基于PLC的电梯控制系统设计报告

合集下载

基于PLC的四层电梯控制系统的设计

基于PLC的四层电梯控制系统的设计

基于PLC的四层电梯控制系统的设计一、本文概述随着现代建筑技术的飞速发展,电梯作为高层建筑的重要交通工具,其性能稳定性和安全性受到了广泛的关注。

可编程逻辑控制器(PLC)作为一种先进的工业控制设备,因其具有编程灵活、可靠性高、易于维护等优点,被广泛应用于各种工业控制领域。

近年来,基于PLC的电梯控制系统已成为电梯技术发展的重要趋势。

本文旨在探讨基于PLC的四层电梯控制系统的设计。

文章首先介绍了电梯控制系统的基本构成和原理,然后详细阐述了PLC控制系统的硬件和软件设计,包括PLC的选型、输入输出模块的设计、控制程序的编写等。

文章还分析了电梯控制系统的安全保护措施,如故障自诊断、紧急制动等,以确保电梯运行的安全性和可靠性。

通过本文的研究,旨在为电梯控制系统的设计和优化提供理论支持和实践指导,推动电梯技术的创新和发展,满足现代高层建筑对电梯性能和安全性的更高要求。

本文也希望为从事电梯控制系统研究和开发的工程师和技术人员提供有益的参考和借鉴。

二、电梯控制系统需求分析电梯控制系统的需求分析是设计过程中的重要环节,它涉及对电梯运行特性、功能需求、安全性、稳定性以及人机交互等方面的全面考量。

在四层电梯控制系统的设计中,我们需要关注以下几个方面:电梯运行特性分析:四层电梯通常服务于低层建筑,其运行特性相对简单。

需求分析中需考虑电梯的升降速度、加速度、减速度等参数,以及在不同楼层间的快速、准确、平稳运行。

功能需求定义:电梯控制系统应具备基本的楼层呼叫、内部指令登记、自动定向、平层停靠等功能。

同时,为了满足用户的不同需求,可能需要加入一些额外的功能,如紧急停止按钮、消防模式、自动关门、超载提示等。

安全性要求:电梯作为载人载物的垂直交通工具,其安全性至关重要。

需求分析中需明确电梯的安全标准,包括防止电梯超速、坠落、夹人夹物等安全措施,以及紧急情况下的救援和自救功能。

稳定性要求:电梯控制系统的稳定性对于保证电梯长期稳定运行具有重要意义。

《2024年基于PLC的变频调速电梯系统设计》范文

《2024年基于PLC的变频调速电梯系统设计》范文

《基于PLC的变频调速电梯系统设计》篇一一、引言随着城市化进程的加快,电梯已经成为现代建筑中不可或缺的一部分。

为满足现代社会的需求,电梯系统需要具有高可靠性、高效率和灵活性。

本文旨在介绍一种基于PLC(可编程逻辑控制器)的变频调速电梯系统设计,该系统可有效提高电梯的运行效率、安全性和用户体验。

二、系统设计概述本电梯系统设计采用PLC作为核心控制器,通过变频调速技术实现电梯的精确控制。

系统主要由以下几个部分组成:PLC控制器、变频器、电机、编码器、传感器以及人机界面等。

三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,可实现电梯的逻辑控制和运动控制。

2. 变频器:采用变频调速技术,根据电梯的运行需求,实时调整电机的运行速度,实现电梯的平稳启动和停止。

3. 电机:选用高效、低噪音的电梯专用电机,与变频器配合使用,实现电梯的精确控制。

4. 编码器:通过安装在电机上的编码器,实时监测电机的运行状态,为PLC控制器提供反馈信号。

5. 传感器:包括位置传感器、速度传感器等,用于实时监测电梯的运行状态,确保电梯的安全运行。

6. 人机界面:采用触摸屏或按钮等方式,实现用户与电梯系统的交互。

四、软件设计软件设计是本系统的关键部分,主要涉及PLC控制程序的编写和调试。

1. 逻辑控制程序:根据电梯的运行需求,编写逻辑控制程序,实现电梯的召唤、应答、启停、开门关门等基本功能。

2. 运动控制程序:采用PID(比例-积分-微分)控制算法,根据电梯的运行状态和目标位置,实时调整电机的运行速度和方向,实现电梯的平稳运行。

3. 人机交互程序:编写人机交互程序,实现用户与电梯系统的友好交互,包括显示楼层信息、运行状态等。

4. 故障诊断与保护程序:编写故障诊断与保护程序,实时监测电梯的运行状态和传感器信号,一旦发现异常情况,立即采取相应措施,确保电梯的安全运行。

五、系统实现与测试在完成硬件和软件设计后,进行系统实现与测试。

《2024年基于PLC的四层电梯控制系统的设计》范文

《2024年基于PLC的四层电梯控制系统的设计》范文

《基于PLC的四层电梯控制系统的设计》篇一一、引言随着现代建筑的高度和复杂性不断增加,电梯作为垂直交通的重要工具,其安全性和效率性显得尤为重要。

本文将详细介绍一种基于PLC(可编程逻辑控制器)的四层电梯控制系统的设计,该系统旨在提高电梯的运行效率、安全性和用户体验。

二、系统概述本系统采用PLC作为核心控制器,通过编程实现对四层电梯的逻辑控制、信号处理和安全保护等功能。

系统包括电梯轿厢、厅门、控制系统、电源系统等部分,能够实现电梯的上下行、开关门、信号响应等基本功能。

三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,能够满足电梯控制系统的需求。

2. 传感器:包括位置传感器、门状态传感器、超载传感器等,用于检测电梯的状态和信号,为控制系统提供输入信息。

3. 执行器:包括电机、电磁铁等,根据控制系统的指令执行开关门、上下行等操作。

4. 电源系统:为整个电梯控制系统提供稳定的电源,确保系统的正常运行。

四、软件设计1. 编程语言:采用梯形图或指令表等编程语言,实现电梯的逻辑控制和信号处理。

2. 控制逻辑:根据电梯的实际需求,设计合理的控制逻辑,包括上下行控制、开关门控制、信号响应等。

3. 安全保护:通过设置各种安全保护措施,如超载保护、防撞保护、紧急制动等,确保电梯的安全运行。

4. 故障诊断:通过故障诊断程序,对电梯的故障进行检测和定位,方便维护和检修。

五、系统功能1. 上下行控制:根据乘客的需求和电梯的实际情况,自动或手动控制电梯的上下行。

2. 开关门控制:通过传感器检测门的状态和乘客的需求,自动控制电梯的开关门。

3. 信号响应:通过接收来自厅外的召唤信号和内部指令信号,实现电梯的响应和调度。

4. 安全保护:通过设置各种安全保护措施,确保电梯在运行过程中的安全性和稳定性。

5. 故障诊断与维护:通过故障诊断程序对电梯进行检测和定位,方便维护和检修。

同时,提供详细的维护记录和报告,以便对电梯的运行状态进行评估和优化。

基于S7-1200PLC电梯集群控制系统的设计

基于S7-1200PLC电梯集群控制系统的设计

基于S7-1200PLC电梯集群控制系统的设计1. 引言1.1 研究背景电梯作为现代城市交通中不可或缺的一部分,其安全性和效率直接关系到人们的生活质量和工作效率。

随着城市建设的不断发展,电梯数量不断增加,传统的电梯控制系统已经无法满足需求。

研究基于S7-1200 PLC的电梯集群控制系统具有重要意义。

传统电梯控制系统存在着诸多问题,比如无法灵活调度电梯、效率低下、维护成本高等。

而基于S7-1200 PLC的电梯集群控制系统具有更高的灵活性和智能性,在实现电梯群体协同作业的能够有效提高电梯的响应速度和运行效率,减少能耗和维护成本。

通过本次研究,我们将设计一套基于S7-1200 PLC的电梯集群控制系统,以实现电梯的智能调度和优化运行。

这不仅有助于提升城市电梯系统的整体效率和服务质量,还将对未来智能交通系统的发展起到积极推动作用。

本研究将从系统设计与实现、系统优势分析和系统应用前景等方面进行深入探讨,为电梯控制领域的研究和应用提供有益参考。

1.2 研究目的研究目的是通过基于S7-1200PLC电梯集群控制系统的设计,探索提高电梯运行效率和安全性的方法,实现电梯系统的智能化管理和运作。

具体包括优化调度算法,提高电梯运行效率,减少乘客等待时间,提高系统的稳定性和可靠性,提升乘客体验。

通过研究电梯集群控制系统的设计与实现,探讨如何更好地利用PLC技术来实现电梯系统的即时监控和远程控制,从而实现集中管理和智能调度。

通过深入分析系统的优势和不足之处,进一步完善系统设计,提高系统的性能和可靠性,为电梯行业的发展提供参考和借鉴。

最终的目的是为电梯行业的发展和改进提供更加先进和高效的解决方案,推动电梯系统向智能化和自动化方向发展,满足日益增长的城市交通需求。

1.3 研究意义电梯是现代建筑中不可或缺的交通工具,电梯集群控制系统的设计和应用对提高楼宇运行效率、降低能耗、提升用户体验具有重要意义。

在现代城市中,高层建筑越来越多,电梯集群控制系统的研究和应用对解决高层建筑中交通拥堵、能耗过高等问题具有重要意义。

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计1. 介绍电梯作为现代城市中不可或缺的交通工具,其安全性和效率对于城市的正常运转至关重要。

为了实现电梯的安全和高效运行,基于PLC(可编程逻辑控制器)的电梯控制系统应运而生。

本文将深入研究基于PLC 的电梯控制系统设计,并探讨其在实际应用中的优势和挑战。

2. 电梯工作原理在深入研究基于PLC的电梯控制系统设计之前,我们需要了解电梯的工作原理。

一般而言,电梯由机房、轿厢、轿厅、对讲系统、门机等组成。

当乘客按下轿厅或轿内按钮时,信号将传递给PLC进行处理,并通过门机控制开关门。

3. 基于PLC的电梯控制系统设计3.1 PLC在电梯控制中的优势基于PLC实现电梯控制具有许多优势。

首先,PLC具有高度可编程性和灵活性,可以根据不同需求进行程序开发和修改。

其次,PLC可以实现多任务处理,并能够处理多个输入和输出信号,提高电梯的运行效率和安全性。

此外,PLC还具有可靠性高、抗干扰能力强等特点,能够保证电梯的正常运行。

3.2 基于PLC的电梯控制系统设计要点在设计基于PLC的电梯控制系统时,需要考虑以下要点。

首先是安全性,包括轿厢超载保护、轿厅门和轿内门安全保护等。

其次是效率,包括调度算法设计、门机控制优化等。

还需要考虑可靠性和可扩展性,以适应未来可能的升级和扩展需求。

4. 基于PLC的电梯调度算法4.1 传统调度算法传统调度算法主要基于电梯内外按钮信号来实现调度决策。

常见的算法有先来先服务(FCFS)、最短寻找时间(SSTF)等。

这些算法简单易实现,但在高峰时段可能导致某些楼层长时间等待。

4.2 基于PLC的改进调度算法基于PLC的改进调度算法可以更好地优化电梯运行效率。

例如,在高峰时段可以实现优先服务特定楼层的功能,以减少等待时间。

此外,基于PLC的电梯调度算法还可以根据电梯负载情况进行智能调度,以避免超载和提高电梯的运行效率。

5. 基于PLC的门机控制优化门机控制是电梯运行过程中关键的一环。

基于PLC的电梯控制系统设计及优化分析

基于PLC的电梯控制系统设计及优化分析

基于PLC的电梯控制系统设计及优化分析电梯作为现代城市中不可或缺的交通工具,其安全性和效率对于人们的生活质量起着重要的影响。

其中,电梯控制系统的设计和优化是保证电梯正常运行和提高其效率的关键。

本文将介绍一种基于PLC(可编程逻辑控制器)的电梯控制系统设计及优化分析方案。

PLC作为一种可编程的电子设备,其具有高可靠性、快速响应能力和灵活的配置特点,在电梯控制系统中有着广泛的应用。

首先,本文将阐述电梯控制系统的基本原理和工作流程。

电梯控制系统主要由电梯控制器、电梯传感器和电梯执行元件等组成。

其中,电梯控制器作为主控制单元,负责监测电梯状态、接收用户指令,并控制电梯的运行。

电梯传感器用于检测电梯的位置、速度和负载等参数。

电梯执行元件包括电机、制动器和门禁系统等,用于实现电梯的运行。

接下来,将介绍PLC在电梯控制系统中的应用。

PLC作为电梯控制系统的核心控制设备,其主要通过接口模块与电梯控制器、传感器和执行元件进行通信。

PLC具有可编程性强、适应性广的特点,可以根据不同的需求编写程序,实现各种各样的控制策略。

通过PLC的控制,电梯可以根据用户的指令实现楼层之间的运行,并且可以根据传感器的反馈信息实时调整运行状态,提高电梯的安全性和运行效率。

在设计电梯控制系统时,应考虑到电梯的安全性和运行效率。

对于安全性而言,设计应包括以下几方面内容:1)防止电梯超载,当电梯达到额定载荷时,应及时报警并停止运行;2)防止电梯超速,当电梯的运行速度超过设定范围时,应及时采取制动措施;3)防止电梯故障,通过PLC的检测和监控功能,可以实时监测电梯的运行状态,发现故障并报警。

对于运行效率的优化,可以从以下几个方面考虑:1)电梯调度算法的选择,通过合理的调度算法,可以实现多电梯间的协调和优化;2)楼层选择算法的优化,通过分析用户的需求和习惯,优化楼层选择算法,减少用户等待时间;3)电梯运行速度的优化,根据实际情况动态调整电梯的运行速度,提高运行效率。

《2024年基于PLC的电梯控制系统设计及实现》范文

《2024年基于PLC的电梯控制系统设计及实现》范文

《基于PLC的电梯控制系统设计及实现》篇一一、引言随着城市化进程的加速,电梯作为建筑物垂直交通的重要工具,其安全、稳定、高效的运行显得尤为重要。

传统的电梯控制系统已无法满足现代建筑的需求,因此,基于可编程逻辑控制器(PLC)的电梯控制系统应运而生。

本文将详细介绍基于PLC的电梯控制系统的设计及实现过程。

二、系统设计1. 硬件设计硬件设计是电梯控制系统的基础,主要包括PLC、输入设备、输出设备以及传感器等。

PLC作为核心控制单元,负责接收输入信号、处理数据并输出控制指令。

输入设备包括楼层呼叫按钮、开关门按钮等,输出设备主要包括电机、门机等。

传感器则用于检测电梯的运行状态,如门的状态、载重等。

在设计过程中,需要考虑硬件的布局、接线方式以及抗干扰能力等因素,确保系统的稳定性和可靠性。

2. 软件设计软件设计是电梯控制系统的核心,主要包括PLC程序的编写和调试。

程序设计需要遵循一定的逻辑和规范,确保电梯的各项功能正常运行。

程序设计主要包括以下几个部分:(1)主程序:负责电梯的启动、停止以及各层楼的停靠等基本功能。

(2)呼叫处理程序:根据楼层呼叫信号,判断电梯的运行方向和停靠楼层。

(3)门机控制程序:控制电梯门的开关,确保乘客安全进出。

(4)故障诊断程序:检测电梯的各项参数,发现异常及时报警并采取相应措施。

在程序设计过程中,需要充分考虑系统的实时性、可靠性和可扩展性,确保电梯控制系统的稳定运行。

三、实现过程1. 硬件安装与调试硬件安装过程中,需要按照设计图纸进行布局和接线,确保各部件之间的连接正确可靠。

安装完成后,进行硬件调试,检查各部件的工作状态是否正常。

2. 软件编程与调试软件编程需要使用专业的编程软件,按照程序设计的要求进行编写和调试。

在编程过程中,需要严格遵循编程规范和逻辑,确保程序的正确性和稳定性。

调试过程中,需要对程序进行反复测试和修改,直至达到预期的效果。

3. 系统联调与测试系统联调是将硬件和软件进行联合调试的过程,检查系统各项功能是否正常。

《2024年基于PLC的变频调速电梯系统设计》范文

《2024年基于PLC的变频调速电梯系统设计》范文

《基于PLC的变频调速电梯系统设计》篇一一、引言随着科技的不断发展,电梯的控制系统日益向着数字化、智能化的方向发展。

基于PLC(可编程逻辑控制器)的变频调速电梯系统,是当前电梯行业广泛采用的一种高效、可靠的电梯控制系统。

本文将详细阐述基于PLC的变频调速电梯系统的设计原理、系统构成、工作原理及其应用。

二、系统设计原理基于PLC的变频调速电梯系统设计主要遵循可靠性、可维护性、经济性及适用性等原则。

该系统通过PLC控制变频器,实现对电梯的精确调速,提高了电梯的舒适度和安全性。

1. 精确调速:通过变频器对电机进行精确控制,使电梯运行更加平稳,减少震动和噪音。

2. 节能降耗:根据电梯的实际运行需求,自动调整电机运行速度,实现节能降耗。

3. 保护功能:具备过载、过流、过压等保护功能,确保电梯运行安全。

三、系统构成基于PLC的变频调速电梯系统主要由以下部分构成:1. PLC控制器:作为系统的核心,负责接收电梯的指令信号,控制变频器的输出,实现对电机的精确控制。

2. 变频器:将电源的交流电转换为直流电,再通过逆变器将直流电转换为电机所需的交流电,实现对电机的调速。

3. 电机:作为电梯的驱动装置,负责将电能转换为机械能,驱动电梯的运行。

4. 传感器:包括速度传感器、位置传感器等,负责实时监测电梯的运行状态,为PLC控制器提供反馈信号。

5. 人机界面:用于显示电梯的运行状态、故障信息等,方便用户操作和维修。

四、工作原理基于PLC的变频调速电梯系统的工作原理如下:1. 用户通过按钮或呼叫系统发出指令,请求电梯运行。

2. PLC控制器接收指令信号,根据电梯的实际运行状态和需求,控制变频器的输出,调节电机的运行速度。

3. 电机根据变频器的指令,驱动电梯运行。

4. 传感器实时监测电梯的运行状态和位置,将信息反馈给PLC控制器。

5. PLC控制器根据反馈信号,调整变频器的输出,确保电梯运行的稳定性和舒适性。

6. 如遇故障或异常情况,系统将自动启动保护功能,确保电梯的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《基于PLC的电梯电梯控制》课程设计学生:锦文学号:**********专业班级:自动化101班****:**2014年 01 月 14日目录一、概述1、PLC控制技术简介 (2)2、PLC的分类和特点 (2)3、PLC的结构和工作原理 (3)4、PLC程序的表达方式 (3)5、PLC的工作方式 (5)二、PLC的系统硬件设计1、可编程控制器机型的选择 (5)2、输入/输出模块的选择 (6)3、输入/输出端地址分配 (6)4、输入/输出端接线图 (8)三、PLC的系统软件设计1、PLC控制功能流程图 (9)2、PLC梯形图程序设计 (10)四、总结 (12)五、心得体会 (13)六、参考文献 (13)一、概述(一)PLC控制技术简介可编程逻辑控制器(Programmable Logic Controller,PLC),它采用一类可编程的存储器,用于其部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

可编程序控制器,是微机技术与继电器常规控制技术相结合的产物,是在顺序控制器和微机控制器的基础上发展起来的新型控制器,是一种以微处理器为核心用作数字控制的专用计算机。

它不仅充分利用微处理器的优点来满足各种工业领域的实时控制要求,同时也照顾到现场电气操作维护人员的技能和习惯,摒弃了微机常用的计算机编程语言的表达方式,独具风格地形成一套以继电器梯形图为基础的形象编程语言和模块化的软件结构,使用户程序的编制清晰直观、方便易学,调试和查错都很容易。

用户买到所需的PLC后,只需按说明书或提示,做少量的安装接线和用户程序的编制工作,就可灵活而方便地将PLC应用于生产实践。

(二)PLC的分类与特点PLC一般可按I/O点数和结构形式分类。

按I/O点数可分为小型、中型和大型几类。

一般小于512点为小型PLC。

512~2048点为中型,2048点以上为大型PLC。

按结构形式可分为整体式和模块式两类。

整体式PLC又称为单元式或箱体式。

整体式PLC是将电源、CPU、I/O 部件都集中在一个机箱,其结构紧凑、体积小、价格低。

模块式PLC是将PLC各部分分成若干个单独的模块,如CPU模块、I/O模块、电源模块和各种功能模块。

有时可根据需要将整体式和模块式结合起来,称为叠装式PLC。

它除基本单元和扩展单元外,还有扩展模块和特殊功能模块,配置比较合理。

PLC的特点:1,可靠性高2,编程简单3,通用性强4,体积小、结构紧凑,安装、维修方便(三)PLC的结构和工作原理PLC主要有中央处理单元(CPU)、存储器(RAM、ROM)、输入/输出部件(I/O)、电源和编程器几大部分组成。

PLC是以微机处理器为核心的数值式电子、电气自动控制装置,也可以说是一种专用微型计算机。

各种PLC的具体结构虽然多种多样,但组成的一般原理基本相同,即都是以微处理器为核心,并辅以外围电路和I/O单元等硬件所构成的。

正像通用的微机一样,PLC的各种功能的实现,不仅基于其硬件的作用,而且要靠其软件的支持。

实际上,PLC就是一种工业控制计算机,其系统组成、工作原理、操作使用原理都与计算机相同;它的编程语言,在其发展初期是采用工程技术人员所习惯和易于接受的那种继电器逻辑形式,随着时间的推移和技术的不断进展,又发展为类似于计算机高级编程语言的形式。

PLC作为继电器控制系统替代物出现,但它又与继电器控制逻辑的工作原理有很大区别。

(四)PLC程序的表达方式与计算机的工作原理一样,PLC的操作是按其程序要求进行的,而程序是用程序语言表达的。

表达方式有多种多样,不同的PLC生产厂家,不同的机种,采用的表达方式也不相同。

但基本上可归纳为字符表达式(即用文字符号来表达程序,如语句表程序表达方式)和图形符号表达方式(即用图形符号来表达程序,如梯形图程序表达方式)这两大类。

也有将这两种方式结合起来表示PLC的程序。

(1)梯形图PLC的梯形图编程语言与传统的”继电、接触”控制原理图十分相似,它形象、直观、实用,为广大电气技术人员所熟知。

这种变成语言继承了传统的继电器控制逻辑中使用的框架结构、逻辑运算方式和输入输出形式,使得程序直观易读。

当今世界各国的PLC制造家所生产的PLC大都采用梯形图语言编程。

(2)语句表用语句表所描述的编程方式是一种与计算机汇编语言相类似的助记符编程方式。

由于不同的型号的PLC的表识符和参数表示方法不一,所以无钱篇一律的格式。

(3)逻辑符号图采用逻辑符号图表示控制逻辑时,首先要定义某些逻辑符号的功能和变量函数,它类似于“与”、“或”、“非”逻辑电路结构的编程方式。

一般来说,用这三种逻辑能够表达所有的控制逻辑。

这是国际电工委员会(IEC)颁布的PLC编程语言之一。

(4)高级语言编程随着软件技术的发展,近年来推出的PLC,尤其是大型的PLC,已开始用高级语言进行编程。

许多PLC采用类似PASCAL语言的专用语言,系统软件具有这种专用语言编程的自动编译程序。

采用高级语言编程后,用户可以像使用普通微型计算机一样操作PLC。

除了完成逻辑控制功能外,还可以进行PID调节、数据采集和处理以及与计算机通信等。

(五)PLC的工作方式通常把PLC看作是由等效的继电器、计时器、计数器等元件组成的装置。

PLC采用循环扫描的工作方式,其工作过程可分为:部处理、通信服务、输入处理、程序执行、输出处理几个阶段,整个过程扫描一次所需的时间称为扫描周期。

在部处理阶段,PLC检查CPU模块部硬件是否正常,复位监视计时器,以及完成其他一些部处理。

在通信处理阶段,PLC与带微处理器的智能装置通信,响应编程器键入的命令,更新编程器的显示容。

在PLC处于停止运行状态时,只完成部处理和通信服务工作。

在PLC处于运行状态时,出完成上述操作外,还要完成输入处理、程序执行、输出处理工作。

二、PLC的系统硬件设计可编程控制器系统硬件设计应遵循经济性、可靠性、先进性及扩展性等原则,容包括PLC机型的选择、输入/输出模块的选择。

输入/输出端地址分配和输入/输出端接线图等。

(1)可编程控制器机型的选择为了完成设定的控制任务,主要根据电梯控制方式与输入/输出点数和占用存的多少来确定PLC的机型。

本系统为三层楼的电梯,采用集选控制方式。

所需输入/输出点数与存容量估算如下:1、输入/输出点的估算。

输入点有:门厅按钮4个,轿厢按钮5个,楼层限位开关3个,轿厢门限开关2个,安全开关1个,检修开关1个,共计输入点数为16个,输出点有:接触器5个,继电器2个,楼层指示灯4个,轿厢指示灯3个,报警器1个,共计输出点数15个。

若考虑余量,则总计输入/输出点数为18/16。

2、存容量的估算。

用户控制程序所需存容量与存利用率、输入/输出点数、用户的程序编写水平等因素有关。

因此,在用户程序编写前只能根据输入/输出点数、控制系统的复杂程度进行估算。

本系统有开关量I/O总点数有34个,模拟量I/O总点数为0个。

利用估算PLC存总容量的计算公式:所需总存字数=开关量I/O总点数*(10~15)+模拟量I/O总点数*(150~250)再按30%左右预留余量。

估算本系统需要约1K字节的存容量。

根据输入/输出点数与存容量,再留出一定的O节点与存空间以供扩展时使用。

因此选用OMRON公司的CPM1A系列的CPM1A-40CDR-A,它的输入/输出点数为24/16,程序容量为2K字节,完全满足要求。

若楼层更多,则需要增加PLC扩展机。

(2)输入/输出模块的选择根据系统控制的要求,本系统的输入选用直流24V的输入模块。

输出模块选用继电器输出形式。

(3)输入/输出端地址分配输入/输出端地址分配输入的地址分配如下表1所示,输出的地址分配如下表2所示。

表1 输入信号地址分配表表2 输出信号地址分配表(4)输入/输出端接线图图1 PLC输入/输出端接线图图1是电梯的PLC输入&输出端接线图。

KM1~KM2为交流接触器,用来控制电梯升降的曳引电机,KM3~KM4为交流接触器,用来控制曳引电机的快慢速,KM5控制曳引电机的制动,KA1~KA2为交流继电器,用来控制电梯的自动门电机,HL1~HL7为指示灯,显示楼层与运行方向。

为了避免曳引电机和自动门电机正反转时造成电源相间短路,除采用程序上软继电器的触点联锁外,还在KM1和KM2及KA1和KA2的线圈支路上采用了常闭触点的电路联锁。

同时,在每个接触器线圈两端并联一个浪涌吸收器,用来吸收由接触器线圈产生的反电势。

三、PLC的系统软件设计可编程控制器系统软件设计的容包括PLC控制功能流程图和PLC 梯形图程序设计等。

(1)P LC控制功能流程图图2 PLC控制电梯运行流程图开始后,判断是否有门厅召唤或轿厢指令输入,当有时,进行定向选层,同时给出减速点信号,指层电路给出层楼位置信号;当没有时,结束。

接着启动,然后拖动。

当到达预定减速点减速,延时切换挡,抱闸,平层,使轿厢停止,同时开门。

延时一段时间后,看是否过载,有则报警电路通,直到过载信号消除。

否则关门,重新进行判断。

(2)PLC梯形图程序设计根据PLC控制功能流程图及012的输入/输出地址分配表,进行梯形图程序设计工作。

下面以电梯的选层定向控制为例介绍梯形图程序的设计。

电梯的选层定向是根据电梯轿厢乘客的目的层站指令和各层楼召唤信号与电梯所处层楼的位置信号进行比较,凡是在电梯位置信号上方的轿指令和层站召唤信号,令电梯定上行,反之定下行,电梯到达顶层或底层时,自动停止并变换运行方向。

选层定向控制梯形图如图3所示。

回路1控制一楼平层,回路2控制二楼平层,回路3控制三楼平层,回路4、5控制电梯的定向,回路6控制曳引电机的上升,回路7控制曳引电机的下降,回路8控制电梯的选层,回路9控制一楼外呼,回路10控制二楼向上外呼,回路11控制二楼向下外呼,回路12控制三楼向下外呼。

图3 选层定向控制电梯图选层定向的控制过程:电梯在楼层等待时,若第二层有向上呼梯信号即二楼门厅按钮SB5按下,输入0009闭合,1102吸合,二层向上的楼层指示灯点亮,使部继电器1802吸合,输出1001吸合KMl动作,曳引电机得电上升,到达第二层时,楼层限位开关SQ2动作,输入0001闭合,使保持继电器HR1吸合,HR1常闭触头断开,使1802常开触头恢复断开,1001断电KMl断电,切断电源,曳引电机停止工作。

若此时电梯正在向下运行,既使经过二楼将不会停车,而是一直到达最底层时,才响应二楼向上的呼梯信号,即具有顺向截梯的功能。

电梯的其它呼梯信号,控制过程与此相似。

四、总结PLC是应用最为广泛的软件语言之一,可用来进行各种层次的逻辑设计,也可以进行仿真、严整、时序分析等。

PLC控制电梯既克服了继电器一接触器控制电梯的工作可靠性差、故障率高、维修工作量大的缺点;又克服了单片机控制电梯的抗干扰能力差的缺点,所以用PLC 进行电梯的电气控制受到越来越多厂家的青睐,发展前景广阔。

相关文档
最新文档