2018上海高考数学大题解题技巧
2018年上海高考数学真题和答案

2018 年上海市高考数学试卷参照答案与试题分析一、填空题(本大题共有 12 题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题5 分)考生应在答题纸的相应地点直接填写结果 .1.(4 分)(2018 上海)队列式的值为18.【考点】 OM:二阶队列式的定义.【专题】 11 :计算题; 49 :综合法; 5R :矩阵和变换.【剖析】直接利用队列式的定义,计算求解即可.【解答】解:队列式=4×5﹣2×1=18.故答案为: 18.【评论】此题观察队列式的定义,运算法例的应用,是基本知识的观察.2.(4 分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】 KC:双曲线的性质.【专题】 11 :计算题.【剖析】先确立双曲线的焦点所在座标轴,再确立双曲线的实轴长和虚轴长,最后确立双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为 y=±∴双曲线的渐近线方程为y=±故答案为: y=±【评论】此题观察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4 分)(2018?上海)在( 1+x)7的二项睁开式中, x2项的系数为21(结果用数值表示).【考点】 DA:二项式定理.【专题】 38 :对应思想; 4O:定义法; 5P :二项式定理.【剖析】利用二项式睁开式的通项公式求得睁开式中x2的系数.【解答】解:二项式( 1+x)7睁开式的通项公式为 T r+1= ?x r,令 r=2,得睁开式中 x2的系数为=21.故答案为: 21.【评论】此题观察了二项睁开式的通项公式的应用问题,是基础题.4.(4 分)(2018?上海)设常数 a∈R,函数 f( x) =1og2(x+a).若 f (x)的反函数的图象经过点( 3,1),则 a= 7.【考点】 4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【剖析】由反函数的性质得函数 f (x)=1og2(x+a)的图象经过点( 1, 3),由此能求出 a.【解答】解:∵常数 a∈R,函数 f (x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数 f(x)=1og2( x+a)的图象经过点( 1,3),∴log2(1+a)=3,解得 a=7.故答案为: 7.【评论】此题观察实数值的求法,观察函数的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.5.(4 分)(2018?上海)已知复数 z 知足( 1+i)z=1﹣ 7i(i 是虚数单位),则|z|= 5.【考点】 A8:复数的模.【专题】 38 :对应思想; 4A :数学模型法; 5N :数系的扩大和复数.【剖析】把已知等式变形,而后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由( 1+i) z=1﹣7i,得,则 |z|=.故答案为: 5.【评论】此题观察了复数代数形式的乘除运算,观察了复数模的求法,是基础题.6.( 4 分)(2018?上海)记等差数列 {a n}的前 n 项和为 S n,若 a3 =0,a6+a7=14,则S7= 14.【考点】 85:等差数列的前 n 项和.【专题】 11 :计算题; 34 :方程思想; 4O:定义法; 54 :等差数列与等比数列.【剖析】利用等差数列通项公式列出方程组,求出 a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列 {a n}的前 n 项和为 S n,a3=0,a6+a7=14,∴,解得 a1=﹣4,d=2,∴ S7=7a1+=﹣28+42=14.故答案为: 14.【评论】此题观察等差数列的前 7 项和的求法,观察等差数列的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.7.(5 分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在( 0,+∞)上递减,则α= ﹣1 .【考点】 4U:幂函数的观点、分析式、定义域、值域.【专题】 11 :计算题; 34 :方程思想; 4O:定义法; 51 :函数的性质及应用.【剖析】由幂函数 f( x)=xα为奇函数,且在( 0, +∞)上递减,获得 a 是奇数,且 a<0,由此能求出 a 的值.【解答】解:∵α∈ {﹣2,﹣ 1,,1,2,3},幂函数 f(x)=xα为奇函数,且在( 0, +∞)上递减,∴a 是奇数,且 a<0,∴a=﹣1.故答案为:﹣ 1.【评论】此题观察实数值的求法,观察幂函数的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.8.(5 分)(2018?上海)在平面直角坐标系中,已知点A(﹣ 1,0)、 B( 2,0),E、F 是 y 轴上的两个动点,且 | |=2 ,则的最小值为﹣3.【考点】 9O:平面向量数目积的性质及其运算.【专题】 11 :计算题; 35 :转变思想; 41 :向量法; 5A :平面向量及应用.【剖析】据题意可设 E( 0, a),F(0,b),进而得出 |a ﹣b|=2 ,即a=b+2,或b=a+2,并可求得,将a=b+2 带入上式即可求出的最小值,同理将 b=a+2 带入,也可求出的最小值.【解答】解:依据题意,设E(0,a),F( 0, b);∴;∴a=b+2,或 b=a+2;且;∴;当 a=b+2 时,;∵ b2﹣2的最小值为;+2b∴的最小值为﹣ 3,同理求出 b=a+2 时,的最小值为﹣ 3.故答案为:﹣ 3.【评论】观察依据点的坐标求两点间的距离,依据点的坐标求向量的坐标,以及向量坐标的数目积运算,二次函数求最值的公式.9.(5 分)(2018?上海)有编号互不同样的五个砝码,此中 5 克、 3 克、 1 克砝码各一个, 2 克砝码两个,从中随机选用三个,则这三个砝码的总质量为9 克的概率是(结果用最简分数表示).【考点】 CB:古典概型及其概率计算公式.【专题】 11 :计算题; 34 :方程思想; 49 :综合法; 5I :概率与统计.【剖析】求出全部事件的总数,求出三个砝码的总质量为9 克的事件总数,而后求解概率即可.【解答】解:编号互不同样的五个砝码,此中 5 克、 3 克、 1 克砝码各一个, 2克砝码两个,从中随机选用三个, 3 个数中含有 1 个 2; 2 个 2,没有 2,3 种状况,全部的事件总数为:=10,这三个砝码的总质量为9 克的事件只有: 5,3,1 或 5, 2,2 两个,所以:这三个砝码的总质量为9 克的概率是:=,故答案为:.【评论】此题观察古典概型的概率的求法,是基本知识的观察.10.( 5分)(2018?上海)设等比数列n 的通项公式为n n﹣1(n∈N*),前n{a } a =q项和为 S n.若= ,则 q= 3.【考点】 8J:数列的极限.【专题】 11 :计算题; 34 :方程思想; 35 :转变思想; 49 :综合法; 55 :点列、递归数列与数学概括法.【剖析】利用等比数列的通项公式求出首项,经过数列的极限,列出方程,求解公比即可.【解答】解:等比数列 {a n的通项公式为a =q n﹣1(n∈ N*),可得 a1,}=1因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得 q=3.故答案为: 3.【评论】此题观察数列的极限的运算法例的应用,等比数列乞降以及等比数列的简单性质的应用,是基本知识的观察.11.(5 分)(2018?上海)已知常数 a>0,函数 f(x)=的图象经过点P(p,),Q(q,).若 2p+q,则a=6.=36pq【考点】 3A:函数的图象与图象的变换.【专题】 35 :转变思想; 51 :函数的性质及应用.【剖析】直接利用函数的关系式,利用恒等变换求出相应的 a 值.【解答】解:函数 f (x) =的图象经过点 P(p,),Q( q,).则:,整理得:=1,解得: 2p+q=a2pq,因为: 2p+q=36pq,所以: a2=36,因为 a>0,故: a=6.故答案为: 6【评论】此题观察的知识重点:函数的性质的应用,代数式的变换问题的应用.12.( 5 分)(2018?上海)已知实数x1、x2、 y1、y2知足: x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】 7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】 35 :转变思想; 48 :剖析法; 59 :不等式的解法及应用.【剖析】设 A(x1,1),(2,2),(1,1),( 2,2),由圆的方程y B x y= x y= x y和向量数目积的定义、坐标表示,可得三角形OAB 为等边三角形, AB=1,+的几何意义为点A, B 两点到直线 x+y﹣1=0 的距离 d1与 d2之和,由两平行线的距离可得所求最大值.【解答】解:设 A( x1,y1),B(x2,y2),=( x1,y1),=(x2,y2),由 x12+y12=1,x22 +y22=1,x1x2+y1y2= ,可得 A,B 两点在圆 x2+y2=1 上,且 ? =1×1×cos∠AOB= ,即有∠ AOB=60°,即三角形 OAB 为等边三角形,AB=1,+的几何意义为点A, B 两点到直线 x+y﹣ 1=0 的距离 d1与 d2之和,明显 A,B 在第三象限, AB 所在直线与直线x+y=1 平行,可设 AB:x+y+t=0,(t >0),由圆心 O 到直线 AB 的距离 d=,可得 2=1,解得 t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【评论】此题观察向量数目积的坐标表示和定义,以及圆的方程和运用,观察点与圆的地点关系,运用点到直线的距离公式是解题的重点,属于难题.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项 .考生应在答题纸的相应地点,将代表正确选项的小方格涂黑 .13.(5 分)(2018?上海)设 P 是椭圆=1 上的动点,则 P 到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【考点】 K4:椭圆的性质.【专题】 11 :计算题; 49 :综合法; 5D :圆锥曲线的定义、性质与方程.【剖析】判断椭圆长轴(焦点坐标)所在的轴,求出 a,接利用椭圆的定义,转变求解即可.【解答】解:椭圆=1 的焦点坐标在 x 轴, a=,P 是椭圆=1 上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为 2a=2.应选: C.【评论】此题观察椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.( 5 分)(2018?上海)已知a∈R,则“a>1”是“<1”的()A.充足非必需条件B.必需非充足条件C.充要条件D.既非充足又非必需条件【考点】 29:充足条件、必需条件、充要条件.【专题】 11 :计算题; 34 :方程思想; 4O:定义法; 5L :简略逻辑.【剖析】“a>1”? “”,“”?“a>1或a<0”,由此能求出结果.【解答】解: a∈R,则“a>1”? “”,“”? “a>1 或 a<0”,∴“a>1”是“”的充足非必需条件.应选: A.【评论】此题观察充足条件、必需条件的判断,观察不等式的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.15.( 5 分)( 2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的极点为极点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【考点】 D8:摆列、组合的实质应用.【专题】 11 :计算题; 38 :对应思想; 4R:转变法; 5O :摆列组合.【剖析】依据新定义和正六边形的性质可得答案.【解答】解:依据正六边形的性质,则D1﹣1 1,1﹣1 1 知足题意,而AABB D AAFFC1, E1,C,D,E,和 D1同样,有 2×6=12,当 A1ACC1为底面矩形,有2 个知足题意,当 A1AEE1为底面矩形,有 2 个知足题意,故有 12+2+2=16应选: D.【评论】此题观察了新定义,以及清除组合的问题,观察了棱柱的特点,属于中档题.16.( 5 分)(2018?上海)设 D 是含数 1 的有限实数集, f(x)是定义在 D 上的函数,若 f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只好是()A.B.C.D.0【考点】 3A:函数的图象与图象的变换.【专题】 35 :转变思想; 51:函数的性质及应用; 56 :三角函数的求值.【剖析】直接利用定义函数的应用求出结果.【解答】解:由题意获得:问题相当于圆上由12 个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们能够经过代入和赋值的方法当 f(1)=,,0 时,此时获得的圆心角为,,0,但是此时 x=0 或许 x=1 时,都有 2 个 y 与之对应,而我们知道函数的定义就是要求一个 x 只好对应一个 y,所以只有当 x= ,此时旋转,此时知足一个 x 只会对应一个 y,所以答案就选: B.应选: B.【评论】此题观察的知识重点:定义性函数的应用.三、解答题(本大题共有 5 题,满分 76 分)解答以下各题一定在答题纸的相应地点写出必需的步骤 .17.( 14 分)( 2018?上海)已知圆锥的极点为P,底面圆心为 O,半径为 2.(1)设圆锥的母线长为 4,求圆锥的体积;(2)设 PO=4,OA、OB 是底面半径,且∠ AOB=90°,M 为线段 AB 的中点,如图.求异面直线 PM 与 OB 所成的角的大小.【考点】 LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】 11 :计算题; 31 :数形联合; 41 :向量法; 5F :空间地点关系与距离; 5G :空间角.【剖析】(1)由圆锥的极点为 P,底面圆心为 O,半径为 2,圆锥的母线长为 4 能求出圆锥的体积.(2)以 O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为 z 轴,成立空间直角坐标系,利用向量法能求出异面直线 PM 与 OB 所成的角.【解答】解:(1)∵圆锥的极点为 P,底面圆心为 O,半径为 2,圆锥的母线长为 4,∴圆锥的体积 V===.(2)∵ PO=4,OA,OB 是底面半径,且∠ AOB=90°,M为线段 AB 的中点,∴以 O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为 z 轴,成立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣ 4),=(0,2,0),设异面直线 PM 与 OB 所成的角为θ,则 cosθ===.∴θ=arccos .∴异面直线 PM 与 OB 所成的角的为 arccos.【评论】此题观察圆锥的体积的求法,观察异面直线所成角的正切值的求法,观察空间中线线、线面、面面间的地点关系等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.18.( 14 分)( 2018?上海)设常数 a∈R,函数( 1)若 f (x)为偶函数,求 a 的值;( 2)若 f ()=+1,求方程 f (x) =1﹣f( x) =asin2x+2cosx2.在区间 [﹣π,π]上的解.【考点】 GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】 11 :计算题; 38 :对应思想; 4R:转变法; 58 :解三角形.【剖析】(1)依据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出 a 的值,再依据三角形函数的性质即可求出.【解答】解:(1)∵ f( x) =asin2x+2cosx,∴(﹣)﹣2f x = asin2x+2cosx,∵f(x)为偶函数,∴ f(﹣ x) =f(x),∴﹣ asin2x+2cosx=asin2x+2cosx,∴ 2asin2x=0,∴ a=0;( 2)∵ f() = +1,∴ asin +2cos2()=a+1=+1,∴a= ,∴ f(x)= sin2x+2cosx= sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+ )+1=1﹣,∴sin(2x+ )=﹣,∴ 2x+ =﹣+2kπ,或 2x+ =π+2kπ,k∈Z,∴ x=﹣π+kπ,或x=π+kπ,k∈Z,∵ x∈[ ﹣π,π],∴ x=或x=或x=﹣或x=﹣【评论】此题观察了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.( 14 分)(2018?上海)某集体的人均通勤时间,是指单日内该集体中成员从居住地到工作地的均匀用时.某地上班族S 中的成员仅以自驾或公交方式通勤.剖析显示:当 S 中 x%(0<x<100)的成员自驾时,自驾集体的人均通勤时间为f(x)=(单位:分钟),而公交集体的人均通勤时间不受x 影响,恒为 40 分钟,试依据上述剖析结果回答以下问题:( 1)当 x 在什么范围内时,公交集体的人均通勤时间少于自驾集体的人均通勤时间(2)求该地上班族 S 的人均通勤时间 g(x)的表达式;议论 g(x)的单一性,并说明其实质意义.【考点】 5B:分段函数的应用.【专题】 12 :应用题; 33 :函数思想; 4C :分类法; 51 :函数的性质及应用.【剖析】(1)由题意知求出 f (x)> 40 时 x 的取值范围即可;(2)分段求出 g(x)的分析式,判断 g(x)的单一性,再说明其实质意义.【解答】解;(1)由题意知,当 30< x<100 时,f(x)=2x+﹣90>40,即 x2﹣65x+900>0,解得 x<20 或 x>45,∴x∈(45,100)时,公交集体的人均通勤时间少于自驾集体的人均通勤时间;( 2)当 0<x≤30 时,g(x)=30?x%+40( 1﹣ x%)=40﹣;当 30< x<100 时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴ g( x)=;当 0<x<时, g(x)单一递减;当< x< 100 时, g( x)单一递加;说明该地上班族 S 中有小于 %的人自驾时,人均通勤时间是递减的;有大于 %的人自驾时,人均通勤时间是递加的;当自驾人数为 %时,人均通勤时间最少.【评论】此题观察了分段函数的应用问题,也观察了分类议论与剖析问题、解决问题的能力.20.(16 分)(2018?上海)设常数 t >2.在平面直角坐标系xOy 中,已知点 F(2,0),直线 l:x=t,曲线Γ:y2=8x(0≤ x≤t , y≥0). l 与 x 轴交于点 A、与Γ交于点 B.P、Q 分别是曲线Γ与线段 AB 上的动点.( 1)用 t 表示点 B 到点 F 的距离;( 2)设 t=3,|FQ|=2 ,线段 OQ 的中点在直线 FP上,求△ AQP的面积;( 3)设 t=8,能否存在以 FP、 FQ为邻边的矩形 FPEQ,使得点 E 在Γ上若存在,求点 P 的坐标;若不存在,说明原因.【考点】 KN:直线与抛物线的地点关系.【专题】 35 :转变思想; 4R:转变法; 5D :圆锥曲线的定义、性质与方程.【剖析】(1)方法一:设 B 点坐标,依据两点之间的距离公式,即可求得|BF| ;方法二:依据抛物线的定义,即可求得|BF| ;(2)依据抛物线的性质,求得 Q 点坐标,即可求得 OD 的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得 P 点坐标,即可求得△ AQP 的面积;(3)设 P 及 E 点坐标,依据直线 k PF?k FQ=﹣1,求得直线 QF 的方程,求得 Q 点坐标,依据+ = ,求得 E 点坐标,则()2(),即可求得=8+6P 点坐标.【解答】解:(1)方法一:由题意可知:设B( t,2t),则 |BF|==t+2,∴|BF|=t+2 ;方法二:由题意可知:设B(t ,2t ),由抛物线的性质可知: |BF|=t+=t+2,∴ |BF|=t+2 ;(2) F(2,0),|FQ|=2 ,t=3,则 |FA|=1 ,∴ |AQ|= ,∴ Q( 3,),设 OQ 的中点 D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得: 3x2﹣20x+12=0,解得: x=,x=6(舍去),∴△ AQP的面积 S= ××=;( 3)存在,设 P(,y),E(,m),则k PF==,k FQ=,直线 QF 方程为 y=(x﹣2),∴ y Q=(﹣),(,),8 2 =Q 8依据+ =,则E(+6,),∴()2=8(+6),解得: y2=,∴存在以 FP、FQ 为邻边的矩形 FPEQ,使得点 E 在Γ上,且 P(,).【评论】此题观察抛物线的性质,直线与抛物线的地点关系,观察转变思想,计算能力,属于中档题.21.( 18 分)( 2018?上海)给定无量数列 {a n},若无量数列 {b n}知足:对随意n∈ N*,都有 |b n﹣ a n| ≤ 1,则称 {b n}与{a n}“靠近”.( 1)设 {a n}是首项为 1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}能否与 {a n}靠近,并说明原因;(2)设数列 {a n}的前四项为: a1=1,a2=2, a3=4, a4 =8,{b n}是一个与 {a n}靠近的数列,记会合 M={x|x=b i,i=1,2,3,4},求 M 中元素的个数 m;(3)已知 {a n}是公差为 d 的等差数列,若存在数列 {b n }知足: {b n }与{a n}靠近,且在 b2﹣b1, b3﹣b2,,b201﹣b200中起码有 100 个为正数,求 d 的取值范围.【考点】 8M:等差数列与等比数列的综合.【专题】 34 :方程思想; 48 :剖析法; 54 :等差数列与等比数列.【剖析】(1)运用等比数列的通项公式和新定义“靠近”,即可判断;(2)由新定义可得 a n﹣1≤b n≤ a n +1,求得 b i,i=1,2,3,4 的范围,即可获得所求个数;(3)运用等差数列的通项公式可得 a n,议论公差 d>0,d=0,﹣ 2< d< 0, d≤﹣ 2,联合新定义“靠近”,推理和运算,即可获得所求范围.【解答】解:(1)数列 {b n}与 {a n}靠近.原因: {a n}是首项为 1,公比为的等比数列,可得 a n, n n+1,= b =a +1= +1则 |b n﹣n+1﹣|=1 ﹣<1,n∈N * ,a |=|可得数列 {b n}与{a n}靠近;(2){b n}是一个与{a n}靠近的数列,可得 a n﹣ 1≤ b n≤a n+1,数列 {a n}的前四项为: a1 =1,a2 =2,a3=4, a4=8,可得 b1∈ [0,2],b2∈[1,3], b3∈[3,5] ,b4∈[7, 9],可能 b1与 b2相等, b2与 b3相等,但 b1与 b3不相等, b4与 b3不相等,会合 M={x|x=b i,i=1,2,3,4},M 中元素的个数 m=3 或 4;(3) {a n}是公差为 d 的等差数列,若存在数列 {b n}知足: {b n}与 {a n}靠近,可得 a n=a1+(n﹣1)d,①若 d>0,取 b n=a n,可得 b n+1﹣b n=a n+1﹣a n=d>0,则 b2﹣b1, b3﹣b2,,b201﹣b200中有 200 个正数,切合题意;②若 d=0,取 b n1﹣,则|b n﹣ n1﹣﹣ 1<,∈N* ,=a a |=|a a |= 1 n可得 b n+1﹣n﹣>,b =0则 b2﹣b1, b3﹣b2,,b201﹣b200中有 200 个正数,切合题意;③若﹣ 2<d<0,可令 b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则 b2n﹣b2n﹣1=a2n+1﹣( a2n﹣1﹣ 1) =2+d> 0,则 b2﹣b1, b3﹣b2,,b201﹣b200中恰有 100 个正数,切合题意;④若 d≤﹣ 2,若存在数列 {b n}知足: {b n}与{a n}靠近,即为 a n﹣ 1≤ b n≤a n+1, a n+1﹣1≤b n+1≤a n+1+1,可得 b n+1﹣ b n≤a n+1+1﹣( a n﹣1)=2+d≤0,b2﹣ b1,b3﹣ b2,,b201﹣ b200中无正数,不切合题意.综上可得, d 的范围是(﹣ 2, +∞).【评论】此题观察新定义“靠近”的理解和运用,观察等差数列和等比数列的定义和通项公式的运用,观察分类议论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
上海卷2018年高考数学试题(word档含答案详细解析)

2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1. 行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示) 10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则= 12.已知实数1212,,,x x y y 满足:22221122121211,1,2x y x y x x y y ,则11221122x y x y 的最大值为_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设p 是椭圆22153x y 上的动点,则p 到该椭圆的两个焦点的距离之和为( )A.22B.23C.25D.4214.已知a R ,则“1a ”是“11a ”的( )。
★2018年高考数学通用解题方法有哪些.doc

★2018年高考数学通用解题方法有哪些新学期开学了,2018年高考已经悄然袭来,相信很多新高三学生都想在高考中取得好成绩,这就要求大家掌握一些技巧,下面为大家带来2018年高考数学通用解题方法有哪些这篇内容,希望大家能够认真阅读。
高考数学万能解题法--认真审题对于一道具体的习题,解题时最重要的环节是审题,审题的第一步是读题,这是获取信息量和思考的过程,读题要慢一边读,一边想,应特别注意每一句话的内在含义,并从中找到隐含条件。
在有些学生没有养成读题,思考的习惯,心理着急,匆匆一看,就开始解题没结果常常溜掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了,所以,在实际解题时,应特别注意,审题要认真仔细。
高考数学万能解题法--函数值域函数值域是函数概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终,而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求。
所以,我们应该掌握一些简单函数的值域求解的基本方法。
高考数学万能解题法--画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些试题,只要分析一画出来,其中的关键就变得一目了然,尤其是对于几何题,包括解析几何题,若不会画图,有时候简直是无从下手。
因此要牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
高考数学万能解题法--数列求和方法数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识,数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要的地位。
数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。
此类问题中除了利用等差数列和等笔数列求和公式外,大部分数列的求和都需要一定的技巧。
2018年高考数学通用解题方法有哪些这篇内容为大家带来过了,希望大家能够在平时学以致用这些技巧,这样才能在高考考试中轻松得分。
2018高考数学选择题、填空题答题策略与答题技巧

2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
2018年高考数学解题的12种方法总结.doc

2018年高考数学解题的12种方法总结数学是高考考试中最能拉分的科目,因此大家在备考数学考试的时候要多下功夫,下面为大家带来2018年高考数学解题的12种方法总结这篇内容,希望能够帮助大家轻松应对2018年高考数学考试。
方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法二、内紧外松,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法四、六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。
1、先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2、先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
2018高考数学全国一卷选择题 2018高考数学选择题十大解题方法总结

2018高考数学全国一卷选择题2018高考数学选择题十大解题方法总结1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
感谢您的阅读!。
2018高考数学解题技巧三角函数

2018高考数学解题技巧 解答题模板2:三角函数高考中三角函数解答题是历年高考必考内容之一,成为6道解答题中的第一题,难度一般比较小,三角函数中,以公式多而著称.解题方法也较灵活,但并不是无法可寻,当然有它的规律性,近几年的高考中总能体现出其规律性.而对三角函数的考查解法,归纳起来主要有以下六种方法:能够做好这道题也成了决定高考成败的关键,从近几年高考来看,三角函数解答题有如下几种题型 二、典型例题 弦切互化例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=-+θθθθθθθθθθ; 函数的定义域问题例2、求函数1sin 2+=x y 的定义域。
解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期⎥⎦⎤⎢⎣⎡-23,2ππ上符合①的角为⎥⎦⎤⎢⎣⎡-67,6ππ,由此可得到函数的定义域为⎥⎦⎤⎢⎣⎡+-672,62ππππk k ()Z k ∈ 说明:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。
(2)若函数是分式函数,则分母不能为零。
(3)若函数是偶函数,则被开方式不能为负。
(4)若函数是形如()()1,0log ≠>=a a x f y a的函数,则其定义域由()x f 确定。
(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。
函数值域及最大值,最小值 (1)求函数的值域一般函数的值域求法有:观察法,配方法判别式法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。
例3、求下列函数的值域(1)x y 2sin 23-= (2)2sin 2cos 2-+=x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。
2018年上海高考数学真题及答案

2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018?上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.>1”是“<1”的()14.(5分)(2018?上海)已知a∈R,则“aA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海高考数学大题解题技巧
一、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
二、三角函数题
注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。
三、函数(极值、最值、不等式恒成立(或逆用求参)问题)
1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2.注意最后一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
四、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保10分,争12分,想16分。
五、数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。
4.战术上整体思路要保10分,争12分,想16分。
附:5种数学答题思路
另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2.数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;
二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
建议同学们在分类讨论解题时,要做到标准统一,不重不漏。