高盐废水零排放解决方案

合集下载

高盐废水零排放设备技术方案

高盐废水零排放设备技术方案

高盐废水零排放设备
技术解决方案
2019年7月26日
在工业中采用高盐废水零排放技术,可以保护生态环境,实现减排目标,对于水处理意义重大。

此技术利用蒸发、结晶将废水固化,达到零排放目的。

莱特莱德设备正式用了这个原理。

什么是高盐废水
高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、S4O2-、Na+、Ca2+等盐类物质。

高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。

含盐废水的产生途径广泛,水量也逐年增加。

高盐废水零排放的特点
1、高盐废水零排放可以将废水资源化,减少工业用水总量,将污水回用,节约水资源,缓解水资源严重短缺的困境,且在实现高盐废水零排放的过程中,可以获得高品质的蒸馏水,用以循环利用,降低工业用水总量,实现清洁生产和循环经济目的。

2、高盐废水零排放可以解决干旱地区无排放受纳水体问题,一些地区,如我国西北部,没有河流、湖泊可供排放,若挖掘排污池会浪费土地、威胁地下水安全,零排放技术无外排废水,可解决这些地区面临的难题。

3、高盐废水零排放可将高毒、难降解物质固化,解决污水处理难题。

化肥、化工、医药废水以及浓缩后浓盐水这些较难处理的工业废水都可采用零排放技术,将有害、难降解物质固化,将问题化繁为简,有很好的应用前景。

煤化工高盐水“零排放”技术应用探讨

煤化工高盐水“零排放”技术应用探讨

煤化工高盐水“零排放”技术应用探讨煤化工是一种利用煤炭作为原料进行化学加工的技术,其产品广泛应用于能源、化工、冶金等领域。

然而,煤化工过程中产生的高盐废水一直是一个难题,其处理和排放对环境保护具有重要意义。

为了解决高盐废水的排放问题,煤化工高盐水“零排放”技术应运而生。

煤化工高盐水“零排放”技术的核心是采用膜分离技术对高盐废水进行处理。

膜分离技术主要包括反渗透、纳滤和超滤等方法,通过膜的选择性透过性,将废水中的盐类、重金属和有机物等有毒有害物质分离出来,达到净化和回用的目的。

同时,膜分离技术具有能耗低、操作简便、自动化程度高等优点。

在煤化工高盐水“零排放”技术的应用过程中,还需要解决一系列问题。

首先,由于高盐废水中盐类的浓度较高,容易造成膜污染和结垢,降低膜的分离效果。

因此,需要采取适当的预处理措施,如适量稀释、添加抑垢剂、调节pH值等,以降低盐类的浓度和防止膜的污染。

其次,对膜的选择和设计也是关键。

不同的膜对盐类、有机物和重金属的分离效果不同,需要选择适当的膜材料和膜孔径来实现高效分离。

此外,膜模块的排列和操作条件的控制也对技术的应用效果有重要影响。

煤化工高盐水“零排放”技术的应用不仅可以解决高盐废水的处理和排放问题,还可以实现废水资源化利用,减少对淡水资源的需求,提高水资源的利用效率。

此外,该技术还可以避免由于盐类排放引发的土壤盐碱化、地下水和水环境污染等问题,对煤化工行业的可持续发展具有重要意义。

综上所述,煤化工高盐水“零排放”技术的应用是解决高盐废水处理和排放问题的关键措施。

该技术通过膜分离方法对高盐废水进行处理,实现了高效的盐类、有机物和重金属的分离,达到了废水净化和回用的目的。

通过技术的应用,可以有效解决高盐废水对环境的危害,实现废水资源化利用,促进煤化工行业的可持续发展。

未来,我们应该进一步完善和推广煤化工高盐水“零排放”技术,为煤化工行业的发展提供更好的支持。

高盐废水零排放解决方案

高盐废水零排放解决方案

高盐废水零排放解决方案
高盐废水顾名思义,是指高含盐量有机废水。

这种废水的产生渠道非常广,如印染、造纸、化工和农药等,生产过程中都会产生高含盐有机废水。

那么把高盐废水处理零排放呢?依斯倍作为一家专业废水处理零排放企业,做过多个废水处理零排放项目,包括像胜斐迩、环球等等,那么下面就给大家简单介绍下高盐废水零排放解决方案
面对高盐废水,从物理化学和生物两方面入手,主流处理手段有:
①浓缩蒸发处理法
优势:处理量大,对处理水质要求不高。

劣势:运行成本高。

②膜渗透处理法
优势:原理简单,只适用于小量高盐废水处理。

劣势:设备娇贵,易堵易污染,无法大量处理废水。

③电解除盐法
优势:原理简单,只适用于小量高盐废水处理。

劣势:只能处理废水中的含盐类,所含的其他物质会造成你根本电解不下去。

④耐盐菌生化处理法
优势:成本较低,效果一般。

劣势:对处理水质要求苛刻,受废水中有机物影响较大。

高盐废水零排放解决方案
就目前技术而言,只有浓缩蒸发处理法能比较理想的处理高盐废水。

但是由于浓缩蒸发需要大量热量,传统蒸发器使用烧炉存在有烧炉内温度不发精确控制、热能传递流失等众多缺陷,虽然可以做到高盐废水处理或零排放,但是运行成本非常昂贵。

这时候,“MVR蒸发器”应时而被研发出来,不同于传统蒸发器,MVR蒸发器内部为排列的细管,管内部为废水,外部
为蒸汽,在产品由上而下的流动过程中由于管内面积增大而是产品呈膜状流动,以增加受热面积,通过真空泵在效体内形成负压,降低产品中水的沸点,从而达到浓缩,高盐废水蒸发温度为60℃左右。

降低传统蒸发器需大量加热过程和热能流失的情况。

实现高盐废水近零排放,技术选择是关键

实现高盐废水近零排放,技术选择是关键

实现高盐废水近零排放,技术选择是关键
目前,废水“零排放”处理工艺的基本思路是使盐和水分离,得到回用水和结晶盐。

对于大多数行业来说,由于废水盐分较复杂,仅靠简单的蒸发来实现“零固废”外排是非常困难的。

由于分质分盐工艺不成熟,目前大部分企业处理高盐污水后均是得到混盐,以固废或危废暂存,不仅造成资源浪费,而且加重环保安全隐患。

因此,如何将高盐废水中的盐以单质盐的形式回收并进行资源化利用,成为工业高盐废水处理研究中的重点与难点,如何进行分盐处理成为能否零排放的关键。

相关人员表示,从资源利用的角度来看,高盐废水处理要开发低成本工艺技术,实现高价元素回收、低价元素的转化的高值化利用,从而实现高盐废水的近零排放,实现资源利用与环境治理的双赢。

目前,实现高盐废水的近零排放,技术选择是非常关键的。

高性价比的技术解决方案将成为核心竞争力。

高浓盐水具有含盐量高、盐成分复杂、有机物含量高、有机物难降解等特点,根据这些特点Neterfo极限分离系统,可以根据不同的进水情况进行处理。

废水经生化处理出水后,经Wastout微波高效沉淀系统进行处理,可将TOC、色度、金属、硬度降低到很低的水平。

再经RUF装置处理后进入极限分离系统,其产水即可回用至工艺供水,其浓水再进行蒸发处理,获得无水盐,实现高盐废水的近零排放。

废水近零排放技术以膜技术为主体,实现“零液排放”和分盐资源化,产水实现达标回用,降低企业运行成本。

编辑:杜鹃花技术:木子
转载时请注明文章来源“莱特莱德”,否则视为侵权,感谢配合。

高盐废水零排放工艺设计及应用全套

高盐废水零排放工艺设计及应用全套

高盐废水零排放工艺设计及应用全套高盐废水水质情况高盐废水指的是和常规居民用水以及地表水相比盐度出现明显过高的废水,高盐废水大多是一些工业企业中排放的废水。

在对某工业企业排放的高盐废水进行检测后发现,废水液体中的盐分比率达到了1%以上,除了盐分之外,废水中还包括了比较多的有机重金属物质、油类,以及一些具有很强放射性和危害性的物质。

另外,高盐废水中的TDS较高,成分包括了NaCI,Na2SO4 ,同时COD和色度都比较高,并且含有一些杂质离子,比如,Mg2 +、Ca2 +和NH4 +等。

高盐废水零排放工艺的设计混盐工艺技术在高盐废水零排放工艺设计中的混盐工艺也是一种常用的处理技术。

这种工艺技术利用超滤、蒸发结晶和混盐干燥的技术方式,将高盐废水进行了处理,并且得到了混盐和冷凝水。

第一,要借助于超滤膜来对高盐废水进行简单的处理。

此项工艺借助于超滤膜两侧的压力差来作为动力,利用机械筛分的原理使溶液和物质进行分离。

因为超滤膜孔径非常小,可以将废水中的悬浮物和一些大分子物质清除出去。

进入到超滤组件中的废水在超滤膜两侧压力的影响下,液体从超滤膜流出后形成超滤液体,另外一部分液体则作为浓缩液体流出去。

在进行超滤处理的过程中,主要呈现出了一个相对稳定和平衡的状态,这也就保障了超滤环节开展的效率和质量。

另外,在用超滤膜过滤高盐废水的过程中,一些分子比较大的物质会被清除,比如,总硅、悬浮物质等等;剩余的小分子物质和盐随废水被引入到下一个环节的蒸发结晶环节中,从而实现95%的回收。

第二,在蒸发结晶环境中,主要的工作任务是开展混盐蒸发结晶处理,因为高盐废水中有着含量比较高的COD ,超滤膜并不能将所有的有机物质清除干净,蒸发结晶时易形成气泡,需添加消泡剂确保蒸发工艺继续实施,受到有机物质的影响提高溶液的沸点,如果抑制保持在沸腾的情况下,蒸发率会大打折扣甚至停止蒸发。

所以,有机物质会对混盐蒸发结晶处理产生一些不良影响。

在蒸发结晶处理后,硫酸钠和氯化钠等物质将会被实施干燥处理,最后形成固态的混盐。

高盐废水零排放处理设备及工艺!废水能够全部回用就是零排放

高盐废水零排放处理设备及工艺!废水能够全部回用就是零排放

高盐废水零排放处理设备及工艺!废水能够全部回用就是零排放五硫化二磷法工艺五硫化二磷法是以五硫化二磷与无水酒精为原料,经过硫化阶段、氯化阶段、水解阶段及精馏阶段最终生成高纯度产品(图1 五硫化二磷法工艺流程图)。

(1)硫化阶段:将五硫化二磷与无水乙醇在催化剂的作用下,生成乙基硫化物及硫化氢,再通过氢氧化钠将硫化氢制备为硫化钠。

(2)氯化阶段:将硫化阶段生成的乙基硫化物与氯气反应,制取粗乙基氯化物产品。

(3)水解工段:通过加入硫化阶段生成的硫化钠去除氯化阶段产生的二氯二硫杂质的过程。

(4)蒸馏工段:将上述工段的产品进行蒸馏提纯,获得高纯度的乙基硫化物产品。

图1-五硫化二磷法工艺流程图3.三废处理从图1 五硫化二磷法工艺流程图可以看出,三废主要包括:氯化氢气体、二氧化硫气体、硫磺、氯化钠溶液,除此之外,还有乙基氯化物精馏后残余在废水中含硫、磷的有机物。

三废中,氯化氢气体使用二级吸收罐进行吸收,生成工业副产物盐酸,二氧化硫废气及氯化氢未被吸收的废气使用碱液吸收中和,生成无机盐溶解于废水中,硫磺单质通过过滤机进行过滤分离,剩余废水内包含氯化钠、亚硫酸钠以及含硫、磷的有机物,经过后续的处理达到零排放的目标(图2 三废处理流程图)。

图2 三废处理流程图二、废水处理再利用系统工艺由于废水组分复杂,处理难度较高,此处理工艺选用“预处理+蒸发结晶+生化处理”的流程形式进行零排放处理(图3 高盐高有机物废水零排放处理工艺流程图)。

1.酸化吹脱乙基氯化物生产线在经蒸馏提纯获得产品后,所产生废水内残留少量未被提取的乙基氯化物,此部分残留物需最先分解,以免对后续处理工艺造成负面影响。

为处理此部分残余乙基氯化物,可利用其在酸性条件下会发生水解反应的性质,其反应如下:通过空气吹脱水解反应生成的硫化氢气体并使用碱液吸收,促进残余的乙基氯化物正向水解反应的进行,将其分解为乙醇、正磷酸及硫化氢。

图3 高盐高有机物废水零排放处理工艺流程图2.催化氧化对经过酸化吹脱的高盐废水使用较为先进的芬顿氧化法进行催化氧化,芬顿氧化作为一种均相氧化技术,其氧化作用是通过二氧化氢作为氧化剂在二价铁离子的催化作用下产生的氢氧根来实现的。

高盐废水零排放关键路径分析

高盐废水零排放关键路径分析

高盐废水零排放关键路径分析一、高盐废水的来源及水质特征在我国,高盐废水的来源主要有三个:1、海水淡化过程中产生的浓缩盐水处理海水淡化产生的高盐废水主要有两种方式:一是利用废物回收产生经济效益,实现真正的“零排放”;二是直接将高盐废水排入污水处理系统,河流,湖泊或海洋。

但由于大多数沿海地区缺乏技术和经济成本,所以生产上一般选择第二种处理方式。

2、工业生产过程中直接排放的高盐废水通常来说,高盐废水中的无机盐主要来源于生产废水和生活污水(有钾离子,钙离子,钠离子,氯离子,硫酸根离子等),而其含有的一些有机物质,主要有甘油和低碳链化合物等。

值得一提的是,大多数工业废水除了含有上述钾钠钙等无机盐离子外,不同领域的工业废水所含的无机盐离子都有很大差异,甚至有些高盐废水还含有一些重金属元素。

3、工业生产废水循环利用而产生的盐水如钢铁企业,煤化工,石油等排水量较大的工业行业,它们为了节约能源和减少排放,在生产过程中需要回收大部分水再利用,在再利用过程中也会有一定浓度的盐水产生。

这部分浓盐水若不经过处理再排放,会造成很大的环境污染。

处理后不同的工业废水将产生高含量的废水,如钙,镁,钾,钠,氯离子,碳酸根离子等。

二、高盐废水处理方法有哪些?就目前来说,高盐废水处理方法已经达到数十种,主要包括热法、膜法、离子交换法、水合物法、溶剂萃取法和冷冻法。

其中热法和膜法淡化技术是目前大规模工业化应用所采用的主要技术。

热法主要可以分为多级闪蒸(MSF)、多效蒸发(MED)和压汽蒸馏(VC)。

上个世纪九十年代的海水淡化技术主要是多级闪蒸,尤其是在中东国家,但MSF后期受到了多效蒸发和膜技术的巨大挑战。

以RO 技术为代表的膜法脱盐淡化技术,由于不需要大量热能,对大、中、小规模的盐水淡化都适用。

对于高盐废水的零排放处理,直接蒸发结晶可以达到零排放目的,但是耗资耗能巨大,同时也浪费资源。

采用膜技术可将高盐废水进一步浓缩成超高盐废水,淡水部分可以直接回用,被浓缩超高盐的废水再经过蒸发结晶,达到零排放,这样极大的减少了能源消耗又合理的利用了一部分水资源。

工业水处理|石化高盐废水处理及零排放回用

工业水处理|石化高盐废水处理及零排放回用

工业水处理|石化高盐废水处理及零排放回用石油化工行业属于高耗能行业,每年产生大量的高盐废水,若将其直接排放到环境中,会对生态环境造成严重破坏。

随着排放标准的提升,企业开始对高盐废水进行处理,并尽可能地实现资源化回用,传统高盐废水零排放处理的核心工艺为膜浓缩和蒸发结晶的组合工艺,其副产品结晶盐均以混合形式出现,含有多种离子,资源化程度不高,最终只能按危险废物进行填埋处理,吨盐处理成本高达3 000元以上。

因此,混盐结晶是目前阻碍实现高盐废水零排放的瓶颈问题,探索可行的副产品资源化工艺非常重要,而分盐工艺就是其中一种重要的途径。

1高盐废水水质分析多年来,某石化企业废水处理场深度处理回用站产生并排放反渗透膜浓水约50 m3/h,总溶解固体(TDS)为17 640~24 600 mg/L,属于典型的高盐废水,高盐废水水质见表 1。

表 1 高盐废水水质由表 1可知,高盐废水具有高电导率、高TDS、高Cl-、高Na+、高SO42-的特点,属于典型的NaCl-Na2SO4型高含盐废水,废水中含有较高浓度的Ca2+和(重)碳酸盐碱度,含有的离子种类较多,COD 较高。

2废水处理流程设计思路根据企业发展的需要,该企业确定将该高盐废水中的盐水分离,使水回用于循环冷却水等系统,盐经分盐处理分为NaCl、Na2SO4等,从而实现高盐废水的零排放和资源化回用。

目前,分盐结晶工艺主要有直接热法分盐结晶工艺和膜法+结晶分盐结晶工艺:直接热法分盐结晶工艺是利用水中不同无机盐的溶解度差异,控制适合的运行温度和浓缩度实现盐水分离,该工艺相对成熟,但结晶盐的品质及回收率较低,不利于盐的资源化利用;膜法+结晶分盐结晶工艺则是利用Cl-和SO42-离子半径或电荷等的差异,通过膜实现不同盐的分离和富集,再经结晶得到固体。

膜分离通常采用电渗析分盐和纳滤分盐两种,其中纳滤分盐对原水组分波动的适应性更强。

主要采用多效蒸发(MED)或机械蒸汽再压缩(MVR)分离出NaCl结晶,其中MVR比MED的能量利用率更高,蒸发温度控制更灵活,蒸发出的有害气体更少,更适合用于废水处理;Na2SO4结晶段主要采用热法或冷冻法,其中冷冻法结晶盐纯度更高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高盐废水零排放解决方案
高盐废水顾名思义,是指高含盐量有机废水。

这种废水的产生渠道非常广,如印染、造纸、化工和农药等,生产过程中都会产生高含盐有机废水。

那么把高盐废水处理零排放呢?依斯倍作为一家专业废水处理零排放企业,做过多个废水处理零排放项目,包括像胜斐迩、环球等等,那么下面就给大家简单介绍下高盐废水零排放解决方案
面对高盐废水,从物理化学和生物两方面入手,主流处理手段有:
①浓缩蒸发处理法
优势:处理量大,对处理水质要求不高。

劣势:运行成本高。

②膜渗透处理法
优势:原理简单,只适用于小量高盐废水处理。

劣势:设备娇贵,易堵易污染,无法大量处理废水。

③电解除盐法
优势:原理简单,只适用于小量高盐废水处理。

劣势:只能处理废水中的含盐类,所含的其他物质会造成你根本电解不下去。

④耐盐菌生化处理法
优势:成本较低,效果一般。

劣势:对处理水质要求苛刻,受废水中有机物影响较大。

高盐废水零排放解决方案
就目前技术而言,只有浓缩蒸发处理法能比较理想的处理高盐废水。

但是由于浓缩蒸发需要大量热量,传统蒸发器使用烧炉存在有烧炉内温度不发精确控制、热能传递流失等众多缺陷,虽然可以做到高盐废水处理或零排放,但是运行成本非常昂贵。

这时候,“MVR蒸发器”应时而被研发出来,不同于传统蒸发器,MVR蒸发器内部为排列的细管,管内部为废水,外部
为蒸汽,在产品由上而下的流动过程中由于管内面积增大而是产品呈膜状流动,以增加受热面积,通过真空泵在效体内形成负压,降低产品中水的沸点,从而达到浓缩,高盐废水蒸发温度为60℃左右。

降低传统蒸发器需大量加热过程和热能流失的情况。

相关文档
最新文档