关于高考数学压轴题解题方法
高考数学压轴题分析

高考数学压轴题分析高考数学压轴题是很多学生最为关注的题型之一,因为它涉及高考数学的复杂程度和难度,也影响着学生的最终分数。
在这篇文章中,我们将分析高考数学压轴题的特点和解答方法,以帮助学生更好地应对这一难点。
一、高考数学压轴题的特点高考数学压轴题通常是考察数学要点的综合运用。
具体来说,它经常涉及多个单元的知识点,需要做到沉着应对、灵活思考。
因此,我们需要从以下几个方面去了解高考数学压轴题的特点:1.复杂程度高。
高考数学压轴题的难度通常较高,需要考生拥有扎实的数学基础,能够遇到困难情况下快速反应、准确分析。
2.知识点涉及广。
高考数学压轴题不同于其他题型,经常涉及多个单元的知识点。
它要求考生在短时间内对比多种知识点,综合运用知识点来解决整个问题。
3.语言难度较大。
高考数学压轴题不仅考察数学知识,还包含语言文化的考验。
所以,它更加适合思维逻辑清晰、思辨敏捷的考生。
二、高考数学压轴题的解答方法1.提高基础知识。
高考数学压轴题通常需要运用多个知识点来解决问题。
所以,考生需要提前准备好、充分掌握基础知识点,才能更好地应对难题。
2.培养综合思考能力。
高考数学压轴题要求考生进行多元思考,不仅需要我们熟悉数学知识点,还需要我们拥有独立思考、形成完整思维体系的能力。
3.重视复习。
在准备高考数学压轴题的过程中,合理进行复习非常重要。
通过反复练习习题,考生可以更好地掌握知识点,深化对题目的理解,并不断更新自己的知识体系。
4.留下时间进行总结。
高考数学压轴题要求考生在短时间内进行综合解答,因此,完成压轴题后,考生可以适当地留下时间总结分析,以便更好地理解复杂的问题并提高自己的应对能力。
以上是高考数学压轴题的解答方法,希望能够对广大考生有所帮助。
总之,高考数学压轴题是高考数学中的重要考察内容。
准备压轴题需要考生有扎实的数学知识基础,综合思考能力和优秀的解题策略、考试思路。
在这个过程中切不可忽视平时基础的积累和思维训练,不断扩充自己的知识体系。
高考数学压轴题的技巧

高考数学压轴题的技巧高考数学压轴题,是指在高考数学卷纸面末尾出现的试题,通常是难度较大、综合性较强、需要历年来所学知识的综合应用、思维难度较高的试题。
对于考生来说,这道题目有可能会成为考试的拦路虎,也有可能在不经意间成为抢分的机会。
下文将从几个角度来述说高考数学压轴题的技巧。
一、掌握数学知识这个听起来是肯定的,但是却有证据表明,有些考生在数学考试中,只是抱着会做17、18道题就过得思路。
数学题目的解法是脱离不了知识的,特别是对于中高难度的数学题目而言,所需要的知识点并不能仅限于该知识点名称,而是要理解知识点彼此的联系、相互影响,以及它们在复杂问题中的应用,相信这样做至少会让压轴题的难度降低很多。
二、提前研究到高考数学卷压轴题时,考生的头脑多半已经处于极度疲劳的状态。
如果此时才开始考虑如何解决难度较大的问题,那么一定会让自己更加紧张,甚至使自己惨遭失败。
所以,提前熟悉历年高考压轴题往往有助于压轴题的解决。
通览历年高考卷,可以发现有不少考题在难度和思维层次上有诸多相似之处,所以如果能在平时分析这些题目的解题思路,积累一些数学的解题经验,对于高考时的应对更是有益。
三、针对性解题针对性解题的方法是针对高考数学卷压轴题的特点,通过分析题目的难度,选用高考数学笔试中比较好掌握的部分解决高考数学卷压轴题这样一种方法。
特别是对于前三个题目的解决,往往关系到难题求解的过程,因此需要我们重点把握。
四、保持冷静由于高考数学卷压轴题的难度比较大,所以很容易让考生失去信心、紧张、焦虑等负面心理,甚至难以理解题目中的要点。
因此,保持冷静是解决高考压轴题的关键。
只有冷静下来,不慌不忙地分析题目,找到解题思路,才能顺利地解决该题。
五、动脑筋数学是一门学科,而不是简单的运算,高考数学卷压轴题的解题过程需要有创造性,需要考生在解题过程中运用自己的智慧,灵活运用数学知识。
所以,在解决高考数学卷压轴题的过程中,我们要学会动脑筋,灵活去解决问题。
关于高考数学压轴题解题方法_答题技巧

关于高考数学压轴题解题方法_答题技巧1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。
2. 运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。
3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。
如果遇到找相似的三角形,要切记先看角,再算边。
遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。
这都是能大大简化运算的。
还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足具体方法较多,如果有时间,我会举实例进行分析。
最后说一下初中需要掌握的主要的数学思想:1,高一. 方程与函数思想利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等2. 分类讨论思想这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。
3. 转化与化归思想就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等4. 数形结合思想高中用的较多的是用几何问题去解决直角坐标系中的函数问题,对于高中生,尽可能从图形着手去解决,比如求点的坐标,可以通过往坐标轴作垂线,把它转化为求线段的长,再结合基本的相似全等三角比解决,尽可能避免用两点间距离公式列方程组,比较典型的是08年中考,倒数第2题,用解析法的同学列出一个极其复杂的方程后,无法继续求解下去了,而用几何方法,结合相似三角比可以轻易解决。
高考数学压轴题答题技巧

⾼考数学压轴题答题技巧很多⾼中⽣都会⾯临⾼考数学130分上不去的瓶颈,这其中很⼤⼀部分的原因都出在压轴题上。
那么接下来给⼤家分享⼀些关于⾼考数学压轴题答题技巧,希望对⼤家有所帮助。
⾼考数学压轴题答题技巧1.圆锥曲线圆锥曲线题,第⼀问求曲线⽅程,注意⽅法(定义法、待定系数法、直接求轨迹法、反求法、参数⽅程法等等)。
⼀定检查下第⼀问算的数对不,要不如果算错了第⼆问做出来了也⽩算了。
第⼆问有直线与圆锥曲线相交时,记住“联⽴完事⽤联⽴”,第⼀步联⽴,根据韦达定理得出两根之和、两根之差、因⼀般都是交于两点,注意验证判别式>;0,设直线时注意讨论斜率是否存在。
第⼆步也是最关键的就是⽤联⽴,关键是怎么⽤联⽴,即如何将题⾥的条件转化成你刚才联⽴完的x1+x2和x1x2,然后将结果代⼊即可,通常涉及的题型有弦长问题(代⼊弦长公式)、定⽐分点问题(根据⽐例关系建⽴三点坐标之间的⼀个关系式(横坐标或纵坐标),再根据根与系数的关系建⽴圆锥曲线上的两点坐标的两个关系式,从这三个关系式⼊⼿解决)、点对称问题(利⽤两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系。
2.⽴体⼏何⽴体⼏何题,证明题注意各种证明类型的⽅法(判定定理、性质定理),注意引辅助线,⼀般都是对⾓线、中点、成⽐例的点、等腰等边三⾓形中点等等,理科其实证明不出来直接⽤向量法也是可以的。
计算题主要是体积,注意将字母换位(等体积法);线⾯距离⽤等体积法。
理科还有求⼆⾯⾓、线⾯⾓等,⽤建⽴空间坐标系的⽅法(向量法)⽐较简单,注意各个点的坐标的计算,不要算错。
3.导数⾼考导数压轴题考察的是⼀种综合能⼒,其考察内容⽅法远远⾼于课本,其涉及基本概念主要是:切线,单调性,⾮单调,极值,极值点,最值,恒成⽴,任意,存在等。
1.⼀般题⽬中会有少量⽂字描述,所以就会涉及⽂字的简单翻译。
2.题⽬中最核⼼的描述为各类式⼦:主要为普通类型:⼀般涉及三次函数,指对数,分式函数,绝对值函数,个别情况会涉及三⾓函数,特殊类型:主要含有x1,x2,f(x1),f(x2)类型。
高考数学压轴题解题技巧和方法

圆锥曲线解题技巧一、常规七大题型: 〔1〕中点弦问题具有斜率弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),那么有02020=+k by a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)那么有02020=-k by a x 〔3〕y 2=2px 〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),那么有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕直线与双曲线交于两点P 1 及P 2,求线段P 1P 2中点P 轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线位置关系根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数关系、求根公式等来处理,应特别注意数形结合思想,通过图形直观性帮助分析解决问题,如果直线过椭圆焦点,结合三大曲线定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线交点为A 、B ,且OA ⊥OB ,求p 关于t 函数f(t)表达式。
高考数学压轴题解法与技巧

高考数学压轴题解法与技巧高考数学压轴题,一直以来都是众多考生心中的“拦路虎”。
然而,只要我们掌握了正确的解法与技巧,就能在这场挑战中脱颖而出。
首先,我们要明确什么是高考数学压轴题。
通常来说,压轴题是指在高考数学试卷的最后几道题目,它们综合性强、难度较大,往往涵盖了多个知识点,对考生的思维能力、计算能力和综合运用知识的能力都有很高的要求。
一、掌握扎实的基础知识要解决高考数学压轴题,扎实的基础知识是关键。
这包括对数学概念、定理、公式的深入理解和熟练掌握。
例如,函数的性质、导数的应用、数列的通项公式与求和公式、圆锥曲线的方程与性质等。
只有在基础知识牢固的基础上,我们才能在复杂的题目中找到解题的突破口。
以函数为例,要理解函数的定义域、值域、单调性、奇偶性、周期性等基本性质,并且能够熟练运用求导的方法来研究函数的单调性和极值。
如果对这些基础知识掌握不扎实,在面对压轴题中涉及函数的问题时,就会感到无从下手。
二、培养良好的数学思维1、逻辑思维在解决压轴题时,清晰的逻辑思维至关重要。
我们需要从题目中提取关键信息,分析已知条件和所求问题之间的逻辑关系,逐步推导得出结论。
比如,在证明一个数学命题时,要先明确证明的方向,然后根据已知条件选择合适的定理和方法进行推理。
在推理过程中,要保证每一步都有依据,逻辑严密,不能出现跳跃和漏洞。
2、逆向思维有时候,正向思考难以解决问题,我们可以尝试逆向思维。
即从所求的结论出发,反推需要满足的条件,逐步逼近已知条件。
例如,对于一些存在性问题,我们可以先假设存在满足条件的对象,然后根据假设进行推理,如果能够推出与已知条件相符的结果,那么假设成立;否则,假设不成立。
3、分类讨论思维由于压轴题的综合性较强,往往需要根据不同的情况进行分类讨论。
比如,对于含参数的问题,要根据参数的取值范围进行分类,分别讨论在不同情况下的解题方法。
在分类讨论时,要做到不重不漏,条理清晰。
每一类的讨论都要独立进行,最后综合各类的结果得出最终答案。
高考数学压轴题解题技巧

高考数学压轴题解题技巧高考数学压轴题是所有数学题目中最重要的一道题目,考察的不仅仅是学生的数学能力,还考查学生对于数学思想和思维能力的掌握情况。
因此,在考场上若要顺利完成这道题,学生不仅需要对于数学基础知识有扎实的理解掌握,还需要拥有一定的解题技巧。
本文旨在介绍高考数学压轴题的解题技巧,帮助广大考生在考场上顺利解答。
第一,审题应当仔细。
在进行高考数学压轴题解题之前,考生首先要仔细审题。
了解所给出的题目内容以及题目所要求的答案,这将对学生的解题过程起到关键作用。
如果考生没有对题目进行仔细审阅,就会导致对题目的主题和核心思想没有深入的认识,因此,无论如何都不会成功地进行解答。
所以我们在考试最初的时候要耐心地阅读,仔细研究每一个问题,弄清题目的要求,并牢记题目信息,不遗漏任何重要的条件。
第二,多思考并构思问题。
高考数学压轴题都是由一些较为抽象的问题组成的,在考试期间,只凭空造作很难得到正确的答案。
因此,我们需要花时间构思问题。
在阅读完题目之后,我们应该停下来,思考一下。
通过思考,可以使我们更快的解决问题。
并且要注意的是,做题思考不光在解决这道题时有用,随时思考和练习也能启发我们,从而提高我们的思考能力,让我们对数学产生浓厚的兴趣和热情。
第三,运用合适的公式和方法。
在考试中,我们需要善于运用公式和方法,寻找最优解方案。
可以先把题目中的数据列出来,然后尝试用刚学过的公式去套用。
通过这样的方式,我们可以找到最合适的解题方法。
同时,在进行数学压轴题的过程中,我们也可以将所学的知识进行紧密的结合,各种知识点之间的联系也是需要学生进行深入的思考的。
最后,做高考数学压轴题的时间是比较紧张的,因此我们需要合理分配时间来解答。
在考试期间,学生必须坚定自己的信念,保持镇静,不要慌乱,冷静分析题目,在规定时间内尽可能地得到答案。
总之,高考数学压轴题是考察学生数学素养的重要环节之一,在考试期间,如果我们能够采用上述的方法,注重审题,多思考构思,运用合适的公式和方法解题,以及合理分配时间,相信我们一定能够顺利地完成数学压轴题目,取得好成绩。
2024广东高考数学压轴题解答技巧

2024广东高考数学压轴题解答技巧数学是广东高考的一项重要科目,也是很多考生所关注的焦点。
而压轴题是广东高考中备受考生关注和关心的一道必做题。
解答压轴题需要一定的技巧和策略,下面我将给大家介绍一些解答压轴题的技巧。
一、提前掌握基础知识压轴题是对考生对基础知识的综合考察,因此提前掌握和复习基础知识是非常重要的。
在备考过程中,要认真学习教材,整理知识点,做好复习资料,特别是对前几年的压轴题进行仔细分析和总结,掌握常见的解题思路和方法。
只有基础扎实,才能应对复杂的压轴题。
二、抓住题目的主要矛盾压轴题往往是一道或多道较为复杂的综合题,考察了各个章节的知识点,并且融合了多个解题方法。
因此,在解答压轴题时,要先理清题意,找出主要矛盾和关键点,抓住题目的重点,不要被题目的复杂表象所迷惑。
三、熟练掌握解题方法解答压轴题需要运用多种解题方法,因此,要熟练掌握各类解题方法。
在备考过程中,可以针对不同类型的题目进行分类整理,将各类解题方法进行总结和梳理,做到心中有数。
在解题时要根据具体情况选用恰当的解题方法,灵活运用,做到驾轻就熟。
四、创新思维,灵活运用压轴题往往需要考生具备创新思维和灵活应用知识的能力。
在解答压轴题时,要善于从不同的角度思考问题,运用已有的知识解决新的问题,通过灵活运用已有的解题方法来解决新问题。
要注重培养自己的创新思维和解决问题的能力,不断提升解题水平。
五、合理安排解题时间在解答压轴题时,要合理安排解题时间,充分发挥自己的解题能力。
对于较为复杂的问题,可以采用分步解决的方法,先解决一部分,然后再综合整体解决问题。
要在解答过程中注意时间的分配,尽量避免在其中一道题目上花费过多的时间导致其他题目无法解答。
六、谨慎作答,注意验证在解答压轴题时,要谨慎作答,仔细检查自己的答案,避免粗心导致的错误。
特别是在涉及较为复杂的计算或证明过程的题目中,要特别注意每一步的准确性和逻辑性。
在解答完所有题目后,还要再次检查答案,尤其是对一些数值题要进行合理性的验证,避免漏算、误算等错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年关于高考数学压轴题解题方法
关于高考数学压轴题解题方法压
轴题的解题方法,具体题目还是要具体分析,不能一一而谈,总体来说,思路如下:
1.复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。
2.运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,高中政治,在找到变化线段之间的联系,用代数式慢慢求解。
3.一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。
如果遇到找相似的三角形,要切记先看角,再算边。
遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。
这都是能大大简化运算的。
还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足
具体方法较多,如果有时间,我会举实例进行分析。
最后说一下初中需要掌握的主要的数学思想:
1.方程与函数思想
利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等
2.分类讨论思想
这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。
3.转化与化归思想
就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等
4.数形结合思想
高中用的较多的是用几何问题去解决直角坐标系中的函数
问题,对于高中生,尽可能从图形着手去解决,比如求点的坐标,可以通过往坐标轴作垂线,把它转化为求线段的长,再结合基本的相似全等三角比解决,尽可能避免用两点间距离公式列方程组,比较典型的是08年中考,倒数第2题,用解析法的同学列出一个极其复杂的方程后,无法继续求解下去了,而用几何方法,结合相似三角比可以轻易解决。
另一个典型的例子是09二模倒数第2题,用几何法3分钟解决,而用代数法30分钟也未必能解决。
所以遇到此类题目,切记先用几何方法,实在做不出再用解析法。