高中数学必修五第三章不等式复习知识点与例题
人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题

钢板张数最少?
分
A规格 B规格 C规格 张数
析: 第一种钢板
2
1
1
x
列 第二种钢板
1
2
3
y
表 成品块数 2x y x 2y x 3y
解:设需截第一种钢板x张,第二种钢板y张,共需截
这两种钢板共z张,则
2x y 15,
x x
2y 3y
18, 27,
x 0,
分析:对应无数个点,即直线与边界线重合时. 作出可行域,结合图形,看直线 l : y ax z
与哪条边界线重合时,可取得最大值.
解:当直线 l : y ax z 与边界
线重合时,有无数个点,
使函数值取得最大值,
此时有 kl kAC .
3
3
k AC
5
, kl
a
ห้องสมุดไป่ตู้. 5
问题的最优解.
(1)在上述问题中,如果每生产一件甲产品
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解; (4)答:作出答案. 最优解一般在可行域的顶点处取得.
x 4 y 3, 例2 已知x, y满足 3x 5 y 25,设z ax y(a 0),
人教版数学高二必修五第三章《不等式》知识总结

一、本章概述不等关系是中学数学中最基本、最广泛、最普遍的关系.不等关系起源于实数的性质,产生了实数的大小关系、简单不等式、不等式的基本性质,如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、基本不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法.不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,以及三角、数列、立体几何、解析几何中的最大值、最小值问题,这些问题无一不与不等式有着密切的联系.不等式还可以解决现实世界中反映出来的数学问题,许多问题最终归结为不等式的求解或证明.解决这类综合问题的一般思维方法是:引参,建立不等关系,解某一主元的不等式(实为分离变元),适时活用基本不等式.其中建立不等关系的常用途径是:①根据题设条件;②判别式法;③基本不等式法;④依据某些变量(如sin x,cos x)的有界性等.二、主干知识1.不等式与不等关系.不等式的性质刻画了在一定条件下两个量的不等关系.不等式的性质包括“单向性”和“双向性”.单向性主要用于证明不等式,双向性是解不等式的基础.因为解不等式要求的是同解变形.要正确理解不等式的性质,必须先弄清每一性质的条件和结论、注意条件和结论的放宽和加强,以及条件与结论之间的相互联系.双向性主要有:(1)不等式的基本性质:⎩⎪⎨⎪⎧a >b ⇔a -b >0,a =b ⇔a -b =0,a <b ⇔a -b <0,这是比较两个实数的大小的依据;(2)a >b ⇔b <a ;(3)a >b ⇔a +c >b +c .单向性主要有:(1)a >b ,b >c ⇒a >c ;(2)a >b ,c >d ⇒a +c >b +d ;(3)a >b ,c >0(c <0)⇒ac >bc (ac <bc );(4)a >b >0,c >d >0⇒ac >bd ;(5)a >b >0,0<c <d ⇒a c >b d; (6)a >b >0,m ∈N *⇒a m >b m ;(7)a >b >0,n ∈N *,n >1⇒n a >n b .特别提醒:(1)同向不等式可以相加,异向不等式可以相减.即:若a >b ,c >d ,则a +c >b +d ;若a >b ,c <d ,则a -c >b -d .但异向不等式不可以相加,同向不等式不可以相减.(2)左右同正不等式,同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.即:若a >b >0,c >d >0,则ac >bd ;若a >b >0,0<c <d ,则a c >b d. (3)左右同正不等式,两边可以同时乘方或开方.即:若a >b >0,n ∈N *,n >1,则a n >b n 或n a >n b .(4)若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b. 如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.2.一元二次不等式及其解法.解一元二次不等式常用数形结合法,基本步骤如下:①将一元二次不等式化成ax 2+bx +c >0的形式;②计算判别式并求出相应的一元二次方程的实数解;③画出相应的二次函数的图象;④根据图象和不等式的方向写出一元二次不等式的解集.设相应二次函数的图象开口向上,并与x 轴相交,则有口诀:大于取两边,小于取中间.解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.要注意对字母参数的讨论,如果遇到下述情况则一般需要讨论:(1)在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析Δ),比较两个根的大小,设根为x 1,x 2,要分x 1>x 2、x 1=x 2、x 1<x 2讨论.(2)不等式两端乘或除一个含参数的式子时,则需讨论这个式子的正负.(3)求解过程中,需用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.注意解完之后要写上:“综上,原不等式的解集是…”.若按参数讨论,最后应按参数取值分别说明其解集;若按未知数讨论,最后应求并集.一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解集:设相应的一元二次方程ax2+bx+c=0(a>0)的两根为x1、x2且x1≤x2,Δ=b2-4ac,则不等式的解的各种情况如下表所示:特别提醒:(1)解题中要充分利用一元二次不等式的解集是实数集R和空集∅的几何意义,准确把握一元二次不等式的解集与相应一元二次方程的根及二次函数图象之间的内在联系.(2)解不等式的关键在于保证变形转化的等价性.简单分式不等式可化为整式不等式求解:先通过移项、通分等变形手段将原不等式化为右边为0的形式,然后通过符号法则转化为整式不等式求解.转化为求不等式组的解时,应注意区别“且”、“或”,涉及最后几个不等式的解集是“交”,还是“并”.注意:不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(3)在解决实际问题时,先要从实际问题中抽象出数学模型,并寻找出该数学模型中已知量与未知量,再建立数学关系式,然后用适当的方法解决问题.(4)解含参数的不等式是高中数学中的一类较为重要的题型,解决这类问题的难点在于对参数进行恰当分类.分类相当于增加了题设条件,便于将问题分而治之.在解题过程中,经常会出现分类难以入手或者分类不完全的现象.强化分类意识,选择恰当的解题切入点,掌握一些基本的分类方法,善于借助直观图形找出分类的界值是解决此类问题的关键.3.二元一次不等式(组)与简单的线性规划问题.(1)确定二元一次不等式表示的区域的步骤:①在平面直角坐标系中作出直线Ax+By+C=0.②在直线的一侧任取一点P(x0,y0),当C≠0时,常把原点作为特殊点.③将P(x0,y0)代入Ax+By+C求值,若Ax0+By0+C>0,则包含点P 的半平面为不等式Ax+By+C>0所表示的平面区域,不包含点P的半平面为不等式Ax+By+C<0所表示的平面区域.也可把二元一次不等式改写成y>kx+b或y<kx+b的形式,前者表示直线的上方区域,后者表示直线的下方区域.(2)线性规划的有关概念:①满足关于x,y的一次不等式或一次方程的条件叫线性约束条件;②关于变量x,y的解析式叫目标函数,关于变量x,y一次式的目标函数叫线性目标函数;③求目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题;④满足线性约束条件的解(x,y)叫可行解,由所有可行解组成的集合叫做可行域;⑤使目标函数取得最大值或最小值的可行解叫做最优解.特别提醒:(1)画不等式Ax+By+C≥0所表示的平面区域时,区域包括边界线,因此,将边界直线画成实线;无等号时区域不包括边界线,用虚线表示不包含直线l.(2)Ax +By +C >0表示在直线Ax +By +C =0(B >0)的上方,Ax +By +C <0表示在直线Ax +By +C =0(B >0)的下方.(3)设点P (x 1,y 1),Q (x 2,y 2),直线l :Ax +By +C =0,若Ax 1+By 1+C 与Ax 2+By 2+C 同号,则P ,Q 在直线l 的同侧,异号则在直线l 的异侧.(4)在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范.4.基本不等式ab ≤a +b 2. (1)基本不等式:设a ,b 是任意两个正数,那么ab ≤a +b 2.当且仅当a =b 时,等号成立.①基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.②如果把a +b 2看做是正数a ,b 的等差中项,ab 看做是正数a ,b 的等比中项,那么基本不等式也可以叙述为:两个正数的等差中项不小于它们的等比中项. ③基本不等式ab ≤a +b 2几何意义是“半径不小于半弦”. (2)对基本不等式的理解:①基本不等式的左式为和结构,右式为积的形式,该不等式表明两正数a ,b 的和与两正数a ,b 的积之间的大小关系,运用该不等式可作和与积之间的不等变换.②“当且仅当a =b 时,等号成立”的含义:a.当a=b时等号成立的含意是:a=b⇒a+b2=ab;b.仅当a=b时等号成立的含意是:a+b2=ab⇒a=b;综合起来,其含意是:a+b2=ab⇔a=b.(3)设a,b∈R,不等式a2+b2≥2ab⇔ab≤a2+b22⇔ab≤⎝⎛⎭⎪⎫a+b22.(4)基本不等式的几种变式:设a>0,b>0,则a+1a≥2,ba+ab≥2,a2b≥2a-b.(5)常用的几个不等式:①a2+b22≥a+b2≥ab≥21a+1b(根据目标不等式左右的运算结构选用);②设a,b,c∈R,则a2+b2+c2≥ab+bc+ca(当且仅当a=b=c时,取等号);③真分数的性质:若a>b>0,m>0,则ba<b+ma+m(糖水的浓度问题).特别提醒:(1)用基本不等式求函数的最值时,要特别注意“一正、二定、三相等,和定积最大,积定和最小”这17字方针.常用的方法为:拆、凑、平方.(2)用基本不等式证明不等式时,应重视对所证不等式的分析和化归,应观察不等式左右两边的结构,注意识别轮换对称式,此时可先证一部分,其他同理可证,然后再累加或累乘.题型1 恒成立问题(1)若不等式f(x)>A 在区间D 上恒成立,则等价于在区间D 上f(x)min >A ;(2)若不等式f(x)<B 在区间D 上恒成立,则等价于在区间D 上f(x)max <B.例 1 设函数f(x)=x ,g(x) =x +a(a>0),若x ∈[1,4]时不等式⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1恒成立,求a 的取值范围. 解析:由⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1⇔-1≤f (x )-ag (x )f (x )≤1,得0≤ag (x )f (x )≤2, 即ax +a 2x≤2在x ∈[1,4]上恒成立,也就是ax +a 2≤2x 在x ∈[1,4]上恒成立.令t =x ,则t ≥0,且x =t 2,由此可得 at 2-2t +a 2≤0在t ∈[1,2]上恒成立,设g(t) = at 2-2t +a 2,则只需⎩⎨⎧g (1)≤0,g (2)≤0⇒⎩⎨⎧a -2+a 2≤0,4a -4+a 2≤0,解得 0<a ≤22-2,即满足题意的a 的取值范围是(0,22-2].题型2 能成立问题(1)若在区间D 上存在实数x 使不等式f(x)>A 成立,则等价于在区间D 上的f(x)max >A ;(2)若在区间D 上存在实数x 使不等式f(x)<B 成立,则等价于在区间D 上的f(x)min <B.例2 若存在x ∈R ,使不等式|x -4|+|x -3|<a 成立,求实数a 的取值范围.解析:设f (x )=|x -4|+|x -3|,依题意f (x )的最小值小于a .又f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1(等号成立的条件是3≤x ≤4).故f (x )的最小值为1,∴a >1.即实数a 的取值范围是(1,+∞).题型3 恰成立问题(1)若不等式f(x)>A 在区间D 上恰成立,则等价于不等式f(x)>A 的解集为D ;(2)若不等式f(x)<B 在区间D 上恰成立,则等价于不等式f(x)<B 的解集为D.例4 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,求实数a 的取值集合. 解析:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,∴Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件).再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,∴Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0.综上即知a =-8或a =0时,y min =1,故所求实数a 的取值集合是{-8,0}.题型4 利用基本不等式求最值基本不等式通常用来求最值问题:一般用a +b ≥2ab(a >0,b >0)解“定积求和,和最小”问题,用ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22求“定和求积,积最大”问题,一定要注意适用的范围和条件:“一正、二定、三相等”,特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,和对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用基本不等式解决实际问题.例5 已知0<x <2,求函数y =x(8-3x)的最大值.解析:∵0<x <2,∴0<3x <6,8-3x >0,∴y =x(8-3x)=13·3x ·(8-3x) ≤13⎝ ⎛⎭⎪⎪⎫3x +8-3x 22=163, 当且仅当3x =8-3x ,即x =43时,取等号, ∴当x =43时,y =x(8-3x)有最大值为163. 设函数f(x)=x +2x +1,x ∈[0,+∞). 求函数f(x)的最小值.解析:f(x)=x +2x +1=(x +1)+2x +1-1, ∵x ∈[0,+∞),∴x +1>0,2x +1>0,∴x +1+2x +1≥2 2.当且仅当x +1=2x +1, 即x =2-1时,f(x)取最小值.此时f(x)min =22-1.题型5 简单线性规划问题求目标函数在约束条件下的最优解,一般步骤为:一是寻求约束条件和目标函数,二是作出可行域,三是在可行域内求目标函数的最优解,特别注意目标函数z =ax +by +c 在直线ax +by =0平移过程中变化的规律和图中直线斜率关系.简单的线性规划应用题在现实生活中的广泛应用也是高考的热点.例6若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73B .37C .43D .34解析:不等式组表示的平面区域如图所示:由于直线y =kx +43过定点⎝⎛⎭⎪⎫0,43,因此只有直线过AB 中点时,直线y=kx +43能平分平面区域,因为A(1,1),B(0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73. 答案:A题型6 三个二次(二次函数、二次不等式、二次方程)问题一元二次方程、一元二次不等式与二次函数三者之间形成一个关系密切、互为关联、互为利用的知识体系.将二次函数看作主体,一元二次方程和一元二次不等式分别为二次函数的函数值为零(零点)和不为零的两种情况,一般讨论二次函数主要是将其通过一元二次方程和一元二次不等式来讨论,而讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象揭示解(集)的几何特征.例7 当m 为何值时,方程2x 2+4mx +3m -1=0有两个负根?解析:方程2x 2+4mx +3m -1=0有两个负根,则有⎩⎪⎨⎪⎧Δ=(4m )2-4×2×(3m -1)≥0,-b a =-4m 2=-2m <0,c a =3m -12>0,即⎩⎪⎨⎪⎧m ≤12或m ≥1,m >0,m >13. ∴当m ∈⎩⎨⎧⎭⎬⎫m|13<m ≤12或m ≥1时,原方程有两个负根. 题型7 不等式与函数的综合问题例8 定义在(-1,1)上的奇函数f(x)在整个定义域上是减函数,且f(1-a)+f(1-a 2)<0,求实数 a 的取值范围.解析:∵f(x)的定义域为(-1,1),∴⎩⎨⎧-1<1-a <1,-1<1-a 2<1,∴⎩⎨⎧0<a <2,-2<a <2且a ≠0,∴0<a <2,①原不等式变形为f(1-a)<-f(1-a 2).由于f(x)为奇函数,有-f(1-a 2)=f(a 2-1),∴f(1-a)<f(a 2-1).又f(x)在(-1,1)上是减函数,∴1-a >a 2-1,解得-2<a <1.②由①②可得0<a <1,∴a 的取值范围是(0,1).题型8 求分式函数的最值例9 求函数y =x 4+3x 2+3x 2+1的最小值. 解析:y =(x 4+2x 2+1)+(x 2+1)+1x 2+1=(x 2+1)+1x 2+1+1≥2(x 2+1)·1x 2+1+1=3,当且仅当x 2+1=1x 2+1,即x 2+1=1,即x =0时等号成立.题型9 数轴标根法(1)将不等式化为标准形式:一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积.(2)求出各因式为0的实数根,并在数轴上标出.(3)自最右端上方起,用曲线自右至左,依次由各根穿过数轴,遇奇次重根一次穿过,遇偶次重根穿而不过(奇过偶不过).(4)记数轴上方为正,下方为负,根据不等式的符号写出解集.例10解不等式(x+2)(x+1)(x-1)(x-2)≤0.分析:本题考查高次不等式的解法,应用等价转化的方法显得较繁琐,可利用数轴标根法来解.解析:设y=(x+2)(x+1)(x-1)(x-2),则y=0的根分别是-2,-1,1,2,将其分别标在数轴上,并画出示意图如下:∴不等式的解集是{x|-2≤x≤-1或1≤x≤2}.点评:利用数轴标根法解不等式,需注意:(1)要注意所标出的区间是否是方程根的取值范围,可取特殊值检验,以防不慎造成失误.(2)有些点是否要舍掉,要仔细检验.题型10变换主元法例11设f(x)=mx2-mx-6+m.(1)若对于m∈[-2,2],f(x)<0恒成立,求实数x的取值范围;(2)若对于x∈[1,3],f(x)<0恒成立,求实数m的取值范围;分析:根据题意,f(x)可看作是m 的一次函数,也可以看作是x 的二次函数来解.解析:(1)依题意,设g(m)=(x 2-x +1)m -6,则g(m)是关于m 的一次函数且一次项系数x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,∴g(m)在[-2,2]上递增. ∴欲使f(x)<0恒成立.需g(m)max =g(2)=2(x 2-x +1)-6<0,解得-1<x <2.∴实数x 取值范围是(-1,2).(2)方法一 ∵f(x)=m ⎝ ⎛⎭⎪⎫x -122+34m -6<0, 在x ∈[1,3]上恒成立.∴⎩⎨⎧m >0,f (x )max =f (3)=7m -6<0或⎩⎨⎧m =0,f (x )=-6<0或 ⎩⎨⎧m <0,f (x )max =f (1)=m -6<0.解得m <67. 方法二 要使f(x)=m(x 2-x +1)-6<0在[1,3]上恒成立,则有m <6x 2-x +1在x ∈[1,3]上恒成立. 而当x ∈[1,3]时,6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34≥69-3+1=67.∴6x2-x+1的最小值为67.∴m<67.点评:若给出m的取值范围,则看作是m的一次函数,若给出x的取值范围,则看作是x的二次函数.。
高中数学必修5第三章《不等式》复习知识点总结与练习

高中数学必修5__第三章《不等式》复习知识点总结与练习(一)第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质1.在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.高频考点1. 比较两个数(式)的大小[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a . 2. 不等式的性质(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a-c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C.由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确. 3. 不等式性质的应用典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7.∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法[知识能否忆起]一元二次不等式的解集二次函数y=ax2+bx+c的图象、一元二次方程ax2+bx+c=0的根与一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集的关系,可归纳为:若a<0时,可以先将二次项系数化为正数,对照上表求解.解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数.(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.(3)解决一元二次不等式恒成立问题要注意二次项系数的符号.(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同高频考点1.一元二次不等式的解法典题导入[例1] 解下列不等式: (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [自主解答] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1,或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a ,或x >-a ;a >0时,解集为{}x |x >5a ,或x <-a .由题悟法1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.以题试法1.解下列不等式: (1)-3x 2-2x +8≥0;(2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 2.一元二次不等式恒成立问题典题导入[例2] 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.[自主解答] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1) 时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3. 要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1 ≤a ≤1. 综上所述,a 的取值范围为[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3 ≤a ≤1.所求a 的取值范围是[-3,1].本题中的“x ∈[-1,+∞)改为“x ∈[-1,1)”,求a 的取值范围.解:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,1)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧ Δ>0,a <-1,g (-1)≥0或⎩⎨⎧Δ>0,a >1,g (1)≥0.解得-3≤a ≤1,所求a 的取值范围是[-3,1] .由题悟法1.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.2.一元二次不等式恒成立的条件:(1)ax 2+bx +c >0(a ≠0)(x ∈R ) 恒成立的充要条件是: a >0且b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)(x ∈R )恒成立的充要条件是: a <0且b 2-4ac <0.以题试法2.(2012·九江模拟)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________.解析:由Δ1<0,即a 2-4(-a )<0,得-4<a <0; 由Δ2≥0,即a 2-4(3-a )≥0,得a ≤-6或a ≥2. 答案:(-4,0) (-∞,-6]∪[2,+∞) 2. 一元二次不等式的应用典题导入[例3] 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. [自主解答] (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.由题悟法解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回答实际问题.以题试法3.某同学要把自己的计算机接入因特网.现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱?解:假设一次上网x 小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为x (35-x )20元.若能够保证选择A 比选择B 费用少,则x (35-x )20>1.5x (0<x <17), 整理得x 2-5x <0,解得0<x <5,所以当一次上网时间在5小时内时,选择公司A 的费用少;超过5小时,选择公司B 的费用少.练习题[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0 B .等于0 C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出 ②④成立. 答案:②④[小题能否全取]1.(教材习题改编)不等式x (1-2x )>0的解集是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎝⎛⎭⎫12,+∞D.⎝⎛⎭⎫12,+∞答案:B2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B.⎩⎨⎧⎭⎬⎫-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13D .R答案:B3.(2011·福建高考)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.4.(2012·天津高考)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 15.不等式1x -1<1的解集为________.解析:由1x -1<1得1-1x -1>0,即x -2x -1>0,解得x <1,或x >2.答案:{x |x <1,或x >2}1.(2012·重庆高考)不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C 原不等式化为(x -1)(x +2)<0,解得-2<x <1,故原不等式的解集为(-2,1).2.(2013·湘潭月考)不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:选B ①当x -2>0即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4. ②当x -2<0即x <2时,原不等式等价于(x -2)2≤4, 解得0≤x <2.3.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]4.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选C ①m =-1时,不等式为2x -6<0,即x <3,不合题意.②m ≠-1时,⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311.6.(2012·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析:选C ∵f (x )=ax 2-(a +2)x +1, Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.7.若不等式k -3x -3>1的解集为{x |1<x <3},则实数k =________.解析:k -3x -3>1,得1-k -3x -3<0,即x -k x -3<0,(x -k )(x -3)<0,由题意得k =1.答案:18.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________. 解析:原不等式即x 2-2x -a 2+2a +4≤0,在R 上解集为∅, ∴Δ=4-4(-a 2+2a +4)<0, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9.(2012·陕西师大附中模拟)若函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,则m 的取值范围为________.解析:由已知得f (3)=6-m ,①当m ≤3时,6-m ≥3,则f (f (3))=2(6-m )-m =12-3m >6,解得m <2;②当m >3时,6-m <3,则f (f (3))=6-m +5>6,解得3<m <5.综上知,m <2或3<m <5.答案:(-∞,2)∪(3,5) 10.解下列不等式: (1)8x -1≤16x 2;(2)x 2-2ax -3a 2<0(a <0).解:(1)原不等式转化为16x 2-8x +1≥0, 即(4x -1)2 ≥0,则x ∈R , 故原不等式的解集为R .(2)原不等式转化为(x +a )(x -3a )<0, ∵a <0,∴3a <-a ,得3a <x <-a .故原不等式的解集为{x |3a <x <-a }.11.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,月利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500.由月利润不少于1 300元,得-2x 2+130x -500≥1 300. 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量在20~45件时,月利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元.12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。
高中数学必修5(人教A版)第三章不等式3.3知识点总结含同步练习及答案

描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题一、学习任务1. 能从实际情景中抽象出二元一次不等式组;了解二元一次不等式组的集合意义,能用平面区域表示二元一次不等式组.2. 能从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决.二、知识清单平面区域的表示 线性规划 非线性规划三、知识讲解1.平面区域的表示二元一次不等式表示的平面区域已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面与 的并集叫做闭半平面.以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象.对于直线 : 同一侧的所有点 ,代数式 的符号相同,所以只需在直线某一侧任取一点 代入 ,由 符号即可判断出 (或)表示的是直线哪一侧的点集.直线 叫做这两个区域的边界(boundary).二元一次不等式组表示的平面区域二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.l Ax +By +C =0l (x ,y )l Ax +By +C =0(x ,y )Ax +By +C (,)x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域.(1) ;(2).解:(1)① 画出直线 ,因为这条直线上的点不满足 ,所以画成虚线.② 取原点 ,代入 ,所以原点在不等式 所表示的平面区域内,不等式表示的区域如图.3x +2y +6>0y ⩾3x 3x +2y +6=03x +2y +6>0(0,0)3x +2y+6=6>03x +2y +6>0描述:2.线性规划线性规划的有关概念若约束条件是关于变量的一次不等式(方程),则称为线性约束条件(objective function).一般地,满足线性约束条件的解 叫做可行解(feasible solution),由所有可行解组成的集合叫做可行域(feasible region).要求最大(小)值所涉及的关于变量 , 的一次解析式叫做线性目标函数(linearobjectives).使目标函数取得最大值或最小值的可行解叫做最优解.在线性约束条件下,求线性目标函数的最大值或最小值问题叫做线性规划问题(linearprogram).(2)① 画出直线 ,画成实线.② 取点 ,代入 ,所以 不在不等式 表示的平面区域内,不等式表示的区域如图.y =3x (1,0)y −3x =−3<0(1,0)y ⩾3x 画出不等式组 表示的平面区域.解:不等式 表示直线 及右下方的平面区域; 表示直线及右上方的平面区域; 表示直线 及左方的平面区域;所以不等式组表示的平面区域如图中阴影部分.⎧⎩⎨x −y +5⩾0x +y ⩾0x ⩽3x −y +5⩾0x −y +5=0x +y ⩾0x +y =0x ⩽3x =3(x ,y )xy⎩⎨4x+y+10⩾0作出可行域如图中阴影部分所示:可知,图可知,答案:解析:1. 下列各点中,不在 表示的平面区域的是 A .B .C .D .C将 代入得 ,故 不在 表示的平面区域内.x +y −1⩽0()(0,0)(−1,1)(−1,3)(2,−3)x =−1,y =3x +y −1−1+3−1=1>0(−1,3)x +y −1⩽02. 在平面直角坐标系 中,满足不等式组 ,点 的集合用阴影表示为下列图中的 A.B .C .xOy {|x |⩽|y ||x |<1(x ,y )()高考不提分,赔付1万元,关注快乐学了解详情。
高中数学必修5(人教A版)第三章不等式3.4知识点总结含同步练习及答案

描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案第三章 不等式 3.4 基本不等式一、学习任务掌握基本不等式 ();能用基本不等式证明简单不等式(指只用一次基本不等式即可解决的问题);能用基本不等式求解简单的最大(小)值问题(指只用一次基本不等式即可解决的问题).二、知识清单均值不等式的含义均值不等式的应用 均值不等式的实际应用三、知识讲解1.均值不等式的含义均值定理如果 ,,那么 .当且仅当 时,等号成立.对任意两个正实数,,数 叫做 , 的算术平均值,数 叫做 , 的几何平均值.均值不等式可以表达为:两个正实数的算术平均值大于或等于它的几何平均值.均值不等式也称为基本不等式 .两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.⩽ab −−√a +b2a >0,b >0a b ∈R +⩾a +b2ab −−√a =b a b a +b2a b ab −−√a b 设 ,,下列不等式中不成立的是( )A. B.C. D.解:D,故 A 中不等式成立;,所以,所以 B 中不等式成立;,, ,所以不等式两边同时平方可得 ,故 C 中不等式成立.因为 的符号不确定,当时,不等式不成立.a >0b >0+⩾2b a a b+⩾2ab a 2b2ab ⩽()a +b22a −b +⩾21a −b+⩾2=2b a ab ⋅b a ab −−−−−−√(a −b ⩾0)2+⩾2aba 2b 2a >0b >0⩽a +b 2ab −−√⩾ab ()a +b 22a −b a ⩽b 已知 ,,且 ,求 的最大值.解:由均值不等式可得 ,当且仅当 时等号成立,所以 ,当且仅当 , 时等号成立,所以 的最大值为 .x y ∈R +x +4y =1xy x +4y ⩾2x ⋅4y −−−−−√x =4y xy ⩽116x =12y =18xy 116描述:例题:2.均值不等式的应用基本不等式的应用非常广泛,如求函数最值,证明不等式,比较大小,求取值范围,解决实际问题等.其中,求最值是其最重要的应用 .利用均值不等式求最值时应注意“一正,二定,三相等”,三者缺一不可.求函数 (x>3)\) 的最小值.解:因为 ,所以,所以当且仅当,即 时,取 “” 号,所以 .y =+x 1x −3x >3x −3>0y =+x =+(x −3)+3⩾5,1x −31x −3x −3=1x −3x =4==5y min (1)求函数的最小值;(2)求函数 的最大值.解:(1)当,所以,,所以当且仅当 ,即 时, 取得最小值 .(2)当,所以 ,,所以当且仅当 ,即 时, 取得最大值 .f (x )=+3x (x >0)12x f (x )=+3x (x <0)12x x >0>012x3x >0f (x )=+3x ⩾2=12,12x ⋅3x 12x−−−−−−√=3x 12xx =2f (x )12x <0−>012x−3x >0f (x )=+3x 12x=−[(−)+(−3x )]12x ⩽−2(−)⋅(−3x )12x −−−−−−−−−−−−−√=−12,−=−3x 12xx =−2f (x )−12求函数的最大值.解:因为 ,所以 ,所以f (x )=x (1−3x )(0<x <)130<x <130<1−3x <1描述:例题:3.均值不等式的实际应用利用基本不等式解决实际问题的一般步骤:①正确理解题意,设出变量,一般可以把要求最大(小)值的变量定为函数;②建立相应的函数关系式,把实际问题抽象成函数的最大值或最小值问题;③在定义域内,求出函数的最大值或最小值;④正确写出答案.当且仅当 ,即 时, 取得最大值 .f (x )=x (1−3x )=×3x (1−3x )13⩽13()3x +1−3x 22=,1123x =1−3x x =16f (x )112设 ,求证:.证明:因为 ,,,所以当且仅当 时,等号成立,所以 .a ,b ,c ∈R ++⩾ab +bc +ca a 2b 2c 2+⩾2ab a 2b 2+⩾2bc b 2c 2+⩾2ca c 2a 2(+)+(+)+(+)⩾2ab +2bc +2ca ,a 2b 2b 2c 2c 2a 2a =b =c ++⩾ab +bc +ca a 2b 2c 2建造一个容积为 ,深为 的长方形无盖水池,如果池底的造价是每平方米 元,池壁的造价是每平方米 元,求这个水池的最低造价.解:设水池的造价为 元,池底的长为 ,则宽为.所以当且仅当 ,即 时,等号成立.所以当 时,.答:水池的最低造价为元.8m 32m 12080y x m 4xm y =4×120+2(2x +)×808x=480+320(x +)4x ⩾480+320×2x ⋅4x−−−−−√=1760,x =4xx =2x =2=1760y min 1760某种汽车,购车费用是 万元,每年使用的保险费、汽油费约为 万元,年维修费第一年是 万元,以后逐年递增 万元.问这种汽车使用多少年时,它的年平均费用最少?解:设使用 年时,年平均费用 最少.由于“年维修费第一年是 万元,以后逐年递增 万元”,可知汽车每年维修费构成以 万元为首项, 万元为公差的等差数列.因此汽车使用 年的总维修费用为万元,所以100.90.20.2x y 0.20.20.20.2xx (0.2+0.2x )2四、课后作业 (查看更多本章节同步练习题,请到快乐学)当且仅当 ,即 时, 取得最小值.答:汽车使用 年时年平均费用最少.y =10+0.9x +x (0.2+0.2x )2x =10+x +0.1x 2x =1++10x x 10⩾1+2⋅10x x10−−−−−−−√=3=10xx 10x =10y 10答案:1. 若 ,下列不等式中总能成立的是 A .B .C .D .Ca >b >0()>>2aba +ba +b2ab −−√>>a +b 22ab a +b ab−−√>>a +b 2ab −−√2ab a +b>>2ab a +bab −−√a +b 2答案:2. 下列各式中最小值是 的是 A .B .C .D .D2()+x y y x+5x 2+4x 2−−−−−√tan x +cot x+2x 2−x答案:解析:3. 已知 ,则函数 的最大值是A .B .C .D .C ,由 可得 ,根据基本不等式可得,当且仅当 即 时取等号,则 .x <12y =2x +12x −1()21−1−2y =−[(1−2x )+]+111−2x x <121−2x >0(1−2x )+⩾211−2x 1−2x =11−2x x =0=−1y max 答案:4. 如果正数 满足 ,那么 A . ,且等号成立时 的取值唯一B . ,且等号成立时 的取值唯一C . ,且等号成立时 的取值不唯一D . ,且等号成立时 的取值不唯一Aa ,b ,c ,d a +b =cd =4()ab ⩽c +d a ,b ,c ,d ab ⩾c +d a ,b ,c ,d ab ⩽c +d a ,b ,c ,d ab ⩾c +d a ,b ,c ,d高考不提分,赔付1万元,关注快乐学了解详情。
人教版A版高中数学必修5:第三章不等式_小结_课件17(1)

x
1
x
1 2
.
而 f(10x)>0,∴-1<10x<12,解得 x<lg 21,即 x<-lg 2.
[答案] (1)A (2)D
(1)解一元二次不等式的基本思路:先化为一般形式ax2+ bx+c>0(a>0),再求相应一元二次方程ax2+bx+c=0(a>0)的 根,最后根据相应二次函数图像与x轴的位置关系,确定一元 二次不等式的解集.
数不超过21辆,且B型车不多于A型车7辆,则租金最少为
A.31 200元
B.36 000元
()
C.36 800元
D.38 400元
[解析] (1)曲线y=|x|与y=2所围成的封闭区域如图阴 影部分所示,当直线l:y=2x向左平移时,(2x-y)的值在逐 渐变小,当l通过点A(-2,2)时,(2x-y)min=-6.
2m+6=-a, 由一元二次方程根与系数的关系得mm+6=a42-c,
解得c=9.
答案:9
线性规划问题
一、基础知识要记牢 线性规划实质上是数形结合思想的一种具体体现,即将 最值问题直观、简便地寻找出来.它还是一种较为简捷的求 最值的方法,具体步骤如下: (1)根据题意设出变量,建立目标函数; (2)列出约束条件; (3)借助图形确定函数最值的取值位置,并求出最值; (4)从实际问题的角度审查最值,进而作答.
二、预测押题不能少
x+y-4≥0, 1.已知二元一次不等式组x-y-2≤0,
x-3y+4≥0
所表示的平面区域
为 M.若 M 与圆(x-4)2+(y-1)2=a(a>0)至少有两个公共点,
则实数 a 的取值范围是
高中数学必修五第三章复习知识点及题型
必修五第三章 不等式一.不等关系与不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.比较两个数的大小可以用相减法;除法;平方法;开方法;倒数法等等。
2、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>⇒>∈N >. 例1 对于实数判断下列命题真假:,,,c b a(1)若;,bc ac b a <>则 (2);,22b a bc ac >>则若(3)22,0b ab a b a >><<则若 (4) .0,0,11,<>>>b a ba b a 则若 例2(1).已知x ∈R,则22+x 与2的大小关系是 ( ).A.22+x >2 B.222≥+x C.22+x <2 D.222≤+x(2).2)2(-≥n m 等价的是( ). A.2)2(-≤n m B.m n ≥-2)2( C.m n ≤-2)2( D.2)2(-n <m(3)设则下列不等式成立的是是非零实数,若,,b a b a < ( ) A.22b a < B.b a ab 22< C.b a ab 2211< D.ba ab <例3(1)2. 函数122-+=x x y 的定义域是 ( ) A.{}34>-<x x x 或 B.{}34<<-x x C.{}34≥-≤x x x 或 D.{}34≤≤-x x(2) 不等式022>++bx ax 的解为3121<<-x ,则b a +等于 ( )A.10B.-10C.14D.-14(3) 对于任意的实数x ,不等式04)2(2)2(2<----x a x a 恒成立,实数a 的取值范围是( ) A.()2,∞- B.(]2,∞- C.()22,- D.(]22,- (4) 解关于的不等式)0(01)1(2><++-a x a ax .例4.解不等式(1)()()()0321≥-+-x x x (2)()()()0321>-+-x x x(3)()()()()032112≤-+-+-x x x x x (4)()()()()032112>-+-+x x x x(5)012<-+x x (6)221≤-+x x (7)027313222≥+-+-x x x x例5(1).已知不等式22622>++++x x kx kx 对任意R x ∈恒成立,求k 的取值范围。
高中数学必修五第三章不等式复习小结优质
>0, b
>0)的最大值为12,则
2 a
3 b的最小值为(
)
A. 25 6
8
B.
3
11
C.
D. 4
3
二、填空题:
5.已知 、 是方程 x2 2k 1 x 4 2k 0 的两个实根,且 2 ,
k 则实数 的取值范围是 , 3 .
6.已知 x, y 满足
x 4 y 3, 3x 5 y 25, 则 x 1,
z
y x3
的取值范围是
,
1 2
1,
.
7.已知 lg x lg y 1, 则
52 xy
的最小值是 2
.
三、解答题:
8、已知:函数 f ( x) a满x2足 c,
4 f (1) 1, 1 f (2) 5
求: f (3) 的取值范围.
解:因为f(x)=ax2-c,
f (1) a c
即 z 240000 720 2 1600
z 297当60x0=y,即x=y=40时,等号成立 所以,将水池的地面设计成边长为40m的正方形 时总造价最低,最低总造价为297600元.
不等式及其性质
一元二次不等式及其解法 简单的线性规划
基本不等式
课后完成本章测试题
第三章 不等式 复习小结
y f x
y
R
x
x
b 2a
y
R
y
ax2 bx c
图像:
x O x1 x2
x O x=-b/2a
O
x
三、二元一次不等式(组)与简单的线性规划问题:
1、用二元一次不等式(组)表示平面区域的方法:
(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档
△>0
Байду номын сангаас
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
△=0
△<0
y=ax2+bx+c
y
的图象
(a>0)
x1 O
x2x
y
O x1
x
y x
O
ax2+bx+c=0 有两相异实根 (a>0)的根 x1, x2 (x1<x2)
有两相等实根
x1=x2=
b 2a
ax2+bx+c>0 {x|x<x1,或 x>x2} {x|x≠ b }
一.不等式知识要点
1.两实数大小的比较
a b a b 0 a b a b 0 a b a b 0
2.不等式的性质:8条性质.
3.基 本不 等式 定理
且且且且 且且且且 且且且且 且且且且
a 2 b 2 2ab
a2
b2
1 (a b)2 2
值。
z ax by z x2 y2
z y x
6
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的
个数。
2.且且且且且且且f
(x)
2
log2
x
1 log2
x
(0
x
1)
34.f(x)=x+ 1 且x4且且且且且 x1
4.求函数 f ( x) ( x 1)2 4 ( x 1) 的最小值.
(5)一元二次方程根的分布问题: 方法:依据二次函数的图像特征从:开口方向、判别式、对称 轴、
必修五 第三章 不等式知识点总结及练习
不等式31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n na b a b n n >>⇒>∈N >;⑧()0,1nn a b a b n n >>⇒>∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±∆=()12x x <有两个相等实数根122b x x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方.②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方. 39、在平面直角坐标系中,已知直线0x y C A +B +=. ①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域. ②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y .可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解. 41、设a 、b 是两个正数,则2a b+称为正数a 、b 的算术平均数,ab 称为正数a 、b 的几何平均数.42、均值不等式定理: 若0a >,0b >,则2a b ab +≥,即2a bab +≥. 43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值2p .不等式与不等关系1.实数x 大于10,用不等式表示为( )A .x <10B .x ≤10C .x >10D .x ≥102.设a =3x 2-x +1,b =2x 2+x ,x ∈R ,则( )A .a >bB .a <bC .a ≥bD .a ≤b4.比较x 6+1与x 4+x 2的大小,其中x ∈R .一、选择题1.某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要想安全通过隧道,应使车载货物高度h 满足关系为( )A .h <4.5B .h >4.5C .h ≤4.5D .h ≥4.5 2.实数x 的绝对值不大于2,则可用不等式表示为( ) A .|x|>2 B .|x|≥2X k b 1 . c o m C .|x|<2 D .|x|≤2 3.下列不等式中不成立的是( ) A .-1>-2 B .-1<2 C .-1≥-1 D .-1≤-2 4.某高速公路对行驶的各种车辆的速度v 的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,则可用不等式表示为( )A.⎩⎪⎨⎪⎧v ≤120km/h d ≥10m B .v ≤120(km/h)或d ≥10(m) C .v ≤120(km/h) D .d ≥10(m)5.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( ) A .A ≤B B .A ≥B C .A<B 或A>B D .A>B6.已知M =x 2+y 2-4x +2y ,N =-5,若x ≠2或y ≠-1,则( ) A .M>N B .M<N C .M =N D .不能确定答案:1.C 2.D 3.D 4.A 5.B 6.A1.对于任意实数a ,b ,c ,d ,命题:①若a>b ,c ≠0,则ac>bc ;②若a>b ,则ac 2>bc 2;③若ac 2>bc 2,则a>b. 其中真命题的个数是( )A .0B .1C .2D .3解析:当c<0时,①不正确; 当c =0时,②不正确;只有③正确. 答案:B 2.如果a>b ,给出下列不等式,其中成立的是( ) ①1a <1b ;②a 3>b 3;③a 2+1>b 2+1;④2a >2b . A .②③ B .①③ C .③④ D .②④ 解析:∵a 、b 符号不定,故①不正确,③不正确.∵y =x 3是增函数,∴a>b 时,a 3>b 3,故②正确.∵y =2x 是增函数,∴a>b 时,2a >2b,故④正确. 答案:D 3.已知a ,b 为非零实数,且a<b ,则( )A .a 2<b 2B .a 2b<ab 2C .2a -2b<0 D.1a >1b解析:取a =-4,b =2即可判断选项A 、B 、D 错. 答案:C 4.已知a 、b 满足0<a<b<1,下列不等式中成立的是( )A .a a <b bB .a a <b aC .b b <a bD .b b >b a解析:取特殊值法.令a =14,b =12,则a a =(14)14=(12)12, b b=(12)12,∴A 错.a b =(14)12<(12)12=b b ,∴C 错. b b =(12)12<(12)14=b a,∴D 错. 答案:B5.设0<b<a<1,则下列不等式成立的是( )A .ab<b 2<1 B .log 12b<log 12a<0C .2b <2a <2D .a 2<ab<1解析:∵y =2x 是单调递增函数,且0<b<a<1, ∴2b <2a <21,即2b <2a<2. 答案:C 6.若1a <1b <0,则下列不等式:①a +b<ab ;②|a|>|b|;③a<b ;④b a +ab >2中,正确的不等式是A .①②B .②③C .①④D .③④解析:取a =-1,b =-2,验证排除②③. 答案:C7.一个棱长为2的正方体的上底面有一点A ,下底面有一点B ,则A 、B 两点间的距离d 满足的不等式为________.解析:最短距离是棱长2,最长距离是正方体的体对角线长2 3.故2≤d ≤2 3. 答案:2≤d ≤2 38.若a >b >0,则1a ________1b.解析:∵1a -1b =b -aab ,b -a <0,ab >0,∴b -a ab <0, ∴1a <1b. 答案:< 9.若实数a >b ,则a 2-ab________ba -b 2.(填“>”或“<”)解析:因为(a 2-ab)-(ba -b 2)=(a -b)2,又a >b ,所以(a -b)2>0,即a 2-ab >ba -b 2.7.已知三个不等式:ab>0,bc -ad>0,c a -db>0(其中a 、b 、c 、d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是____个.解析:由ab>0,bc -ad>0. 两端同除以ab ,得c a -db>0.同样由c a -db>0,ab>0可得bc -ad>0.⎩⎪⎨⎪⎧bc -ad>0c a -d b>0⇒⎩⎪⎨⎪⎧bc -ad>0bc -adab>0⇒ab>0. 答案:38.下列四个不等式:①a<0<b ;②b<a<0;③b<0<a ;④0<b<a ,其中能使1a <1b成立的充分条件有________.解析:1a <1b ⇔b -a ab<0⇔b -a 与ab 异号,因此①②④能使b -a 与ab 异号. 答案:①②④ 9.(2011·三明模拟)给出下列四个命题:①若a>b>0,则1a >1b ; ②若a>b>0,则a -1a >b -1b ;③若a>b>0,则2a +b a +2b >a b ; ④设a ,b 是互不相等的正数,则|a -b|+1a -b≥2.其中正确命题的序号是________.(把你认为正确命题的序号都填上)解析:①作差可得1a -1b =b -a ab ,而a>b>0,则b -a ab <0,此式错误.②a>b>0,则1a <1b,进而可得-1a >-1b ,所以可得a -1a >b -1b 正确.③2a +b a +2b -a b =b 2a +b -a a +2b a +2b b =b 2-a 2a +2b b =b -a b +a a +2b b<0,错误.④a -b<0时此式不成立,错误. 答案:②一元二次不等式练习:判断下列式子是不是一元二次不等式?(依据是…)(2)03≤+xy (3)(0)3)(2<-+x x (4))1(32->-x x x x 2.如何解一元二次不等式?(1)将不等式化为标准式(等号右边为0,二次项的系数为正) (2)判断△的符号.(3)求方程的根.(4)根据图象写解集.例1:(1)40142>+-x x (2)0322>-+-x x(1)0432>--x x (2)0652<+-x x例2.自变量x 在什么范围取值时,下列函数的值等于0?大于0呢?小于0呢?(1)y=3x 2-6x+2 (2) y=25-x 2例3.求下列函数的定义域 :(1)y=log 2(x 2-3x-4) (2)622--=x x y4.若关于x 的一元二次方程x 2-(m+1)x-m=0有两个不相等的实数根,求m 的取值范围5.已知函数f(x)=213324x x --, 求使函数值大于0的x 的取值范围 4.已知不等式ax 2+bx+6<0的解集是 {x ︳x<-2或x>3 (1)求a,b 的值 (2)求不等式x 2+bx+a>0的解集.例 2 若关于x 的不等式 mx 2-(2m+1)x+m-1≥0 的解集为空集,求m 的取值范围.变式 1:若解集为非空,求m 的取值范围变式2. 若解集为R ,求m 的取值范围不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 x 2-4x+13x 2-7x+2≤1解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图不等式解集为{x ∣x>2或x<-4且x ≠5}. (2)变形为(2x-1)(x-1)(3x-1)(x-2)≥0根据穿根法如图不等式解集为{x |x<1 3 或 1 2≤x ≤1或x>2}. 一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x 10、0121632>-+x x 11、0123732>+-x x 12、071522≤++x x 13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x 16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x 19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x 25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x 31、03282>--x x 32、031082≥-+x x 33、041542<--x x 34、02122>--x x 35、021842>-+x x 36、05842<--x x 37、0121752≤-+x x 38、0611102>--x x 39、038162>--x x 40、038162<-+x x 41、0127102≥--x x 42、02102>-+x x 43、0242942≤--x x 44、0182142>--x x 45、08692>-+x x 46、0316122>-+x x 47、0942<-x 48、0320122>+-x x 49、0142562≤++x x 50、0941202≤+-x x 51、(2)(3)6x x +-< 52、03222<--a ax x 53、0)1(2<--+a x a x221 1 3 1二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为__________. 3、不等式2310x x -++>的解集是 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ; 9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合M N = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为_______ 12、不等式0<x 2+x-2≤4的解集是_________13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.9.已知一元二次不等式(m -2)x 2+2(m -2)x +4>0的解集为R ,求m 的取值范围2.求函数()2110lg 2+-=x x y 的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一对一个性化辅导教案例1:解下列不等式题型2:简单的无理不等式的解法例1 :解下列不等式(2) x 2x 2 1题型3 :指数、对数不等式2例1 :若log a 1,则a 的取值范围是()3A. a 1B . 0 a —C - — a 133练习:1 2x 1 .x 1 ;(1) x 3 4x 0 ;2 2(2) (x 1) (x 5x 6) 0 ;(3)2x 2 x 1 2x 1练习: 解不等式(1)3x 5 x 2 2x 3(2) (2x 1)2(x 7)3(3 2x)(x 4)6D. 0 a -或 a 131、不等式2x 3 4x的解集是__________________ 。
2、不等式log1(x 2) 0的解集是_____________ 。
22e x 1x 23、设f(x)=‘1则不等式f(x) 2的解集为( )log3(x2 1),x 2,A. (1,2) (3, ) B . (710, ) C. (1,2) ) D . (1,2)题型4 :不等式恒成立问题1 2例1:若关于x的不等式一X 2x mx的解集是{x |0 x 2},则m的值是2练习:2 1 1一元二次不等式ax bx 2 0的解集是(一,—),贝U a b的值是( )2 3A. 10 B . 10 C. 14 D . 14例2:已知不等式x2 (a 1)x a 0,(1)若不等式的解集为(1,3),则实数a的值是_________________ 。
(2) __________________________________________________________ 若不等式在(1,3)上有解,则实数a 的取值范围是 _______________________________________________________ 。
(3) ____________________________________________________________ 若不等式在(1,3)上恒成立,则实数a的取值范围是 _____________________________________________________ 。
2例3:若一元二次不等式ax 4x a 0的解集是R则a的取值范围是_______________________ 。
练习:2 2已知关于x的不等式a 4 x a 2 x 1 0的解集为空集,求a的取值范围。
已知关于x的一元二次不等式a/+(a-1)x+a-1v0的解集为R,求a的取值范围.若函数f(x)= kx26kx (k 8)的定义域为R,求实数k的取值范围.解关于x的不等式:x2-(2m+1)x+m2+m<0.例12解关于x的不等式:x2+(1-a)x-a<0.线性规划例题选讲:题型1:区域判断问题例1:已知点P(x0,y°)和点A (1,2)在直线l :3x 2y 8 0的异侧,则( )B. 3x02y00 C . 3x0 2y0 8 D . 3x0 2y0 8练习:1、已知点P(1, 2)及其关于原点的对称点均在不等式 2x by 1 0表示的平面区域内,则 b 的取值范围是 ___________ 。
2、原点和点(1,1)在直线x y a 0的两侧,贝U a 的取值范围 ________________题型3:画区域求最值问题y 2x若变量x,y 满足约束条件x y 1,y1(1)求x 2y 的最大值;(2)求xy 的最小值;(3 )求y 1的取值范围;x 1(4)求 y 的取值范围;(5)求x 2y 2的最大值;(6)求(x 2)2 y 2的最小值x 2题型 4:无穷最优解问题x y 5 x y 5 0,使z x ay ( a 0)取得最小值x 3的最优解有无数个,则a 的值为( ) A 、 3B 、3C 、1D 、1练习:y 名,若x 、 y 满足y yx ,zx 43x 3y 的最大值为()A. 4B. 12C. 18D.24练习:2x y 5,1、某所学校计划招聘男教师 x 名,女教师y 名,x 和y 须满足约束条件x y 2, 则该校招聘x 6.的教师人数最多是( )A . 6B. 8C. 10 D . 122、满足x y 2的点(x, y)中整点(横纵坐标都是整数)有()例1:已知x 、 y 满足以下约束条件给岀平面区域(包括边界)如图所示,若使目标函数 zax y(a 0)取得最大值无穷多个,则a 的值为) 题型5 :整点例1:强食品安全管理,某市质监局拟招聘专业技术人员x 名,行政管理人员B、10 个C、13 个D、14 个A、9个题型6 :线性规划中的参数问题X 1例1 :已知a 0 , x, y 满足约束条件x y 3,若z 2x y 的最小值为1,则a ()y a(x 3)11A. —B . —c . 1D. 242 练习:2x y 10,1、设关于x , y 的不等式组 x m 0, 表示的平面区域内存在点P(x 0,y 0),满足x 0 2y 0 2,y m 0求得m 的取值范围是()41 c25 A.-B .-C .—D.,3,3,3,3x y 2> 0,x 3y 6>0,表示的平面区域为 D,若直线kx y 2kx y w 0的取值范围是 __________线性规划问题的推广-----利用几何意义解决最值问题 解题思路:1、 找出各方程、代数式的几何意义;2、 找出参数的几何意义;3、 画图求解。
例1:若直线y kx 1 (k R)与圆x 2 (y 1)2 1有公共点,则k 的取值范围是 _____________练习:1、 点P(x,y)在圆C : (x 2)2 y 2 3上,则丿的最大值为 ________________ 。
x2、 已知点 A(1,4) , B(3,1),点P(x, y)在线段AB 上,则 一^的取值范围为 _______________ 。
x 1例2:若直线x 2y b 0与圆(x 1)2 (y 2)2 5有公共点,贝U b 的取值范围为 _______________________ 练习:1、已知x , y 满足x 2 y 2 2x 4y 0,则x 2y 的取值范围是 _______________________ 。
2、若5x 12y60,则..(x 1)2 y 2的最小值为2 2 2 23、已知点P(x, y)为圆C :(x 1) (y 1) 2上任意一点,则(x 1) (y 1)的取值范围为线性规划作业0上存在区域D 上的点,贝U k2、设不等式组y 2 0,3y 6> 0,表示的平面区域为 D,若直线kxy <0则k 的取值范围是 _____________ 。
基本不等式例题选讲:题型1 :基本不等式应用条件的判断例1:已知a,b R ,下列不等式中不正确的是()(A )a 2b 2 2ab ( B ) a —b. ab(C )a 2 4 4a( D )£b 2 4x1、已知x 2x 1,y 10,则 x 2y 2 0的最小值是2、已知点P(x,y)的坐标满足条件4x ,点O 为坐标原点,那么| PO |的最小值等于 1最大值等于3、设xy 满足的约束条件 y4x ,则4、设1,y 在约束条件 y5、已优解 有无数个, A 、 33y 12乩卫的最大值为x 1xmx 下,目标函数 y 满足以下约束条件a 的值为 3 C 、) D 、 1z x 5y 的最大值为4,贝U m 的值为y 5 y 5 0,使z x ay ( a 0)取得最小值的最36、若实数x,y 满足 x 的最小值为7、已知平面区域D 有无穷多个点 A. 2 由以A1,3、x, y 可B 5,2、C 3,1为顶点的三角形内部( ) D. 4k 0上存在区域D 上的点,8、设不等式组2 b2练习:在下列函数中最小值为2的函数是( )题型2: a b 2 ab 的应用2例1若x 0 ,则x 的最小值为x练习:若x 0 ,求y 3x的最小值xA. 6C . [3,+ g )D . ( — g ,3]2的应用例1:若0 x 1,求y x(1 x)的最大值。
练习:11、 若0 x —,求y x(1 2x)的最大值为 ___________________ 。
22、 若x 0 ,则y x 4 x 2的最大值为 ___________________ 。
题型4 :构造基本不等式解决最值问题 例1:求函数f (x) 练习:例2: 1当X 一时,求x8的最小值及对应的22x 1练习:若x3,求 y x —1 的最小值。
x 3x 的值.1 4例3:设x 、y 为正数,则(x y)( )的最小值为()x y例4:当x>1时,不等式x a 恒成立,则实数 a 的取值范围是(例5:函数f (x)x (x x0)的值域是 _______________ 题型3: ab0 )的值域。
根式判别法把函数转化成关于x 的二次方程F x, y 0,通过方程有实根,判别式 0 ,ax 2 +bx+c 其定义域为R,且分子分母没有 ex + fx + g公因式的函数常用此法 2i例3求函数y x 2x 1的值域x x 2解:•••定义域为{x 1且x 2}• •• y 1 x 2y 1 x 2y 1 0在定义域内有解 当y 10时:即y 1时,方程为1 0,这不成立,故y 0.当y 10时,即y 1时: 解得y 5或y 1 9•函数的值域为 换元法1 利用代数或三角换元,将所给函数转化为易求值域的函数,形如y 二 —的函 f (x )数,令f (x ) = t ;形如y ax b , cx d ,其中a , b , c , d 为常数,令,cx + d 二t ;形如y . a 2 x 2的结构函数,令x acos x 0, 或令x = as in 02 , 2例5求函数y x 1 x 2解:令 x = acos 0 , y cos sin ■■- 2 cos4仁 f(x)- -------- (x 0 )的值域是 _______________x 2 2x 4 2、yx 2 7x x 1®(X1)的最小值为(分离法、换元法)从而求得原函数的值域.对于形如,y =• 2 y 1即所求值域为例2:已知a 0 , b 0 ,若ab 2,则a b的最小值为____________________ 。
例3:已知x, y R,且x 4y 1,则x y的最大值为_____________________ 。
例4:已知a 0 , b 0 ,若a b 2,则lg a lg b的最大值为 ____________________ 。