高考数学解题之换元法

合集下载

高考数学复习之导数题涉及到的换元思想

高考数学复习之导数题涉及到的换元思想

高考数学复习之导数题涉及到的换元思想
换元法就是通过引入一个或几个新的变量来替换原来某些变量的解题方法,是一种变量代换,其本质是用一种变量形式去取代另一种变量形式,从而把一个函数变为简单函数,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的.常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用是极为广泛的.
换元法的目的:
一、化简运算过程;
二、转化函数的形式,化生为熟.
目录:
一、构造函数证明数列不等式----------------------------2页
二、整体换元减少未知数个数----------------------------3页
三、换元解决函数中的多变量问题---------------------10页
一、构造函数证明数列不等式
这样我们就得到了式子的证明,这里的做法是将换元法作为我们整个证明过程中的一个操作步骤,这个步骤的证明思路就是将复杂的数列形式化为了可证的函数式,进而整个过程得到了证明.
二、整体换元减少未知数个数
三、换元解决函数中的多变量问题

总结
上述方法是解决此类问题的常规策略,其思路是通过消元、换元不断减少变量的个数,是指转化为我们熟悉的一元函数,最后利用导数证明不等式.实践证明,消元、换元在此类题型中具有奇妙的效果,它能快速准确的化简问题,为接下来的构造函数铺平道路.当然,问题的最终仍需利用导数来破解.。

例谈数学解题中的换元法

例谈数学解题中的换元法

例谈数学解题中的换元法如果用新的未知量或变量替换原来的未知量或变量,求出新的未知量或变量后,再利用替换关系式求出原来的未知量或变量的方法,叫做辅助元素法,简称换元法。

其中,新的未知量叫做辅助元素,简称辅助元。

某些数学问题通过这种“换元”,往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题途径。

1、若(x-z)2-4(x-y)(y-z)=0,求证:x, y, z成等差数列。

(1979年)分析:作变换a=x-y, b=y-z,问题化为(a+b)2-4ab=0a=b。

问题已变得十分简单明了。

2、设对所有实数x,不等式x2log2>0恒成立,求a的取值范围。

(1987年)分析:作变换m=log2,则原式变为(3+m)x2-2mx+2m>0。

其对一切x∈R恒成立的充要条件完全暴露为:。

由此解出0<a<1。

3、设复数z1和z2满足关系式=0,其中A为不等于0的复数,证明:(1)|z1+A|·|z2+A|=|A|2;(2)。

(1987年)分析:作变换α=z1+A,β=z2+A,则z1=α-A,z2=β-A,代入条件式,并化简得α=|A|2。

(1)|z1+A||z2+A|=|α||β|=|α|||=|α|=|A|2;(2),∴。

4、求同时满足下列条件的所有复数z:(1)z+∈R且1<z+≤6;(2)z的实部与虚部均为整数。

(1992年)分析:设t=z+,则t∈R,且1<t≤6,∴z2-tz+10=0。

由条件知Δ=t2-40<0。

再由求根公式知z=±。

∵是整数,∴t=2,4, 6。

当t=2时,z=1±3i;当t=4时,z的虚部不为整数,舍去;当t=6时,z=3±i。

故所求的复数是z=1±3i或3±i。

换元法不仅是一个重要的数学解题方法,而且也是解高考题的热点方法之一,掌握它的关键在于通过观察、联想发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式)。

高考数学 抽象函数习题精选精讲

高考数学 抽象函数习题精选精讲

含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

高考数学 常用的解题技巧 第02讲 换元法

高考数学 常用的解题技巧 第02讲 换元法

第02讲:换元法【知识要点】在高中数学解题过程中,如果某个变量比较复杂,在解题过程中,这个变量又经常出现,可以考虑换元,使得书写简单,解题简洁.但是要注意,新元的取值范围,这实际上是数学等价转化的思想.【方法讲评】【例1】已知函数2()21(0,1)g x ax ax b a b =-++≠<,在区间[2,3]上有最大值4,最小值1,设()()g x f x x=. (1)求,a b 的值;(2)不等式(2)20x xf k -⋅≥在[1,1]x ∈-上恒成立,求实数k 的范围.∵1b < ∴1,0a b ==(2)由(1)即2()21g x x x =-+ 1()2f x x x =+- 方程(2)20x x f k -⋅≥化为12222x x x k +-≥⋅ 2111()222x xk +-⋅≥ 令12x t =,221k t t ≤-+ ∵[1,1]x ∈- ∴1[,2]2t ∈记 2()21t t t ϕ=-+∴min ()0t ϕ= ∴0k ≤【点评】(1)在本题的解题过程中,“12x”出现频率较高,所以可以考虑换元得到二次不等式,使书写简单,解答简洁.(2)对“12x ”换元时,要注意求出“12x ”的范围.这个范围是新函数的定义域.【反馈检测1】求函数(sin 1)(cos 1)[,]122y x x x ππ=++∈-的值域.【反馈检测2】已知),(y x p 是圆422=+y x 上的点,试求xy y x t 322-+=的值域.高中数学常见解题技巧第02讲:换元法参考答案【反馈检测1答案】33[42+【反馈检测1详细解析】(sin 1)(cos 1)sinxcosx sinx cosx 1y x x =++=+++ 令sin cos x x t +=,则21sin cos (1)2x x t =- 所以2211(1)1(1)22y t t t =-++=+【反馈检测2答案】[2,10]-【反馈检测2详细解析】由题得1)2()2(22=+y x,设cos ,sin ,[0,2)22x y αααπ==∈ 则432cos 2sin 46sin 2t ααα=-⨯⨯=-2[0,4)απ∈又,即sin 2[1,1]α∈- 故]10,2[-∈t ,所以函数的值域为[2,10]-.。

高考数学解题方法-换元法-含答案

高考数学解题方法-换元法-含答案

知识点练习一、填空题1. 求函数的解析式:(1)已知,则.(2)已知,则.2. 设实数,,,满足,则的取值范围是.3. 已知函数,则的解析式为.4. 若函数,则的解析式为.5. 函数满足,则.6. 函数的值域是.7. 已知,则.8. 若,则的解析式为.9. 方程的解是.10. 对于问题:"已知关于的不等式的解集为,解关于的不等式 ",给出如下一种解法:参解:由的解集为,得的解集为,即关于的不等式的解集为.参考上述解法,若关于的不等式的解集为,则关于的不等式的解集为.11. 设,则函数的值域是.12. 为正实数,且,则的最大值为.13. 函数,其中,则其值域为.14. 已知的三边长,,满足,,则的取值范围为.15. 如图,矩形中,、分别为线段、上的点,且满足,若,则的最小值为.16. 正方形的四个顶点分别是、、、,点在正方形内,且点到各边的距离的平方和为,并与直线的距离最短,则点坐标是.17. 在三角形中,,,,点,分别在边,上,且,则的最大值为.18. 已知各项均为正数的等比数列,若,则的最小值为.19. 已知,,满足则的最大值为.20. 已知正数满足:,,则的取值范围是.二、解答题21. 已知,则.已知,则.22. 求下列函数的值域(1) ;(2)23. 求函数的最小值.24. 函数,求在上的最小值.25. 若有最大值和最小值,求实数,的值.26. 学校食堂改建一个开水房,计划用电炉或煤炭烧水,但用煤时也要用电鼓风及时排气,用煤烧开水每吨开水费为元,用电炉烧开水每吨开水费为元,,.其中为毎吨煤的价格,为每百度电的价格,如果烧煤时的费用不超过用电炉时的费用,则仍用原备的锅炉使用煤炭烧水,否则就用电炉烧水.(1)如果两种方法烧水费用相同,试将每吨煤的价格表示为每百度电价的函数;(2)如果每百度电价不低于元,则用煤烧水时每吨煤的最高价是多少?27. 已知点是圆上任意一点.(1)求点到直线的距离的最大值和最小值;(2)求的最大值和最小值;(3)求的最大值和最小值.28. 已知函数有且仅有一个零点,求的取值范围,并求出该零点.29. 已知,求.30. 若函数且在上的最大值为,求的值.31. 已知实数满足,求的最小值.32. 已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为.(1)求椭圆的方程;(2)直线过点且与椭圆相交于、两点,当面积取得最大值时,求直线的方程.33. 一动圆与圆:外切,与圆:内切.(1)求动圆圆心的轨迹的方程;(2)设过圆心的直线:与轨迹相交于,两点,请问(为圆的圆心)的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线的方程;若不存在,请说明理由.34. 函数,.(1)若,求的最大值;(2)设时,若对任意,都有恒成立,且的最大值为,求的表达式.35. 已知椭圆的焦点坐标为,,过垂直于长轴的直线交椭圆于,两点,且,(1)求椭圆的方程;(2)过的直线与椭圆交于不同的两点,,则的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.36. 知函数,实数,满足,设,.(1)当函数的定义域为时,求的值域;(2)求函数关系式,并求函数的定义域;(3)求的取值范围.37. 已知,,且,求证:.38. 已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数的周期为,当时,方程恰有两个不同的解,求实数的取值范围.39. 已知函数在处取得极值.(1)求的值;(2)当时,求证:.40. 已知椭圆,过作互相垂直的两直线,,分别与椭圆交于,两点.(1)若直线经过点,求线段的长;(2)求面积的最大值.答案第一部分1 (1);(2)234567891011121314151617181920第二部分21 ;22 (1) 设,则,且.于是.由,得的值域为.(2) 令,则,.所以.因为,所以.所以原函数的值域为.23 设,所以因为当时,函数递增,所以,函数的最小值为24 令,则.,,,即在上的最小值为.25 .令,,则,的对称轴为.①当时,函数在为减函数,,,解得:,.②当时,函数在为增函数,,,,.③当时,.(i)当时,.解得:,与矛盾;(ii)当时,.解得:,与矛盾.综合上述:,或,.26 (1) 依题意,得,即.(2) 由,得.不妨令,则,则.因为,所以,即.所以当时,,此时.答:每吨煤的最高价为元.27 (1) 圆心到直线的距离为.所以点到直线的距离的最大值为,最小值为.(2) 设,则直线与圆有公共点.所以.所以.所以,.即的最大值为.最小值为.(3) 设,则直线与圆有公共点,所以.所以.所以,.即的最大值为,最小值为.28 因为有且仅有一个零点,所以方程仅有一个实根.设,则方程仅有一个正根.当时,即,当时,;时,(不合题意,舍去),所以,解得,符合题意.当时,即或时,方程有两正或两负根,即有两个零点或没有零点,此时不适合题意.综上,时,有唯一零点,且该零点为.29 设,则,所以所以30 令,则,该二次函数在上是增函数.①若,,故当时,,解得(舍去).②若,,故当时,.所以或(舍去).综上可得或.31 可将改写为,令,可得,,,则.因为,所以,当时,,所以的最小值为.32 (1) 设椭圆的方程为().由题意,得所以所求椭圆的方程为.(2) 由题意知直线的斜率存在,设直线的方程为.由消去,得.由直线与椭圆相交于两点,得,解得.设,,则,.原点 到直线 的距离为 .所以.令 ,则. 当且仅当,即 时,. 此时从而直线 的方程为.33 (1) 设动圆圆心为 ,半径为 .由题意,得 , , 所以 .由椭圆定义知 在以 , 为焦点的椭圆上,且 , , 所以 . 于是动圆圆心 的轨迹 的方程为.(2)如图,设 内切圆 的半径为 ,与直线 的切点为 ,则三角形 的面积当 最大时, 也最大, 内切圆的面积也最大. 设 , ,则.由得 , 解得,.所以.令 ,则,且 ,从而.令,则.当时,,在上单调递增,则有,从而,即当,时,有最大值,即得,这时所求内切圆的面积为,所以存在直线:,的内切圆的面积最大值为.34 (1) 令,,则,所以等价于求,的最大值.因为,的图象的对称轴为,结合函数图象可知故的最大值为.(2) 令,则,由恒成立可得,,.因为,所以,而,所以,即,所以.又时,,所以,结合可知二次函数的图象的顶点坐标为,所以,,所以.35 (1) 设椭圆方程为,由焦点坐标可得.由,可得,解得故椭圆方程为.(2) 设,,设的内切圆的径,则的周长为,.因此最大,就最大.由题知,直线的斜率不为零,可设直线的方程为,由得,得则令,则,则当且仅当,时,,所以,这时所求内切圆面积的最大值为.36 (1) 若,令,在上为增函数,,,所以的值域为.(2) 实数,满足,则则,而,,所以,.由题意,,则,所以.又,即,所以,当且仅当时取等号.综上所述,的定义域为.(3)令,,在上恒成立,所以在上单调递增.又,,所以,所以.37 ,可设,则,,又,且,而指数函数是减函数,所以,即注:式“ ”当,时成立.同理,并结合式,得(当且仅当或时取“ ”)38 (1) 的最小正周期为,由,得.又由解得由,即,解得,所以.(2) 由的周期为及,得.令,由,得.如图所示,若在上有两个不同的解,则,所以方程当时恰好有两个不同的解,则,因此,实数的取值范围是.39 (1) 由已知,得.由在处取得极值,得,即,解得.经验证,得适合题意.(2) 由(1)知,.令,则.令,则.令,则.当时,,则函数在上为增函数;当时,,则函数在上为减函数,所以,即对任意,恒成立,即.由,得当时,由得.当时,以代换式中的,得.当时,,由得,,所以,从而函数在上为增函数,于是,当时,,即当时,.再由,得,则函数在上为增函数,所以当时,,即当时,,因此.40 (1) 不妨设的方程为,则的方程为.由得,从而.同理可得.直线的斜率为.由点斜式,得的方程为,即,从而直线过定点.又因为直线过,所以直线的方程为.由得.由弦长公式,得(2) 由(1),得,.由弦长公式,得于是令,则当且仅当时,面积的最大值为.。

高考数学抽象函数6种快速解题方法与技巧(....

高考数学抽象函数6种快速解题方法与技巧(....

高考数学抽象函数的6大快速解题技巧1.换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2)故f(x)=-x 2+3x+1 (0≤u ≤2)2.方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。

例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x1)x (f 2)x1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥⨯-≥∆得由例3.f(x).1),x 0(x ,x 1)x1x (f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x1x (f )x (f ≠≠+=-+且 ,x1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x-11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x1x 2)x (f )x -11f( ,x 111)x111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。

例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1.4.赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。

高考重要数学答题技巧归纳

高考重要数学答题技巧归纳

高考重要数学答题技巧归纳高中数学常考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

2022届高考数学解题方法微专题(6)换元法求解与指数型函数有关的最值问题

2022届高考数学解题方法微专题(6)换元法求解与指数型函数有关的最值问题

-1-微专题(六)换元法求解与指数型函数有关的最值问题
[例]已知函数y =a 2x +2a x -1(a >0,且a ≠1),当x ≥0时,求函数的值域.解析:y =a 2x +2a x -1,令t =a x ,
则y =g (t )=t 2+2t -1=(t +1)2-2.
当a >1时,∵x ≥0,∴t ≥1,∴当a >1时,y ≥2.
当0<a <1时,∵x ≥0,∴0<t ≤1.
∵g (0)=-1,g (1)=2,
∴当0<a <1时,-1<y ≤2.
综上所述,当a >1时,函数的值域是[2,+∞);
当0<a <1时,函数的值域是(-1,2].
名师点评
1.此例利用了换元法,把函数f (x )转化为y =t 2+2t -1,将问题转化为求二次函数的最值(值域)问题,从而减少了运算量.
2.对于同时含有a x 与a 2x (a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x 进行换元巧解,但一定要注意新元的范围;对数函数中的类似问题,也用这种方法.
[变式练]已知函数y =4x +m ·2x -2在区间[-2,2]上单调递增,则m 的取值范围为________.
微专题(六)
变式练
解析:设t =2x ,则y =4x +m ·2x -2=t 2+mt -2.
因为x ∈[-2,2],所以t ∈14,4.
又函数y =4x +m ·2x -2在区间[-2,2]上单调递增,
即y =t 2+mt -2在区间14,4上单调递增,故有-m 2≤14,解得m ≥-12.所以m 的取值范围为-12,+
答案:-12,+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。

通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。

或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。

局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。

例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。

如求函数y=x+1-x的值域时,易发现x∈[0,1],设x=sin2α,α∈[0,π2],问题变成了熟悉的求三角函数值域。

为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。

如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。

均值换元,如遇到x+y=S形式时,设x=S2+t,y=S2-t等等。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。

如上几例中的t>0和α∈[0,π2 ]。

Ⅰ、再现性题组:1.y=sinx·cosx+sinx+cosx的最大值是_________。

2.设f(x 2+1)=log a (4-x 4) (a>1),则f(x)的值域是_______________。

3.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =___________。

4.设实数x 、y 满足x 2+2xy -1=0,则x +y 的取值范围是___________。

5.方程1313++-xx=3的解是_______________。

6.不等式log 2(2x -1) ·log 2(2x +1-2)〈2的解集是_______________。

【简解】1小题:设sinx+cosx =t ∈[-2,2],则y =t 22+t -12,对称轴t =-1,当t =2,y max =12+2;2小题:设x 2+1=t (t ≥1),则f(t)=log a [-(t-1)2+4],所以值域为(-∞,log a 4]; 3小题:已知变形为11a n +-1a n =-1,设b n =1a n,则b 1=-1,b n =-1+(n -1)(-1)=-n ,所以a n =-1n; 4小题:设x +y =k ,则x 2-2kx +1=0, △=4k 2-4≥0,所以k ≥1或k ≤-1; 5小题:设3x =y ,则3y 2+2y -1=0,解得y =13,所以x =-1; 6小题:设log 2(2x-1)=y ,则y(y +1)<2,解得-2<y<1,所以x ∈(log 254,log 23)。

Ⅱ、示范性题组:例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求1S max+1S min的值。

(93年全国高中数学联赛题)【分析】 由S =x 2+y 2联想到cos 2α+sin 2α=1,于是进行三角换元,设x S y S ==⎧⎨⎪⎩⎪cos sin αα代入①式求S max 和S min 的值。

【解】设x S y S ==⎧⎨⎪⎩⎪cos sin αα代入①式得: 4S -5S ·sin αcos α=5解得 S =10852-sin α;∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤103∴1S max+1S min=310+1310=1610=85此种解法后面求S 最大值和最小值,还可由sin2α=810S S-的有界性而求,即解不等式:|810S S-|≤1。

这种方法是求函数值域时经常用到的“有界法”。

【另解】 由S =x 2+y 2,设x 2=S 2+t ,y 2=S 2-t ,t ∈[-S 2,S2], 则xy =±S t 224-代入①式得:4S ±5S t 224-=5, 移项平方整理得 100t 2+39S 2-160S +100=0 。

∴ 39S 2-160S +100≤0 解得:1013≤S ≤103∴1S max+1S min=310+1310=1610=85【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S =x 2+y 2与三角公式cos2α+sin 2α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。

第二种解法属于“均值换元法”,主要是由等式S =x 2+y 2而按照均值换元的思路,设x 2=S 2+t 、y 2=S 2-t ,减少了元的个数,问题且容易求解。

另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法。

和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x 、y 时,可以设x =a +b ,y =a -b ,这称为“和差换元法”,换元后有可能简化代数式。

本题设x =a +b ,y =a -b ,代入①式整理得3a 2+13b 2=5 ,求得a 2∈[0,53],所以S =(a -b)2+(a +b)2=2(a 2+b 2)=1013+2013a 2∈[1013,103],再求1S max +1S min的值。

例2. △ABC 的三个内角A 、B 、C 满足:A +C =2B ,1cos A +1cos C =-2cos B,求cos A C-2的值。

(96年全国理)【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得 A C B +=⎧⎨⎩12060°=°;由“A +C =120°”进行均值换元,则设A C =°α=°-α6060+⎧⎨⎩ ,再代入可求cos α即cos A C-2。

【解】由△ABC 中已知A +C =2B ,可得 A C B +=⎧⎨⎩12060°=°,由A +C =120°,设A C =°α=°-α6060+⎧⎨⎩,代入已知等式得:1cos A +1cos C =160cos()︒+α+160cos()︒-α=11232cos sin αα-+11232cos sin αα+=cos cos sin ααα143422-=cos cos αα234-=-22,解得:cos α=22, 即:cos A C-2=22。

【另解】由A +C =2B ,得A +C =120°,B =60°。

所以1cos A +1cos C =-2cos B=-22,设1cos A =-2+m ,1cos C=-2-m , 所以cosA =12-+m ,cosC =12--m,两式分别相加、相减得:cosA +cosC =2cos A C +2cos A C -2=cos A C-2=2222m -,cosA -cosC =-2sinA C +2sin A C -2=-3sin A C -2=222mm -, 即:sinA C -2=-2322m m ()-,=-2222m -,代入sin 2A C -2+cos 2A C -2=1整理得:3m4-16m -12=0,解出m 2=6,代入cosA C-2=2222m -=22。

【注】 本题两种解法由“A +C =120°”、“1cos A +1cos C=-22”分别进行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。

假如未想到进行均值换元,也可由三角运算直接解出:由A +C =2B ,得A +C =120°,B =60°。

所以1cos A +1cos C =-2cos B=-22,即cosA +cosC =-22cosAcosC ,和积互化得:2cos A C +2cos A C -2=-2[cos(A+C)+cos(A-C),即cos A C-2=22-2cos(A-C)=22-2(2cos 2A C -2-1),整理得:42cos 2A C -2+2cos A C-2-32=0,解得:cosA C -2=22例3. 设a>0,求f(x)=2a(sinx +cosx)-sinx ·cosx -2a 2的最大值和最小值。

【解】 设sinx +cosx =t ,则t ∈[-2,2],由(sinx +cosx)2=1+2sinx ·cosx 得:sinx ·cosx =t 212-∴ f(x)=g(t)=-12(t -2a)2+12(a>0),t ∈[-2,2] t =-2时,取最小值:-2a 2-22a -12当2a ≥2时,t =2,取最大值:-2a 2+22a -12; 当0<2a ≤2时,t =2a ,取最大值:12。

∴ f(x)的最小值为-2a 2-22a -12,最大值为1202222212222()()<<-+-≥⎧⎨⎪⎪⎩⎪⎪a a a a 。

【注】 此题属于局部换元法,设sinx +cosx =t 后,抓住sinx +cosx 与sinx ·cosx 的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。

换元过程中一定要注意新的参数的范围(t ∈[-2,2])与sinx +cosx 对应,否则将会出错。

本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。

一般地,在遇到题目已知和未知中含有sinx 与cosx 的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx ±cosx ,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。

相关文档
最新文档