纯电动汽车电机及控制器

合集下载

纯电动汽车整车控制器(VCU)详细介绍

纯电动汽车整车控制器(VCU)详细介绍

纯电动汽车整车控制器(VCU)详细介绍一、国外产品介绍:(1)丰田公司整车控制器丰田公司整车控制器的原理图如下图所示。

该车是后轮驱动,左后轮和右后轮分别由2个轮毂电机驱动。

其整车控制器接收驾驶员的操作信号和汽车的运动传感器信号,其中驾驶员的操作信号包括加速踏板信号、制动踏板信号、换档位置信号和转向角度信号,汽车的运动传感器信号包括横摆角速度信号、纵向加速信号、横向加速信号和4个车轮的转速信号。

整车控制器将这些信号经过控制策略计算,通过左右2组电机控制器和逆变器分别驱动左后轮和右后轮。

(2)日立公司整车控制器日立公司纯电动汽车整车控制器的原理图如下图所示。

图中电动汽车是四轮驱动结构,其中前轮由低速永磁同步电机通过差速器驱动,后轮由高速感应电机通过差速器驱动。

整车控制器的控制策略是在不同的工况下使用不同的电机驱动电动汽车,或者按照一定的扭矩分配比例,联合使用2台电机驱动电动汽车,使系统动力传动效率最大。

当电动汽车起步或爬坡时,由低速、大扭矩永磁同步电机驱动前轮。

当电动汽车高速行驶时,由高速感应电机驱动后轮。

(3)日产公司整车控制器日产聆风LEAF是5门5座纯电动轿车,搭载锂离子电池,续驶里程是160km。

采用200V家用交流电,大约需要8h可以将电池充满;快速充电需要10min,可提供其行驶50km的用电量。

日产聆风LEAF的整车控制器原理图如下图所示,它接收来自组合仪表的车速传感器和加速踏板位置传感器的电子信号,通过子控制器控制直流电压变换器DC/DC、车灯、除霜系统、空调、电机、发电机、动力电池、太阳能电池、再生制动系统。

(4)英飞凌新能源汽车VCU&HCU解决方案该控制器可兼容12V及24V两种供电环境,可用于新能源乘用车、商用车电控系统,作为整车控制器或混合动力控制器。

该控制器对新能源汽车动力链的各个环节进行管理、协调和监控,以提高整车能量利用效率,确保安全性和可靠性。

该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进行分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。

纯电动汽车整车控制器(TAC)

纯电动汽车整车控制器(TAC)
整车控制器主要由控制器主芯片,Flash存储器和RAM存储器及相关电路组成,控制器主芯片的输出与Flash存储器和RAM存储器的输入相连。
整车控制器通过CAN总线接口连接到整车的CAN网络上与整车其余控制节点进行信息交换和控制。
控制器硬件包括微处理器、CAN通信模块、BDM调试模块、串口通信模块、电源及保护电路模块等。微处理器选用了Motorola公司专门为汽车电子开发的MCgS12,它具有运算速度快和内部资源与接口丰富的特点,适合实现整车复杂的控制策略和算法。CAN通信模块符合CAN2.0B技术规范,采用了光电隔离、电源隔离等多项抗干扰设计;BDM调试模块用于实时对控制程序进行调试、修改;串口通信模块用于对控制系统的诊断和标定; 电源模块进行了二级滤波的冗余设计,保证控制器在车载12V系统供电情况下正常工作,并具短路保护功能。
其硬件结构框图如图一所示。
整车控制器实物图如图二所示。
性能指标:
1)工作环境温度: -30℃—+80℃
2)相 对湿度: 5%~93%
3)海 拔高度: 不大于3000m
4)工作电压: 18VDC—32VDC
5)防护等级: IP65
功能指标:
1)系统响应快,实时性高
2)采用双路CAN总线(商用车SAE J1939协议)
3)多路模拟量采样(采样精度10位);2路模拟量输出(精度12位)
4)多路低/高端开关输出
5)多路I/O输入
6)关键信息存储
7)脉冲输入捕捉
8)低功耗,休眠唤醒功能
该项目使用的INFINEON的物料清单:
TC1782
TLE7368-Biblioteka ETLE6240GPBTS4880R
IPG20N06S2L-65

汽车电动汽车用电机及控制器布置规范

汽车电动汽车用电机及控制器布置规范

电动汽车用电机及控制器布置规范1范围本蟒准规定了电动汽车用电机及控制器(以下荷称电机及控制器)及其相关附件的布置形式和布置原则°本标准适应于本公司生产的混合动力、纯电动等所有新能源车型.2规范性引用文件下列文件对于本文件的应用是必不“少的。

凡是注日期的引用文件,仪所注日期的版本适用于本文件。

凡是不注日期的引用文件,其量新版本(包括所有的修改单)适用于本文件。

Q/OC JT108-2008整车二维数模装配间隙设计3术语和定义Q/OC TU08—2008界定的术语和定义适用于本标?(L4布置形式4-1分类电机及控制器布置可简单分为前丘、后置,控制器一般布置在电机正上方。

4.2纯电动汽车本公司研发的纯电动汽车的电机布置一段为前置,其布置形式如下二a)纯电动汽车电机前过,电机与减速器同轴布:a,与整车ZX平面垂直,如图1所示:b)貌电动汽车控制器前置.为了接线方便和缩近堆束长度,控制群布置在电机接战盒位置的正上•方与整车ZX平面垂直,如图2所示工图1前置电机布置形式I图2前亘控翻器布克形式]<3混合动力汽车混合动力汽车的电机布置M以前置也可以后置,其布置形式如下,El)混合动力汽车电机前置,电机与发动机同轴布置与整车ZX平面垂直,如图3所示:b)混合动力汽车控制楼而置,为了接线方便和筋短缓束长度,同时要避让发动机及其附件J控制器布置在电机上方与整车ZX平面垂直,如图4所示Fc)混合动力汽车电机及控制器后置,为了实现四强功能,发动机前置,电驱动桥后:B・电机及控制器后置,电机与旗速器同轴布丘修整车ZX平面垂直.图3前五电机布适形式n图4前置控制赤布置形式II图5后置电机布置形式对于电机、控制器及其附件的布置,底保证工作川配J井能灌足整车布置的需要和整车性能的发挥;应保证机舱与发动机、变速器,底盘之间布置和设计的合理也电机及控制器的通风散热.诏音隔热良好,与其他零部件最小间隙合理、拆卸方便F同时还要保证安装T艺性、有足热的刚度和强度.一般从以下几个方面进行布置考出r动、除占间隙要求工装配工艺性要求;雄脩方便性等要求:。

纯电动汽车整车控制器的构成、原理、功能说明

纯电动汽车整车控制器的构成、原理、功能说明

纯电动汽车整车控制器的构成、原理、功能说明整车控制器是电动汽车正常行驶的控制中枢,是整车控制系统的核心部件,是纯电动汽车的正常行驶、再生制动能量回收、故障诊断处理和车辆状态监视等功能的主要控制部件。

整车控制器包括硬件和软件两大组成部分,它的核心软件和程序一般由生产厂商研发,而汽车零部件供应商能够提供整车控制器硬件和底层驱动程序。

现阶段国外对纯电动汽车整车控制器的研究主要集中在以轮毂电机驱动的纯电动汽车。

对于只有一个电机的纯电动汽车通常不配备整车控制器,而是利用电机控制器进行整车控制。

国外很多大企业都能够提供成熟的整车控制器方案,如大陆、博世、德尔福等。

1整车控制器组成与原理纯电动汽车整车控制系统主要分为集中式控制和分布式控制两种方案。

集中式控制系统的基本思想是整车控制器独自完成对输入信号的采集,并根据控制策略对数据进行分析和处理,然后直接对各执行机构发出控制指令,驱动纯电动汽车的正常行驶。

集中式控制系统的优点是处理集中、响应快和成本低;缺点是电路复杂,并且不易散热。

分布式控制系统的基本思想是整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。

整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电。

分布式控制系统的优点是模块化和复杂度低;缺点是成本相对较高。

典型分布式整车控制系统示意图如下图所示,整车控制系统的顶层是整车控制器,整车控制器通过CAN总线接收电机控制器和电池管理系统的信息,并对电机控制器、电池管理系统和车载信息显示系统发送控制指令。

电机控制器和电池管理系统分别负责驱动电机和动力电池组的监控与管理,车载信息显示系统用于显示车辆当前的状态信息等。

典型分布式整车控制系统示意图下图为某公司开发的纯电动汽车整车控制器组成原理图。

纯电动汽车结构及工作原理

纯电动汽车结构及工作原理

纯电动汽车结构及工作原理纯电动汽车是指完全依靠电能驱动的汽车,不使用传统的内燃机作为动力源。

它是一种环保、高效的交通工具,越来越受到人们的关注和青睐。

本文将从结构和工作原理两个方面介绍纯电动汽车的特点和工作原理。

一、结构纯电动汽车的结构相对简单,主要由电池组、电机、控制器和传动系统等组成。

1. 电池组:电池组是纯电动汽车的能量存储装置,通常采用锂离子电池。

电池组的容量决定了纯电动汽车的续航里程,较大的容量可以提供更长的续航里程。

2. 电机:电机是纯电动汽车的动力源,它将电能转化为机械能驱动汽车前进。

纯电动汽车通常采用交流电机或直流无刷电机。

电机的功率决定了汽车的动力性能,较高的功率可以提供更强的加速性能。

3. 控制器:控制器是纯电动汽车的大脑,它负责控制电池向电机供电,调节电机的转速和扭矩。

控制器还监测电池的电量和温度等信息,保证电池的安全运行。

4. 传动系统:纯电动汽车的传动系统相对简单,通常采用单速或多速变速器。

传动系统将电机的动力传递给车轮,使汽车前进。

二、工作原理纯电动汽车的工作原理可以简单概括为:电池供电给电机,电机驱动车轮前进。

1. 充电:纯电动汽车通过电源将电能输入到电池组中进行储存。

充电可以通过家庭充电桩、公共充电桩或特殊充电站进行。

电池组的电量决定了汽车的续航里程,因此充电是纯电动汽车使用的重要环节。

2. 驱动:当电池组充满电后,电能供给电机进行驱动。

电机通过控制器调节电流和电压,将电能转化为机械能。

电机的转速和扭矩会根据驾驶者的操作和车辆的工况进行调节,以实现合适的动力输出。

3. 制动回收:纯电动汽车采用制动能量回收系统,当驾驶者踩下刹车踏板时,电机会转变为发电机,将制动过程中产生的动能转化为电能储存在电池组中,以提高能源的利用效率。

4. 能量管理:纯电动汽车的电池组需要进行合理的能量管理,以延长电池的使用寿命和提高续航里程。

能量管理系统会根据车辆的工况和电池的状态进行控制,确保电池组的安全和稳定运行。

纯电动汽车驱动系统的组成

纯电动汽车驱动系统的组成

纯电动汽车驱动系统的组成
驱动系统是电动汽车的核心,一般由控制器、功率转换器、驱动电机、机械传动装置和车轮组成。

其功用是将蓄电池组中的化学能以电能为中间媒介高效地转化为车轮动能,进而推动汽车行驶,并能在汽车制动及下坡时,实现再生制动(即将汽车动能吸收并转化为蓄电池化学能储存起来,从而增加续驶里程)。

驱动电机的作用是将动力电池的电能转化为机械能,通过传动装置驱动车轮,或由其直接驱动车轮。

电子控制器即电机调速控制装置,其作用是控制电机的电压或电流,完成电机的转矩和转向的控制,从而实现电动汽车变速和变向。

功率转换器用做DC—DC转换(直流一直流)和DC—AC转换(直流一交流)。

DC—DC 转换器又称直流斩波器,其作用是将蓄电池的直流电转换为电压可变的直流电,并将再生制动能量进行反向转换,用于直流电机驱动系统。

DC—AC转换器通常称为逆变器,其作用是将蓄电池的直流电转换为频率、电压均可调节的交流电,也能进行双向能量转换,用于交流电机驱动系统。

机械传动装置是将电机的转矩传给汽车传动轴或直接传给车轮(轮毂电机)。

相对于传动内燃机汽车,电动汽车的机械传动装置大大简化,故其机械效率得以提高。

电源系统包括蓄电池组、充电器和能量管理系统。

电源是制约电动汽车发展的主要因素,其应具有高的比能量(即能量密度)和比功率(即功率密度),以满足汽车的续驶里程和动力性的要求。

辅助系统包括辅助动力源、动力转向系统、导航、照明、刮水器、收音机和音响等,它们是汽车操纵性和乘坐舒适性的保证。

电动汽车电机控制器国家标准分析

电动汽车电机控制器国家标准分析
发动机舱 (混合动力)
发动机舱 (纯电动) 后备箱及其他
储存温度范围
表1 长安对相关器件的温度要求
3、电机控制器抗振及壳体强度要求
定频振动和扫频振动: 针对控制器的抗振性能,标准中规定需满足QC/T 413-2002中的要求。(该标 准是针对普通汽车制定的通用技术条件,对于电动汽车,由于没有发动机, 振动环境已发生变化,直接引用普通汽车的振动要求来考核电动汽车不一定 能准确反映实际运行情况) 振动曲线要求如图1所示。
7、电机控制器应具备的保护功能
标准规定了电机控制器的基本保护功能,即短路保护、过流保护、 过压保护、欠压保护、过热保护。
长安汽车电机控制器保护功能见下表:
高压短路保护 母线电压过压保护 母线电压欠压保护 电机控制器输出过流保护 电机过问保护功能 控制器过温保护功能 功率模块故障保护
通讯故障保护
标准同时规定保护功能的测试按GB/T 3859.1—6.4.13的要求进行。
8、电机控制器EMC要求
标准只对电机及控制器的电磁辐射以及电磁辐射抗扰度进行了要求, 目前长安相关电机控制器的EMC均需满足长安的EMC测试的规范(规范 名),电机控制器需要进行的EMC测试项目如下表所示。
电机控制器相关试验方法
1. 试验准备 2. 一般性试验项目 3. 环境试验 4. 温升试验 5. 效率测试 6. 再生能量回馈试验 7. EMC要求
控制器壳体强度要求: 控制器壳体30X30cm的面积上应能承受100kg质量的物体产生的重力,壳体不 发生塑性变形。
4、电机控制器防护等级要求
防护等级要求
标准规定控制器的防护等级可参考GB/T 4942.1-2001和GB/T4942.2-1993的要 求。针对该点,长安根据不同器件以及其不同布置位置情况,对器件的防 护等级进行了规范,详见表2。

纯电动汽车驱动系统工作原理

纯电动汽车驱动系统工作原理

纯电动汽车驱动系统工作原理纯电动汽车是指完全依靠电池供电的汽车,其驱动系统与传统汽车有很大的不同。

纯电动汽车的驱动系统主要由电机、电池、控制器和传动系统组成。

本文将详细介绍纯电动汽车驱动系统的工作原理。

电机纯电动汽车的驱动系统采用电动机作为动力源。

电动机是将电能转化为机械能的装置,其工作原理是利用电磁感应原理,通过电流在磁场中的作用,产生转矩,从而驱动车轮转动。

电动机的种类有直流电动机、交流异步电动机、交流同步电动机等,其中交流异步电动机和交流同步电动机是目前纯电动汽车中应用最广泛的电动机。

电池电池是纯电动汽车的能量储存装置,其主要作用是将电能储存起来,以供电动机使用。

电池的种类有铅酸电池、镍氢电池、锂离子电池等,其中锂离子电池是目前纯电动汽车中应用最广泛的电池。

锂离子电池具有能量密度高、重量轻、寿命长等优点,但其成本较高。

控制器控制器是纯电动汽车驱动系统的核心部件,其主要作用是控制电动机的转速和转矩,以实现车辆的加速、减速和制动等功能。

控制器还可以监测电池的电量和温度等参数,以保证电池的安全和稳定运行。

控制器的种类有直流控制器、交流控制器等,其中交流控制器是目前纯电动汽车中应用最广泛的控制器。

传动系统传动系统是将电动机的动力传递到车轮上的装置,其主要作用是将电动机的转速和转矩转化为车轮的转速和转矩。

传动系统的种类有单速传动系统、多速传动系统等,其中单速传动系统是目前纯电动汽车中应用最广泛的传动系统。

纯电动汽车驱动系统的工作原理纯电动汽车驱动系统的工作原理可以简单概括为:电池提供电能,控制器控制电动机的转速和转矩,电动机将电能转化为机械能,传动系统将机械能传递到车轮上,从而驱动车辆行驶。

具体来说,当驾驶员踩下油门踏板时,控制器会根据油门踏板的位置和车速等参数,计算出电动机需要的转速和转矩。

然后,控制器会向电动机发送控制信号,控制电动机的转速和转矩。

电动机接收到控制信号后,会根据信号的指令,产生相应的转矩,从而驱动车轮转动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯电动汽车电机及控制器
2.0.3 基本组成
2.电池管理系统 • 管理 ◇对动力电池组充电与放电时的电流、电压、放电
深度、再生制动反馈电流、电池温度等进行控制。 ◇个别电池性能变化后,会影响到整个动力电池组
性能,故需用电池管理系统来对整个动力电池组 及其每一单体电池进行监控,保持各个单体电池 间的一致性。 • 充电 动力电池组必须进行周期性的充电。高效率充电 装置和快速充电装置,是EV使用时所必须的辅助 设备。可采用地面充电器、车载充电器、接触式 充电器或感应充纯电电动器汽等车电进机及行控充制器电。
2.0.4 关键技术
1. 驱动电动机的选择及功率匹配 • 电动机应具有良好的转矩—转速特性,一般具有
6000~15000r/min的转速。 • 根据车辆行驶工况,驱动电动机可以在恒转矩区
和恒功率区运转。 • 驱动电动机应经常保持在高效率范围内运转。在
低速—大转矩(恒转矩区)运转范围内效率在 0.75~0.85之间,在恒功率运转范围内效率在 0.8~0.9之间。
第二章 纯电动汽车
动力系统匹配 关键部件选型要求
电机及其控制器
纯电动汽车电机及控制器
2.0.3 基本组成
1.车载电源 2.电池管理系统 3. 驱动电动机 4. 控制系统 5. 车身及底盘 6. 安全保护系统
纯电动汽车电机及控制器
2.0.3 基本组成
1. 车载电源 • 组成
以动力电池组作为车载电源,用周期性的充电来 补充电能。 • 重要性 ◇动力电池组是EV的关键装备,储存的电能、质量 和体积,对EV性能起决定性影响,也是发展EV 的主要研究和开发对象。 ◇ EV发展的症结在于电池,电池技术对EV的制约 仍然是EV发展的瓶颈。 ◇建立充电站系统、报废电池回收和处理工厂,是 推广EV的关键问纯电题动。汽车电机及控制器
纯电动汽车电机及控制器
2.0.3 基本组成
5. 车身及底盘 • 车身
EV车身造型特别重视流线型,以降低空气阻力系 数。 • 底盘 ◇由于动力电池组的质量大,为减轻整车质量,采 用轻质材料制造车身和底盘部分总成。 ◇动力电池组占据的空间大,在底盘布置上还要有 足够的空间存放动力电池组,并且要求线路连接、 充电、检查和装卸方便,能够实现动力电池组的 整体机械化装卸。
2.0.3 基本组成
3. 驱动电动机 • 驱动电动机是驱动EV行驶的唯一动力装置。 • 类型
直流电动机、交流电动机、永磁电动机和开关磁 阻电动机等。 • 再生制动 ◇再生制动是EV节能的重要措施之一。制动时电动 机可实现再生制动,一般可回收10%~15%的能 量,有利于延长EV行驶里程。 ◇在EV制动系统中,还保留常规制动系统和ABS制 动系统,以保证车辆在紧急制动时有可靠的制动 性能.
纯电动汽车电机及控制器
2.0.3 基本组成
6. 安全保护系统 • 高压安全
动力电池组具有高压直流电,必须设置安全保护 系统,确保驾驶员、乘员和维修人员在驾驶、乘 坐和维修时的安全。 • 故障处理 必须配备电气装置的故障自检系统和故障报警系 统,在电气系统发生故障时自动控制EV不能起动 等,及时防止事故的发生。
(2)第二代高能电池:镍—镉电池、镍—氢电池、 钠—硫电池、钠—氯化镍电池、锂离子电池、锂 聚合物电池、锌—空气电池和铝—空气电池等 ◇优点:比能量和比功率都比铅酸电池高,大大 提高了EV的动力性能和续驶里程。 ◇缺点:有些高能电池需要复杂的电池管理系统 和温度控制系统,各种电池对充电技术有不同要 求。而且电化学电池中的活性物质在使用一定的 期限后,会老化变质以至完全丧失充电和放电功 能而报废,从而纯使电动E汽V车的电机使及用控制成器本高。
2.0.3 基本组成
1. 车载电源 • 发展 (1)第一代EV电池:铅酸电池
◇优点:技术成熟,成本低。 ◇缺点:比能量和比功率低不能满足EV续驶里程 和动力性能的需求,但进一步发展了阀控铅酸电 池、铅布电池等,使铅酸电池的比能量有所提高。
纯电动汽车电机及控制器
2.0.3 基本组成
1. 车载电源 • 发展
纯电动பைடு நூலகம்车电机及控制器
2.0.3 基本组成
4. 控制系统 • EV的控制系统主要是对动力电池组的管理和对电
动机的控制。 • 将加速踏板、制动踏板机械位移的行程量转换为
电信号,输入中央控制器,通过动力控制模块控 制驱动电动机运转。 • 计算动力电池组剩余电量和剩余续驶里程。 • 对整车低压系统的电子、电器装置进行控制。 • 采用各种各样的传感器、报警装置和自诊断装置 等,对整个动力电池组—功率转换器—驱动电动 机系统进行监控并及时反馈信息和报警。
纯电动汽车电机及控制器
2.0.3 基本组成
小结 • 操纵:在操纵装置和操纵方法上继承或沿用内燃机汽
车主要的操纵装置和操纵方法,适应驾驶员的操作习 惯,使操作简单化和规范化。 • 控制:在EV控制系统中,采用全自动或半自动的机 电一体化控制系统,达到安全、可靠、节能、环保和 灵活的目的。 • 电池:提高电池的比能量和比功率,实现电池的高能 化。 • 电机:采用高效率的电能转换系统和高效率的驱动电 动机,提高电动机和驱动系统的效率。 • 车身和底盘:采用流线型车身,降低迎风面积和空气 阻力系数。采用轻金属材料、高强度复合材料和新型 E减V轻专整用备车质身量和。底纯采盘电用动结汽低构车滚,电动机实及阻现控力制车器轮身胎和,底降盘低的行轻驶量阻化力,。
1. 车载电源 • 高压电源 ◇动力电池组提供约155~380V高压直流电。 ◇动力电池组是供电机工作的唯一动力电源。 ◇空调系统的空压机,动力转向系统的油泵和制动
系统的真空泵等,也需要动力电池组提供动力电 能。 • 低压电源 动力电池组通过DC/DC转换器,供应12V或24V 低压电,并储存到低压电池组中,作为仪表、照 明和信号装置等工作的电源。
2.0.3 基本组成
1. 车载电源 • 发展
(3)第三代电池:飞轮电池、超级电容器 飞轮电池是电能—机械能—电能转换的电池。 超级电容器是电能—电位能—电能转换的电池。 这两种储能器在理论上都具有很大的转换能力,
而且充电和放电方便迅速,但尚处于研制阶段。
纯电动汽车电机及控制器
2.0.3 基本组成
相关文档
最新文档