中考数学压轴题解题技巧精选文档

中考数学压轴题解题技

巧精选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

中考数学压轴题解题技巧

解中考数学压轴题秘诀(一)

数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。

(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第22题,满分12分,基本分2-3小题来呈现。

(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第23题做为压轴题出现,满分14分,一般分三小题呈现。

在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。

解中考数学压轴题秘诀(二)

具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。

1、以坐标系为桥梁,运用数形结合思想:

纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2、以直线或抛物线知识为载体,运用函数与方程思想:

直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

3、利用条件或结论的多变性,运用分类讨论的思想:

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

4、综合多个知识点,运用等价转换思想:

任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更

要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。

数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。下面谈谈中考数学压轴题的解题技巧(先以2009年河南中考数学压轴题为例)。

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q

从点C出发,沿

线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过

点P作PE⊥AB交AC于点E.

①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?

②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

解:(1)点A的坐标为(4,8) (1)

将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx

8=16a+4b

0=64a+8b

解 得a=-12

,b=4

∴抛物线的解析式为:y=-12

x 2

+4x (3)

(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=

PE AP =BC AB ,即PE AP =4

8

∴PE=1

2AP=12

t .PB=8-t .

∴点E的坐标为(4+12

t ,8-t ).

∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18

t 2+8. …………………5分

∴EG=-18t 2+8-(8-t) =-18

t 2+t.

∵-18

<0,∴当t=4时,线段EG 最长为2. (7)

②共有三个时刻. (8)

t 1=

16

3, t 2=4013,t 3. …………………11分 压轴题的做题技巧如下:

1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

2、解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。

压轴题解题技巧练习

一、对称翻折平移旋转

1.如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .

(1)分别写出抛物线1l 与2l 的解析式;

(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由.

(3)在抛物线1l 上是否存在点M ,使得ABM

AOED S S ??=四边形,如果存在,求出

M 点的坐标,如果不存在,请说明理由.

2.如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.

(1)求P 点坐标及a 的值;(4分)

A

C

D

E B

O

2l 1l

y x

y C

y

(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分)

(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)

二、 动态:动点、动线

3.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点

C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根.

(1)求这条抛物线的解析式;

(2)点P 是线段AB 上的动点,过点P PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;

(3)探究:若点Q 是抛物线对称轴上的点,

是否存在这样的点Q ,使△QBC 成为等腰三

角形?若存在,请直接写出所有符合条件的

点Q 的坐标;若不存在,请说明理由.

4.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:

(1)当t 为何值时,PQ ∥BC ?

(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;

(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;

(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

5.如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的

P

A

Q

C

B

C

B

B

A

Q

速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为x 秒时,△APQ 与△ABC 重叠部分....

的面积为y 平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题:

(1)点P 、Q 从出发到相遇所用时间是__________秒;

(2)点P 、Q 从开始运动到停止的过程中,当△APQ 是等边三角形时x 的值是__________秒;

(3)求y 与x 之间的函数关系式.

6. 如图,已知A 、B 是线段MN 上的两点,

A 为中心顺时

针旋转点M ,以B 为中心逆时针旋转点C ,构成△

ABC ,设x AB =.

(1)求x 的取值范围;

(2)若△ABC 为直角三角形,求x 的值;

(3)探究:△ABC 的最大面积?

三、 圆

7.如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l.

(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式;

A

B N

M

(第24

C

x

x y y

A O E

D

A C

C

D

G 图1

图2

(2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长;

(3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .

8.如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为

D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为

(3,0),OB =OC ,tan ∠ACO = 1

3

(1)求这个二次函数的解析式;

(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相

切,求该圆的半径长度;

(3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的

一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

四、比例比值取值范围

11.图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).

(1)求出图象与x 轴的交点A,B 的坐标;

(2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4

5,若存在,求出P 点的坐标;若不存在,请说明理由;

(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.

12.如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA =

cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向

图9

图1

cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.

(1)用t 的式子表示△OPQ 的面积S ;

(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;

(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214

y x bx c =++经过B 、P 两点,过

线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN

五、探究型

14.如图,抛物线

()2

230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.

(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标;

(2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;

第26题

(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请

说明

理由.

15.)如图, 已知抛物线c bx x y ++=22

1与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).

(1)求抛物线的解析式;

(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的

面积最大时,求点D 的坐标;

(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐

标,若不存在,说明理由.

16.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.

(1)求抛物线的对称轴; (2)写出A B C ,,三点的坐标并求抛物线的解析式;

(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰

三角形.若存在,求出所有符合条件的点P 坐标;不存

在,请说明理由.

17.如图,已知抛物线y =34

x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标

为(-1,0),过

点C 的直线y =

3

4t

x -3与x 轴交于点Q ,点P 作PH

⊥OB 于点H .若PB =5t ,且0<t <1.

(1)填空:点C 的坐标是_▲_,b =_▲_,c =_▲_;(2)求线段QH 的长(用含t 的式子表示);

(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.

18.(09年重庆市)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交

AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .

(1)求过点E 、D 、C 的抛物线的解析式;

(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另

一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为5

6,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请

说明理由;

(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线

GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q

的坐标;若不存在,请说明理由.

20.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°

【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....

DEF ...绕点..E .旋转..

,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q

【探究一】在旋转过程中,

(1) 如图2,当

CE

1EA

=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当

CE

2EA

=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当

CE

EA

=m 时,EP 与EQ 满足的数量关系式

为_________,其中m 的取值范围是_______(直接写出结论,不必证明)

【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中:

(1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明

理由.

(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.

六、最值类

F

C(E)

A(D)Q P D

E

F

C

B

A Q

P

D

E

F

C

B

A

相关主题
相关文档
最新文档