84-44)=74(块)
故原有:
丙有:(44+4)÷2=24(块)
乙有:(74+4)÷2=39(块)
甲有:14+(44-24)+(74-39)=69(块)
4.甲:20升,乙:20升.
桔汁含量为20%和60%时,容器中纯桔汁与纯水的比例分别为:
0.2∶(1-0.2)=1∶4和0.6∶(1-0.6)=3∶2
=6(升),还剩纯桔汁:16-6=10(升).
现在再将乙容器中20%桔汁倒一些到纯桔汁中,要使10升的纯桔汁成
结果得到60%桔汁:10+10=20(升),20%桔汁:(24+6)-10=20(升)
注:也可先将水倒入纯桔汁兑成60%桔汁,再将此桔汁倒入水中兑成20%桔汁,可得同样结果.。

相关文档
最新文档