高考数学解答题解题技巧

合集下载

高考数学大题小题答题套路

高考数学大题小题答题套路

高考数学大题小题答题套路1500字高考数学大题小题答题套路:在高考数学考试中,大题小题占据了很大的比重。

为了在有限的时间内高效地完成这些题目,我们需要一些答题套路。

下面给出一些常用的答题套路,希望对你备考有所帮助。

一、解决问题的基本步骤无论是解决大题还是小题,解决问题的基本步骤是一样的:分析问题、解决问题。

1. 分析问题:仔细阅读题目,抓住关键信息,理清问题的逻辑关系,确定解题思路。

2. 解决问题:有了解题思路后,可以进行具体的计算或推理,得出结果并给出明确的解答。

二、选择题的解题技巧1. 理清题意:仔细阅读题目,理解题意是解题的第一步。

特别是一些复杂的题目,一定要抓住问题的关键信息。

2. 排除干扰项:在选择题中,往往有一些干扰项,可以通过排除法找到正确的答案。

把每个选项都带入题目中计算,排除那些肯定不符合条件的选项,就可以找到正确答案。

3. 注意选项的表达方式:有时候,选项可能用其他的方式来表达,需要注意一些等价变形或近义词的替代。

三、填空题的解题技巧1. 尝试不同的方法:填空题有时候可以用多种方法解答,尝试不同的方法可以提高解题的灵活性。

2. 合理估算:填空题往往要进行一些复杂的计算,合理估算可以减少计算量,提高解题速度。

可以先进行一些粗略的估算,然后再进行具体的计算。

3. 利用已知条件:在填空题中,利用已知条件进行推导是非常重要的。

根据已知条件和题目要求,进行推理和计算。

四、解答题的解题技巧1. 分析问题:仔细阅读题目,并理清题目的逻辑关系,确定解题思路和步骤。

2. 给出合理的假设:解答题有时候需要做一些合理的假设,可以简化问题,提高解题的效率。

3. 使用合适的公式或定理:解答题一般需要使用一些公式或定理,熟练掌握并合理运用可以快速解决问题。

4. 画图辅助解答:对于一些几何题,可以通过画图来辅助解答。

画出具体的图形,可以更直观地理解问题,找到解决方法。

总结:以上是解决高考数学大题小题的一些常用答题套路。

高考数学解题答题技巧

高考数学解题答题技巧

高考数学解题答题技巧高考数学解题答题技巧有哪些在高考考场上,人的状态非常重要,要懂得调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定)。

下面是小编为大家整理的高考数学解题答题技巧,希望对您有所帮助!高中数学解题技巧1.调整好状态,控制好自我(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或1个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。

但发卷时间应在开考前5-10分钟内,建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。

答题时,见到简单题,要细心,莫忘乎所以。

面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。

12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。

填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准题目本身就是解答这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下,中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。

谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

高考数学答题技巧选择题运算要快,力戒小题大做。

数学考试答题技巧与方法

数学考试答题技巧与方法

数学考试答题技巧与方法数学考试答题技巧与方法一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。

1.先易后难。

2.先熟后生。

3.先同后异。

先做同科同类型的题目。

4.先小后大。

先做信息量少、运算量小的题目,为解决大题赢得时间。

5.先点后面。

高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。

6.先高后低。

即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。

二、一慢一快,相得益彰,规范书写,确保准确,力争对全。

审题要慢,解答要快。

在以快为上的前提下,要稳扎稳打,步步准确。

假如速度与准确不可兼得的话,就只好舍快求对了。

三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。

对于一个较一般的问题,若一时不能取得一般思路,可以采取化第1页共5页一般为特殊,化抽象为具体。

对不能全面完成的题目有两种常用方法: 1.缺步解答。

将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。

2.跳步解答。

若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。

四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。

对一个问题正面思考受阻时,就逆推,直接证有困难就反证。

对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

数学考试答题技巧(总结)1.对于会做的题目,要解决会而不对,对而不全这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被分段扣点分.(经验)表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难.2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是分段得分的全部秘密。

高考数学解答题答题技巧

高考数学解答题答题技巧

2019年高考数学解答题答题技巧平时做解答题就要多总结方法,可是书面的也总结了许多,在这儿我主要讲考试。

我们做这些解答题的时候必须严格按照演绎推理的方式科学逻辑地进行解答和表述,可以说这里已经没有“投机取巧”的机会,但仍然有一些让我们“多拿几分”,“夺取高分”的策略哦。

1. 缺步解答如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,你可以在实战中运用分析一下。

2. 跳步答题解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整.若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答的方法。

3.退步解答“以退求进”是一个重要的解题策略.对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决.为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。

4.逆向解答对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

数学解答题技巧

数学解答题技巧

高考数学解答题技巧1、三角变换与三角函数的性质问题解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2、解三角形问题解题方法:(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3、数列的通项、求和问题解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

4、离散型随机变量的均值与方差解题思路:(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

答题步骤:①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

5、圆锥曲线中的范围问题解题思路;①设方程;②解系数;③得结论。

答题步骤:①提关系:从题设条件中提取不等关系式。

高考数学技巧如何利用数学归纳法解决问题

高考数学技巧如何利用数学归纳法解决问题

高考数学技巧如何利用数学归纳法解决问题数学归纳法是一种常见且重要的数学技巧,在高考数学中经常被用于解决一些复杂的问题。

通过合理运用数学归纳法,可以简化问题的复杂性,从而更好地解决数学题。

本文将探讨高考数学中如何利用数学归纳法解决问题的技巧和方法,并通过一些例题进行说明。

一、数学归纳法的基本原理数学归纳法是一种证明数学命题的方法。

它的基本原理是:设n为一个正整数,如果能证明当n取某个值时命题成立,而且如果在命题成立的情况下可以推导得到n+1的情况也成立,那么就可以得出结论:当n为任意正整数时,命题都成立。

二、数学归纳法的步骤数学归纳法主要包括三个步骤:基础步骤、归纳假设和归纳步骤。

1.基础步骤:首先需要证明当n取某个值时命题成立。

这个值通常是最小的正整数,可以是1或任意不为0的正整数。

2.归纳假设:假设当n取k(其中k为正整数)时命题成立,即假设命题P(k)为真。

3.归纳步骤:在已知P(k)为真的情况下,利用此假设证明P(k+1)为真。

通过推理和运算,将P(k+1)的真实性转化为某个已知条件的真实性,即从P(k)推导得到P(k+1)。

三、利用数学归纳法解决高考数学问题的技巧1.明确问题类型:在高考数学中利用数学归纳法解题,首先要明确问题的类型。

常见的问题类型包括数列、方程、不等式、集合等。

2.观察规律:利用数学归纳法解题的关键在于观察规律。

通过对问题的分析和计算,观察数列、方程等中数值、系数的变化规律,总结出规律的特点。

3.列出基础步骤:根据观察所得的规律,找到问题中的基础步骤。

基础步骤通常是证明当n取某个值时命题成立。

4.假设并证明:在观察到的规律的基础上,假设命题P(k)为真,并通过计算和推理证明该命题成立。

5.归纳得出结论:在已知P(k)为真的情况下,运用数学归纳法的归纳步骤,将P(k+1)的真实性转化为已知条件的真实性,进而得出结论。

四、数学归纳法解题的例子【例题】已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则证明:a_n=n^2。

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。

它需要灵活运用各种技巧和解题思路来处理各类题目。

本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。

一、选择题解题思路选择题在高考数学试卷中占有重要的比重。

解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。

阅读题干和选项时要注意细节,避免因为粗心而丢分。

2. 其次,列出已知条件,找到相关的数学概念和定理。

有时候,选择题通过对已知条件的解析可以得到答案。

3. 利用排除法。

根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。

4. 适时使用近似计算法。

高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。

二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。

以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。

2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。

处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。

3. 分数计算:分数计算也是高考数学试卷中的重要考点。

在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。

4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。

例如,通过图形的面积计算来解决几何题。

三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。

以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。

在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。

2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。

50个高考数学解题技巧

50个高考数学解题技巧

50个高考数学解题技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学解答题解题技巧
大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面学习啦小编给大家带来高考数学大题的最佳解题技巧,希望对你有帮助。

一、三角函数题
三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。

主要有以下几类:
1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。

2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

3.解三角形问题,判断三角形形状,正余弦定理的应用。

注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。

构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。

3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。

全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。

因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。

例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。

三、立体几何题
1、证明线面位置关系,一般不需要去建系,切实掌握好线面平行性质定理、面面垂直的性质定理,这两个定理不会用是失分的关键,解答过程不严格是扣分的主要因素。

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反、注意计数时利用列举、树图等基本方法;
5、注意条件概率公式;注意平均分组、不完全平均分组问题。

五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意最后一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。

相关文档
最新文档