快速成型技术及应用

合集下载

简述快速成型技术的应用领域。

简述快速成型技术的应用领域。

简述快速成型技术的应用领域。

快速成型技术(Rapid Prototyping,RP)是一种通过逐层堆积材料构建三维实体模型的制造技术,它可以快速、精确地制造出产品的样件或模型。

快速成型技术的应用领域非常广泛,下面将从工业设计、医疗领域、建筑设计和教育领域等方面进行简要介绍。

快速成型技术在工业设计领域得到了广泛应用。

在产品设计过程中,通过快速成型技术可以快速制造出产品的样件,供设计师进行实物验证和修正,从而加快产品开发周期。

此外,快速成型技术还可以制造出复杂形状的零部件,为工程师提供更多的设计自由度和创新空间。

快速成型技术在医疗领域也有重要的应用。

医疗器械的研发和生产需要经过严格的验证和测试,而快速成型技术可以快速制造出医疗器械的样件,用于验证其功能和可用性。

此外,快速成型技术还可以制造出个性化医疗器械,如植入式器械和义肢等,为患者提供更好的医疗服务。

快速成型技术在建筑设计领域也有广泛的应用。

传统的建筑模型制作过程需要耗费大量的时间和人力,而快速成型技术可以快速制造出建筑模型,帮助设计师和业主更好地理解和评估建筑设计方案。

此外,快速成型技术还可以制造出建筑构件,如曲面墙板和装饰雕塑等,为建筑设计提供更多的创意和可能性。

快速成型技术在教育领域也有广泛的应用。

通过快速成型技术,学生可以将自己的创意转化为实物,提升创造力和动手能力。

同时,快速成型技术还可以用于制作教学模型和实验装置,帮助学生更好地理解和掌握知识。

快速成型技术在工业设计、医疗领域、建筑设计和教育领域等方面都有广泛的应用。

随着技术的不断发展,快速成型技术将在更多的领域中发挥重要作用,为人们的生活和工作带来更多的便利和创新。

快速成型技术在制造业中的应用

快速成型技术在制造业中的应用

快速成型技术在制造业中的应用一、背景介绍随着科技的不断发展,制造业也不断地更新迭代,快速成型技术应运而生。

快速成型技术是指利用计算机辅助设计技术和快速制造技术,通过将数字模型数据转化为实际物理模型的过程,实现快速制造的一种技术。

它具有制造周期短,制造成本低,制造精度高等优点,受到了制造业的广泛关注和应用。

二、快速成型技术的发展历程快速成型技术始于上世纪80年代,至今已经发展了30多年。

其核心技术是三维打印技术(3D打印),最初只能用于制造产品的概念模型和小批量试制,但随着科技的进步和应用范围的扩大,现在已经可以应用于生产具有工程实用价值的大批量零部件和成品。

三、快速成型技术在制造业中的应用1.汽车制造快速成型技术在汽车制造方面应用广泛。

汽车生产中有许多金属零部件需要进行加工和制造,传统的金属加工和制造过程需要多次的筛选和测试,而快速成型技术将这一过程简化为虚拟数字模型一次性的制造,大大节约了生产周期和生产成本。

2.航空航天制造在航空航天制造领域,不仅要求制造零件的构造合理,而且要求制造零件具有足够的强度,耐热性,抗腐蚀等性能。

快速成型技术可以制造设计复杂的零件,如涡轮叶片,喷嘴等高难度零件,此外,快速成型技术还可以用于制造航空用材料,如金属陶瓷等。

3.医疗设备制造在医疗设备制造方面,快速成型技术可用于生产高精度,高品质的假肢,矫形器和外科手术器械等医疗器械,这些器械具有良好的适应性和合理性,对手术质量和病人康复起到了重要作用。

四、快速成型技术的优势1.设计复杂零件快速成型技术可以通过复杂的数字模拟模型,将复杂的结构转化成实际的三维模型,可以简化设计,控制生产周期。

2.制造周期短传统加工制造技术需要大量的时间完成整个加工制造过程,快速成型技术可以大大缩短加工周期,在保证加工精度的同时,提高生产效率。

3.制造成本低传统的加工制造技术需要大量的安装和制造机械设备,而快速成型技术为基于数字模拟的生产模式,减少了机械设备的制造和安装成本。

快速成型技术及其在工业生产中的应用

快速成型技术及其在工业生产中的应用

快速成型技术及其在工业生产中的应用快速成型技术是近年来工业生产领域中一个炙手可热的技术,其将传统的制造方式推向了一个全新的境界,对于工业生产的质量、效率、成本的优化均有积极的帮助,在未来的发展中,其前景更加广阔。

一、快速成型技术概述快速成型技术是指通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,利用激光、电子束、喷墨等方式将原料制造成零部件的新型制造技术。

目前,应用较广泛的快速成型技术主要有激光烧结成型、光固化成型、激光熔化成型、线切割成型、喷墨成型等。

二、快速成型技术在工业生产中应用1. 工业设计快速成型技术最大的优势是在产品设计阶段,可以快速制造出实际尺寸的零部件,从而帮助实现更好的设计效果。

传统的模型制作需要用手工完成,周期较长、成本高,且不利于修改,而快速成型技术可以快速、准确、灵活地制造出多种模型,帮助设计师实现更好的设计效果。

2. 制造业在工业生产领域中,快速成型技术广泛应用于各种制造行业,如汽车、航空、医疗等。

在汽车行业中,快速成型技术可以快速地生产出各种所需零部件,从而实现零部件的快速替换和更新,提高整车的制造效率和质量,同时,由于快速成型技术可以精确制造各种模具,因此可以生产各种复杂、精密的模具,为汽车制造业带来更大的便利。

在航空行业中,快速成型技术的应用范围也十分广泛,主要用于生产各种复杂、精密的零部件,从而提高飞机的制造效率和质量。

在医疗行业中,快速成型技术可以用于生产各种医疗器械和植入物。

其制造出来的零部件可以依据患者的具体情况进行制造,因此可以更好地满足医疗行业的需求。

3. 艺术设计快速成型技术还可以用于艺术设计领域。

由于其精度和灵活性较高,因此可以造就出更多新颖、独特的艺术品,对于传统艺术的转型和发展有着积极的作用。

由于快速成型技术可以将艺术家的想象力变为现实,因此可以给艺术家带来更多的自由度和创作灵感。

三、快速成型技术发展前景随着科技的不断进步和市场需求的不断增加,快速成型技术在工业生产领域中的应用前景十分广阔。

《快速成型技术及应用》学习心得3篇

《快速成型技术及应用》学习心得3篇

《快速成型技术及应用》学习心得 (2)《快速成型技术及应用》学习心得 (2)精选3篇(一)在学习《快速成型技术及应用》这门课程期间,我对快速成型技术的原理和应用有了深入的了解。

首先,我学习了快速成型技术的原理和基本工艺流程。

快速成型技术是一种通过逐层堆积材料来构建三维实体模型的制造方法。

这种方法可以实现复杂零件的快速制造,同时减少了制造过程中的浪费和成本。

其次,我了解到了常见的快速成型技术。

课程中介绍了多种快速成型技术,如光固化技术、喷墨技术、熔融沉积技术等。

每种技术都有其特点和适用范围,通过学习,我能够根据实际需求选择最合适的快速成型技术。

此外,我还了解到了快速成型技术的应用领域。

除了在工业制造领域广泛应用外,快速成型技术还在医疗领域、航空航天领域等有着重要的应用。

在课程中,我了解到了一些实际案例,如使用快速成型技术制造单一模型的重要性以及如何应用于现代生物医学等领域。

通过学习《快速成型技术及应用》,我不仅对快速成型技术有了更深刻的理解,还掌握了一些实际应用的技能。

这门课程为我今后在工程设计和制造领域的实践提供了很好的指导和帮助。

《快速成型技术及应用》学习心得 (2)精选3篇(二)《快速成型技术及应用》是一本介绍快速成型技术的教材,该书内容丰富,涵盖了快速成型技术的基本原理、方法和应用。

通过学习这本书,我对快速成型技术有了更加清晰的认识。

首先,书中对快速成型技术的原理做了详细的介绍,让我了解到了该技术的基本工作流程和实现原理。

其次,书中列举了各种快速成型技术的特点和适用范围,让我了解到了不同的快速成型技术在不同领域的应用情况。

最后,书中还介绍了快速成型技术在制造业、医疗、艺术设计等领域的具体应用案例,这让我更加明确了快速成型技术的实际意义和潜力。

通过学习这本教材,我不仅学到了关于快速成型技术的知识,也了解到了该技术在实际应用中的挑战和发展方向。

同时,通过学习书中的案例,我也对该技术如何在实际工作中发挥作用有了更深入的理解。

快速成型技术在工业设计中的应用研究

快速成型技术在工业设计中的应用研究

快速成型技术在工业设计中的应用研究一、引言随着科技的不断发展,现代工业设计更加注重效率和创新,快速成型技术(Rapid Prototyping,简称RP)因其高效、精度高的特点成为工业设计优化的重要手段之一。

本文将探讨快速成型技术在工业设计中的应用研究。

二、快速成型技术概述快速成型技术是一种将计算机辅助设计与制造工艺相结合的新型制造技术,主要包括激光成型、挤出成型、光固化等技术。

该技术通过数字化模型,直接切削、粘合或熔融制造物体,无需制造模具,实现短时间内制造产品的目的。

在工业设计中,快速成型技术主要应用于制作产品模型、验机模型、试制模型和原型模型等领域,能够大幅度提高设计效率和节约制造成本。

三、快速成型技术的应用案例1.汽车设计随着现代汽车行业的发展,汽车设计需要更加注重创新和效率,快速成型技术在汽车设计中得到广泛应用。

通过数字化模型,设计师可以设计出更加精细的汽车部件,并通过RP技术快速制造出原型模型进行验证和修改。

相比传统的手工制造方式,RP技术不仅效率更高,而且能够制造更加精准的模型,提供更多的设计空间。

2.工业机器人设计工业机器人是现代工厂自动化生产的重要组成部分,RP技术在机器人设计中得到广泛应用。

通过数字化模型,工程师可以更加快速地进行机器人设计和仿真分析,并通过快速成型技术制造出机器人模型进行试验和评估。

这种方式可以极大地加快机器人设计和仿真分析的效率,减少试制周期和成本。

3.医疗设备设计医疗设备是现代医疗行业的重要组成部分,准确、精细的设计对于患者的治疗效果有着至关重要的作用。

快速成型技术在医疗设备设计中得到了广泛应用,可以通过数字化模型设计出更加准确、高效的医疗设备,并通过RP技术制造体模型进行实验和验证。

四、快速成型技术的优势1.高效性快速成型技术可以大幅度提高设计和制造的效率,加快产品迭代周期。

与传统模具加工相比,RP技术可以在短时间内制造出产品原型模型进行验证和改进。

2.精度高快速成型技术利用数字化模型,精准的控制制造工艺,可以制造出非常高的精度的产品原型模型,同时,可以在改进过程中进行多次尺寸校验。

快速成型技术在企业实际生产中的应用

快速成型技术在企业实际生产中的应用

快速成型技术在企业实际生产中的应用快速成型技术(Rapid Prototyping,简称RP)是一种以计算机辅助设计和制造(CAD/CAM)技术为基础的先进制造技术,它可以将虚拟模型快速转化为实际的实物模型。

快速成型技术在企业实际生产中具有广泛的应用,可以在很大程度上提高生产效率、降低生产成本,并且在产品开发、创新和改进过程中起到关键的作用。

首先,快速成型技术可以用于快速制作产品原型。

在产品开发的早期阶段,通过快速成型技术可以快速制作出产品的实物模型,与传统的手工制作相比,大大缩短了原型制作的时间。

这不仅可以提高产品开发的速度,还可以让设计师更直观地观察和评估产品的形状、结构和功能,提高认知的准确性和可用性。

同时,这也有助于在产品设计的早期阶段发现和解决问题,并且为后续的产品测试、改进和制造提供参考。

其次,快速成型技术可以用于批量生产特定产品。

在一些需要定制化的生产过程中,传统的批量生产往往需要大量的模具和工装设备,而快速成型技术则可以通过3D打印等方式直接生产出具有一定功能的产品,从而节省了模具制造的时间和成本。

特别是在小批量生产、个性化定制等场景中,快速成型技术具有明显的优势,可以根据客户的需求快速制作出符合其要求的产品,提高客户满意度和产品的市场竞争力。

此外,快速成型技术还可以用于快速制作少量生产工具和产品模具。

在大规模生产的情况下,传统的模具制造往往需要花费很长时间。

而快速成型技术可以通过3D打印等方式直接制作出模具,然后进行相应的加工和调整。

这不仅可以大大缩短模具制造的周期,还可以降低模具的制造成本,提高生产效率和品质。

最后,快速成型技术还可以用于产品设计的迭代和优化。

在产品开发的过程中,设计师通常需要不断地更新和改进产品的设计。

通过快速成型技术,设计师可以快速制作出新的产品原型,并进行测试和评估。

这样一来,设计师可以更加方便地分析和改善产品的结构和功能,为产品的市场推出提供更多的保障。

快速成型技术在产品设计中的应用

快速成型技术在产品设计中的应用

快速成型技术在产品设计中的应用
快速成型技术是一种将数字化三维模型转化为实际物体的技术,通过计算机辅助设计
软件和材料加工设备实现原型设计与制造的重要方法。

在产品设计领域中,快速成型技术
应用广泛,主要应用于产品原型制作、产品的外观检验和最终产品的制造等方面。

一、原型制作
快速成型技术可以大大加快产品原型的制作速度,并可以提供高精度、高质量的原型。

使用传统的手工制作方法,需要耗费大量的时间和人力,而且在精度和质量方面也无法与
快速成型技术相比。

快速成型技术可以将设计师的概念迅速转化为实际产品样品,从而使
设计师可以更快地评估和确认其设计方案的可行性,对于新产品的开发和改良具有重要的
作用。

二、外观检验
在产品设计阶段,快速成型技术可以通过制造实际样品,方便设计师对产品的外观、
尺寸、色彩等方面进行检验。

传统的检验方式需要手动制作模型进行比对,费时费力,且
难以做到精度的一致性。

快速成型技术可以在短时间内制作多个产品样品,提高检验的效
率和准确性。

三、最终产品制造
快速成型技术可以直接将设计师的三维模型转化为零件,并可以在短时间内生产出更
具精度和质量的产品。

在快速成型技术中,材料的用量较少,制造过程中浪费的材料也较少,大大降低了生产成本,并提高了生产效率和产品质量。

综上所述,快速成型技术在产品设计中的应用广泛,具有很大的优势。

它可以减少产
品制造时间,提高产品设计和制造的效率和准确性,从而为产品的研发和改进提供了有力
的技术手段。

随着新材料和新技术的不断发展,快速成型技术将会在产品设计中发挥更为
重要的作用。

快速成型技术原理及应用

快速成型技术原理及应用

快速成型技术原理及应用快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。

成型原理:基于离散-叠加原理而实现快速加工原型或零件特点:不需机加工设备或者模具即可快速制造形状极为复杂的工件简介:(Rapid Prototyping&Manufacturing, 缩写为RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术. 其特点是可以不需机加工设备或者模具即可快速制造形状极为复杂的工件, 从而在小批量产品生产或新产品试制时节省时间和初始投资.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用. 而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.快速成型技术(RP)的成型过程: 首先建立目标件的三维计算机辅助设计(CAD 3D)模型, 然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比如Z轴)将CAD 实体模型离散为一片片很薄的平行平面; 把这些薄平面的数据信息传输给快速成型系统中的工作执行部件,将控制成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件.经过20多年的发展, 快速成型技术(RP)有较大发展, 应用非常广泛,尤其在汽车制造,航天航空,建筑,家电,卫生医疗及娱乐等领域有强大的应用.目前基于快速成型技术(RP)开发的工艺种类较多, 可以分别按所用材料划分, 成型方法划分等.1) 利用激光或其它光源的成型工艺的成型:---(SL)---(简称LOM)---(简称SLS)---形状层积技术(简称SDM);2) 利用原材料喷射工艺的成型:---(简称FDM)---三维印刷技术(简称3DP)其它类型工艺有:---树脂热固化成型 (LTP)---实体掩模成型 (SGC)---弹射颗粒成型 (BFM)---空间成型 (SF)---实体薄片成型 (SFP)应用:RPM技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计),造型设计,结构设计,基本功能评估,模拟样件试制这段开发过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
取得重大成果。如美国DTM公司利用SLS工艺成形金属 件。一般可通过两种途径:一是使用高功率二氧化碳激 光直接烧结金属粉,逐层堆积成致密度高的结构件;二 是使用中低功率二氧化碳激光烧结覆膜金属粉成形,然 后通过高温烧结和渗金属处理获得致密度高的结构件。 国内如中北大学已利用SLS工艺间接成形小型结构件并 获得阶段成果。西工大在高功率激光直接烧结金属粉的 研究已取得重大进展。 加强RPT的应用研究,最大程度地拓宽其应用领域 。我国更应重视将RPT与反求工程相结合设计开发新产 品,符合中国国情。
第一章 快速成型原理及方法概要
1.1成型方式分类
根据现代成形学的观点,从物质的组织方式分为以 下四类: (1)去除成形(Dislodge Forming).去除成型是利 用分离的方法,把一部分材料有序地从基体上分离出去 而成型的方法. (2)堆积成形(Stacking Forming).堆积成型是运 用合并与连接的方法,把材料(气.液.固相)有序 地合并堆积起来的成型方法.RP即属于堆积成型.堆 积成型是在计算机控制下完成的,其最大特点是不受 成型零件复杂程度的限制.从广义上讲,焊接也属堆 积成型范畴.
第一章 快速成型原理及方法概要
1.2快速成形的主要工艺方法
1.2.2分层实体制造(Laminated Object Manufacturing--LOM)
也称薄形材料选择性切割.它根据三维模型每一个截面的轮廓线.在计算 机的控制下,用CO2激光束对薄形材料(如底面涂胶的纸)进行切割,逐步 得到各层截面,并黏结在一起,形成三维产品,如图所示.这种方法适合 成形大.中型零件,翘曲变形小,成形时间较短,但尺寸精度不高,材料 浪费大,且清除废料困难.
第一章 快速成型原理及方法概要
1.1成型方式分类
(3)受迫成形(Stacking Forming)受迫成型是利 用材料的可成形性(如塑性等)在特定外围约束(边 界约束或外力约束)下成形的方法.传统的锻压,铸 造和粉末冶金等均属于受迫成形. (4)生长成形(Growth Forming)生长成形是利用材 料的活性进行成形的方法,自然界中生物个体发育均 属于生长成形,“克隆”技术是产生在人为系统中的 生长成形方式.随着活性材料,仿生学,生物化学, 生命科学的发展,这种成形方式将会得到很大发展.
第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
美国MIT(Massachusetts Institute of Technology),是3D-P技术的发源地,包括金属型和陶 瓷型,后者已商业化。目前MIT在直接金属熔化沉积制 造中取得了相当的进展。 美国Dayton University,从事包括SLA在内的多 种RPT工艺。 美国UT(Texas University at Austin),与DTM 公司合作,主要为SLS工艺。 美国Carnegie Mellon University,主要从事基 于RPT的微型机械研究和开发。
ห้องสมุดไป่ตู้ 第一章 快速成型原理及方法概要
1.2快速成形的主要工艺方法
1.2.3选择性激光烧结(Selected Laser Sintering--SLS) 粉末材料选择性激光烧结的原理如图1-5所示.使用CO2激光器烧结粉末材 料(如蜡粉,PS粉,ABS粉,尼龙粉,覆膜陶瓷和金属粉等).成形时先在工作 台上铺上一层粉末材料,激光束在计算机的控制下,按照截面轮廓的信息, 对制件的实心部分所在的粉末进行烧结.一层完成后,工作台下降一层厚, 再进行后一层的铺粉烧结.如此循环,最终形成三维产品.
第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
南京航空航天大学、北京隆源公司,主要从事基 于SLS工艺的设备、工艺和材料的研究,后者已经产业 化。 西安交通大学则在SLS设备、工艺和材料的研究方 面取得了很大进展,也已经产业化。 西北工业大学利用高功率激光器直接烧结金属粉, 成形结构零件取得了阶段性成果。 中北大学(原华北工学院)对SLS的研究取得了重 大突破,研制成功线扫描SLS设备,提高了成形效率和 质量。该项成果具有自主知识产权,技术达国际先进水 平。
第一章 快速成型原理及方法概要

1.2快速成形的主要工艺方法 1.2.7热塑性材料选择性喷洒 下图是一种喷墨式的热塑性材料选择性喷洒快速成型系统的原理 图。它采用两个喷嘴,其中一个用于喷洒成形用热塑性材料,另一个 用于喷洒支撑成形件的蜡。这两个喷嘴能根据截面轮廓的信息,在计 算机的控制下做x-y平面运动,选择性地分别喷洒溶化的热塑性材料和 蜡,此两种材料在工作台基底上迅速冷却后形成固态截面层和支撑结 构。随后,用一刀具铣平它们的上表面,使其控制在预定的截面高度 ,每层截面成型之后,工作台下降一截面层的高度,再进行后一层的 喷洒,如此循环。
快速成型技术及应用
中北大学学习略记
目录
快速成型及技术原理及方法概要 快速模具制造技术概要 快速成型技术的软件技术 中北大学在此方面的一些成果

第一章 快速成型原理及方法概要


快速成型(Rapid Prototyping--RP)技术属于机械工 程学科特种加工工艺的范围,用激光作为能源的快速成 型技术(RPT)还可以归入激光加工门类,它是一项多 学科交叉多技术集成的先进制造技术,也是制造理论研 究成果中具有代表性的成果之一. 笼统地讲,快速成型属于添加成型,严格地讲,快速成型 是离散/堆积成型.将计算机上制作的零件三维模型,进 行网格化处理并存储,对其进行分层处理,得到各层截面 的二维轮廓信息,按照这些轮廓信息生成加工路径,由成 型头在控制系统的控制下,选择性地固化或切割一层层 的成型材料,形成各个截面轮廓薄片,并逐渐顺序叠加成 三维坯件,然后进行坯件的后处理,形成零件,如图1-1所 示.
第一章 快速成型原理及方法概要
1.2快速成形的主要工艺方法 1.2.5三维打印(Three-Dimensional Printing---3D-P) 三维打印也称粉末材料选择性粘结,如图1-7所示。喷头在计算机的控制 下,按照截面轮廓的信息,在铺好的一层粉末材料上,有选择性地喷射 粘结剂,使部分粉末粘结,形成截面层。一层完成后,工作台下降一个 层厚,铺粉,喷粘结剂,再进行后一层的粘结,如此循环形成三维产品 。粘结得到的制件要置于加热炉中,作进一步的固化或烧结,以提高粘 结强度。
第一章 快速成型原理及方法概要

1.2快速成形的主要工艺方法 1.2.6固基光敏液相法(Solid ground curling--SGC)
固基光敏液相法的工艺原理如图1-8所示。一层的成型过程由五步来 完成:添料;掩膜紫外光曝光;清除未固化的多余液体料;向空隙处填 充蜡料和磨平。掩膜的制造采用了离于成像技术,因此同一底片可以重 复使用。由于过程复杂,SGC成形机是所有成形机中最庞大的一种。
第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
该校开发的点扫描SLS设备,具有光斑尺寸小(直径 0.3mm)、加工精度高等特点,技术达到国内领先水平 。同时自主开发的蜡粉、PS粉等成形材料性能也好于 国内同类产品,已获得较好的产业化成果。 近年来在全国各地建立的RPT中心已经遍布北京、 太原、深圳、广州、天津、上海、西安、武汉、宁波 、重庆以及香港、台湾等地。一些大型企业配备了RPS ,服务于本企业的生产和新产品开发。目前,RPT在我 国的推广和发展呈现出大好势头。
第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
德国、新加坡、以色列等国也在RPT方面投入力量 进行了卓有成效的研究。 国外各类RP设备和工艺的产业化情况如下表。
第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
2.国内RPT的现状 国内RPT的研究从20世纪90年代初开始,起步较早 ,发展很快,具有代表性的有: 清华大学,主要从事基于LOM和FDM工艺的设备、工 艺和材料的研究,已经产业化。 华中理工大学,主要从事基于LOM工艺的设备、工 艺和材料的研究,进来也开展了对SLS的研究,已经产 业化。 浙江大学,主要对光敏树脂的成形性能进行了许多 研究。
第一章 快速成型原理及方法概要


1.2快速成形的主要工艺方法
1.2.8变长线扫描SLS RPT 1.2.9高功率激光二极管线阵能量源SLS RPT
第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
RPT是当今世界上发展最迅速的先进制造技术之一, 在短短十几年的时间里,从只有一家公司的一台设备 (1988年第一台商业化成形机问世)发展到数百家机 构从事成形设备、工艺和相关材料的研究开发,成批 的加工中心面向社会承揽来图加工服务,更多的企业 利用RPT直接为生产和新产品开发服务。美国在这一领 域一直处于领先地位,而欧洲、日本和中国在RPT上也 取得了长足的进步。 1.国外RPT的现状 美国许多世界著名大学和研究机构投入了大量经 费和人力进行这方面的研究,具有代表性的有:
第一章 快速成型原理及方法概要

1.2快速成形的主要工艺方法 1.2.4熔化沉积成形(Fused Deposition Model--FDM)
熔化沉积成形也称丝状材料选择性熔覆,其原理如图1-6所示.三维 喷头在计算机控制下,根据截面轮廓的信息,做x-y-z运动。丝材(如塑 料丝)由供丝机构送至喷头,并在喷头中加热,熔化,然后被选择性地涂 覆在工作台上,快速冷却后形成一层截面。一层完成后,工作台下降一层 厚,再进行后一层的涂覆,如此循环形成三维产品。
第一章 快速成型原理及方法概要

1.3 RPT的现状和发展方向
美国Drexel University、New Jersey理工学院、 斯坦福以及许多大学都在进行这方面的研究工作。 美国海军的David Taylor Research Centre以及 Aerospac Company Rohr Industries of San Diego 也参加到了这个领域中来。 英国Nottingham和苏格兰Dundee等许多大学和研 究机构在开展这方面的工作。 日本以东京大学为首,一批学术、研究单位也积 极开展了这方面的工作。
相关文档
最新文档