2019-2020年高考等值预测卷(全国I卷)数学(理)试卷及答案

合集下载

2019-2020年高三下学期高考预测联考(一)数学(理)试题含答案.doc

2019-2020年高三下学期高考预测联考(一)数学(理)试题含答案.doc

2019-2020年高三下学期高考预测联考(一)数学(理)试题含答案一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{11},{|A x B x x =->=<<,则 A .AB R = B .A B φ=C .B A ⊆D .A B ⊆2、设复数12,z z 在复平面内的对应点关于虚轴对称,12z i =-+,则12z z ⋅= A .5 B .-5 C .4i -+ D .4i --3、定义域为R 的四个函数32,sin ,,xy e y x y x y x ====-中,偶函数的个数是 A .1 B .2 C .3 D .44、设向量,a b 满足(1,3),(2,2)a b a b +=-=,则a b ⋅= A .1 B .2 C .3 D .55、设实数,x y 满足约束条件22022x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则231x y z x ++=+的最小值为A .3B .13 C .7 D .536、函数3y x =和y =D ,若利用计算机产生()0,1内的两个均匀随机数,x y ,则点(,)x y 恰好落在区域D 的概率为 A .512 B .13 C .38 D .237、(1)nax by ++(,a b 为常数,,,a b n N *∈)的展开式中不含x 的项的系数之和为343,则b 的 值为A .5B .6C .7D .8 8、某几何体单的三视图如图所示,则其表面积为 A .3πB C .322π+D 2+ 9、形如(0,0)by c b x c=>>-的函数应其图象类似于汉字中的“囧”字,故我们把其生动第称为“囧函数”,若函数()21(0,1)x x f x aa a ++=>≠有最小值,则当1,1cb =-=时的“囧函数”与函数2log y x =的图象交点个数为A .1B .2C .4D .610、已知F 为抛物线22y x =的焦点,点A 、B 在该抛物线上且位于x 轴的两侧,8OA OB ⋅=(其中O 为坐标原点),则ABO ∆与BFO ∆面积之和的最小值是A .9B .12CD .第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

【全国Ⅰ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)

【全国Ⅰ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11167.已知非零向量a,b满足||2||=a b,且()-a b⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π68.如图是求112122++的程序框图,图中空白框中应填入A.A=12A+B.A=12A+C.A=112A+D.A=112A+9.记nS为等差数列{}n a的前n项和.已知4505S a==,,则A.25na n=-B.310na n=-C.228nS n n=-D.2122nS n n=-10.已知椭圆C的焦点为121,01,0F F-(),(),过F2的直线与C交于A,B两点.若22||2||AF F B=,1||||AB BF=,则C的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。

2019-2020年高三高考预测数学理试题 含答案

2019-2020年高三高考预测数学理试题 含答案

2019-2020年高三高考预测数学理试题含答案一、填空题(本大题满分56分,每小题4分);本大题共有14小题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 已知集合,集合,则____________2.若复数的实部与虚部相等,则实数___________3.计算:=__________54.在的展开式中,的系数为____________5. 双曲线的一个焦点到其渐近线的距离是,则.26. 执行右面的框图,若输出结果为3,则可输入的实数值的个数为________________3解:本程序为分段函数,当时,由得,,所以。

当时,由,得。

所以满足条件的有3个,7.(理)在极坐标系中,为曲线上的动点,为曲线上的动点,则线段长度的最小值是.28.(文)如图,一个四棱锥的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是__________________12 8.(理)已知正方体外接球的体积是,那么正方体的棱长等于 ______9.(理)某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。

若在任意时刻至少有一个系统不发生故障的概率为,则=________10.(理)已知,则____11.(理)已知函数,其中.若的值域是,则的取值范围是______.解:若,则,因为当或时,,所以要使的值域是,则有,,即的取值范围是。

12.已知首项为正数的等差数列中,.则当取最大值时,数列的公差.解:设数列的公差为,由得,则,因故,当且仅当,即“=”成立,这时取得最大值,由得,所以。

13. 已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为n,则n=________________1 14.(理)已知向量序列:满足如下条件:,,且().则中第_____项最小. 5二、选择题(本大题共有4题,满分20分);每小题都给出四个选项,其中有且只有一个选项是正确的,选对得5分,否则一律得零分.15.关于、的二元一次方程组的系数行列式是该方程组有解的( D ).A.充分非必要条件 B.必要非充分条件C.充分且必要条件 D.既非充分也非必要条件16.某校150名教职工中,有老年人20个,中年人50个,青年人80个,从中抽取30个作为样本.①采用随机抽样法:抽签取出30个样本;②采用系统抽样法:将教工编号为00,01,…,149,然后平均分组抽取30个样本;③采用分层抽样法:从老年人,中年人,青年人中抽取30个样本.下列说法中正确的是( ) AA.无论采用哪种方法,这150个教工中每一个被抽到的概率都相等B.①②两种抽样方法,这150个教工中每一个被抽到的概率都相等;③并非如此C.①③两种抽样方法,这150个教工中每一个被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这150个教工中每一个被抽到的概率是各不相同的[解析] 三个抽样方法, 每一个被抽到的概率都等于.17.(理)函数的定义域为,其图像上任一点P(x,y)满足,则下列命题正确的是( D )A、函数一定是偶函数B、函数一定是奇函数C、若函数是偶函数,则其值域为或D、若函数值域为,则一定是奇函数。

2019年最新全国高考数学(理)模拟题及答案带解析(20200421222234)

2019年最新全国高考数学(理)模拟题及答案带解析(20200421222234)
除的体积是 ( )
A. 110 B . 116 C . 118 D . 120
答案 D
解析 如图,过点 A作 AP⊥ CD,AM⊥ EF,过点 B作 BQ⊥CD,
BN⊥ EF,垂足分别为 P,M,Q,N,连接 PM,QN,将一侧的几
何体补到另一侧,组成一个直三棱柱,底面积为
1 2×10×3=
15. 棱柱的高为 8,体积 V=15×8= 120. 故选 D.
2
则 z- z = (
)
A. i B .2- i C .1- i D . 0
答案 D
2
2

解析 因为 z- z = 1+ i - 1+ i = +
- -1
+ i =1- i - 1+i = 0,故选 D.
π1
3.[2017 ·福建质检 ] 已知 sin x+ 3 = 3,则 cos x+ cos(
π
差的等差数列, ∴ bn- 1=- n- 1,∴ bn= n+ 1. 故 b = 2017 2018.
15.[2017 ·河北正定统考 ] 已知点 A(0,1) ,抛物线 C: y2= ax( a>0) 的焦点为 F,连接 FA,与抛物线 C 相交于点 M,
延长 FA,与抛物线 C的准线相交于点 N,若 | FM| ∶ | MN| =1∶
y+ 1 如果目标函数 z = x- m的取值范围为
[0,2) ,则实数 m的取值范围为 ( )
1 A. 0,2
1 B. -∞, 2
1 C. -∞, 2
D. ( -∞, 0]
答案 C
解析 由约束条件,作出可行域如图中阴影部分所示,
y+ 1 而目标函数 z= x- m的几何意义为可行域内的点 ( x,y) 与 A( m,

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2019-2020普通高等学校招生全国统一考试数学卷(理)含详解 (5)

2019-2020普通高等学校招生全国统一考试数学卷(理)含详解 (5)

普通高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数:=i-11的共轭复数是 A. 21+21i B. 21-21i C.1-i D.1+i(2)已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 A.15 B.30 C.31 D.64(3)在△ABC 中,∠C =90°,AB =(k ,1), AC =(2,3),则k 的值是A.5B.-5C.23 D.- 23 (4)已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥α,则m ∥n ; ②若m ∥α,n ⊥α,则n ⊥m ; ③若m ⊥α,m ∥β,则α⊥β. 其中真命题的个数是A.0B.1C.2D.3(5)函数f(x)=a a+b 的图象如图,其中a 、b 为常数,则下列结论正确的是 A.a >b ,b <0 B.a >1,b >0 C.0<a <1,b >0 D.0<a <1,b <0(6)函数y =sin(ωx+φ)(x ∈R ,ω>0,0≤φ<2π )的部分图象如图,则A. ω=2π,φ=4π B. ω=3π,φ=6π C. ω=4π,φ=4π D. ω=4π,φ=45π(7)已知p :|2x -3|<1,q :x (x -3) <0,则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 (8)如图,长方体ABCD-A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是A.arccos515 B. 4πCDEGA 1B 1C 1D1C.arccos510 D. 2π (9)从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 A.300种 B.240种 C.144种 D.96种(10)已知F 1、F 2是双曲线12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 A.4+23 B. 3-1 C.213+ D. 3+1(11)设a ,b ∈R ,a 2+2b 2=6,则a +b 的最小值是A.-22B.-335 C.-3 D.-27(12)f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4 D5第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2019年全国卷Ⅰ理数数学高考试题(含答案)

2019年全国卷Ⅰ理数数学高考试题(含答案)
(2) 有且仅有2个零点.
21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
A.165 cmB.175 cmC.185 cmD.190cm
5.函数f(x)= 在 的图像大致为
A. B.
C. D.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
16.已知双曲线C: 的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若 , ,则C的离心率为____________.
三、解答题:
17.(12分) 的内角A,B,C的对边分别为a,b,c,设 .
(1)求A;
(2)若 ,求sinC.
18.(12分) 如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4—5:不等式选讲](10分)

2019年高考全国Ⅰ卷理数试题答案解析

2019年高考全国Ⅰ卷理数试题答案解析

2019年高考全国Ⅰ卷理数试题1.已知集合,则=A. B. C. D.【答案】C本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【解析】由题意得,,则.故选C.2.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.【答案】C本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【解析】则.故选C.3.已知,则A. B. C. D.【答案】B运用中间量比较,运用中间量比较【解析】则.故选B.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm 【答案】B理解黄金分割比例的含义,应用比例式列方程求解.【解析】设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则,得.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为42.07+5.15+105+26=178.22,接近175cm.故选B.5.函数f(x)=在[—π,π]的图像大致为A. B.C. D.【答案】D先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.【解析】由,得是奇函数,其图象关于原点对称.又.故选D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.【答案】A本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【解析】由题知,每一爻有2中情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.7.已知非零向量a,b满足=2,且(a–b)b,则a与b的夹角为A. B. C. D.【答案】B本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【解析】因为,所以=0,所以,所以=,所以与的夹角为,故选B.【迁移】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.8.如图是求程序框图,图中空白框中应填入A. A=B. A=C. A=D.A=【答案】A本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】执行第1次,是,因为第一次应该计算=,=2,循环,执行第2次,,是,因为第二次应该计算=,=3,循环,执行第3次,,否,输出,故循环体为,故选A.【迁移】秒杀速解认真观察计算式子的结构特点,可知循环体为.9.记为等差数列的前n项和.已知,则A. B. C. D.【答案】A等差数列通项公式与前n项和公式.本题还可用排除,对B,,,排除B,对C,,排除C.对D,,排除D,故选A.【解析】由题知,,解得,∴,故选A.10.已知椭圆C的焦点为,过F 2的直线与C交于A,B两点.若,,则C的方程为A. B. C. D.【答案】B由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【解析】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B.法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B.【迁移】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数有下述四个结论:①f(x)是偶函数②f(x)在区间(,)单调递增③f(x)在有4个零点④f(x)的最大值为2其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③【答案】C化简函数,研究它性质从而得出正确答案.【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C.【迁移】画出函数的图象,由图象可得①④正确,故选C.12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B. C. D.【答案】D先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【解析】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即,故选D.解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,为中点,,,,,又,两两垂直,,,,故选D. 13.曲线在点处的切线方程为___________.【答案】.本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程【解析】解析:所以,所以,曲线在点处的切线方程为,即.【迁移】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.14.记S n为等比数列{a n}的前n项和.若,则S5=____________.【答案】.本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【解析】设等比数列的公比为,由已知,所以又,所以所以.【迁移】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.【答案】0.18本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是【迁移】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算.16.已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.【答案】2.通过向量关系得到和,得到,结合双曲线的渐近线可得从而由可求离心率.【解析】如图,由得又得OA是三角形的中位线,即由,得则有,又OA与OB都是渐近线,得又,得.又渐近线OB的斜率为,所以该双曲线的离心率为.(一)必考题:共60分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考等值试卷★预测卷 理科数学(全国I 卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

全卷满分150分,考试用时120分钟。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,请将试题卷、答题卡一并收回。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则3i(1i )-=(A )1i -- (B )1i -+ (C )1i - (D )1i +2.已知集合{|lg 2}A x x =>,{|}B x x a =≥,且A B =R R ð,则实数a 的取值范围是 (A )2a > (B )2a ≥ (C )100a > (D )100a ≥3.已知数列{}n a 的首项为1,且11n n n n a a a a +--=-对于所有大于1的正整数n 都成立,3592S S a +=,则612a a +=(A )34 (B )17 (C )36 (D )184.有关数据表明,2018年我国固定资产投资(不含农户,下同)635636亿元,增长5.9%.其中,第一产业投资22413亿元,比上年增长12.9%;第二产业投资237899亿元,增长6.2%;第三产业投资375324亿元,增长5.5%.另外,2014—2018年,我国第一产业、第二产业、第三产业投资占固定资产投资比重情况如下图所示.根据以上信息可知,下列说法中:①2014—2018年,我国第一产业投资占固定资产投资比重逐年增加;②2014—2018年,我国第一产业、第三产业投资之和占固定资产投资比重逐年增加;③224135%635636≈;④23789937532496.5%635636+≈.不正确的个数为(A )1 (B )2 (C )3 (D )45.已知π()sin(2)3f x x =+,π()cos(2)3g x x =+,则下列说法中,正确的是(A )x ∀∈R ,π()()2f x g x =- (B )x ∀∈R ,π()()4f x g x =+ (C )x ∀∈R ,π()()2g x f x =- (D )x ∀∈R ,π()()4g x f x =+6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(A )(425)π+ (B )(55)π+ (C )(525)π+ (D )(535)π+7.已知点P 为△ABC 所在平面内一点,且23PA PB PC ++=0,如果E 为AC 的中点,F 为BC 的中点,则下列结论中:①向量PA 与PC 可能平行; ②向量PA 与PC 可能垂直; ③点P 在线段EF 上; ④::21PE PF =. 正确的个数为 (A )1(B )2 (C )3 (D )48.已知椭圆22221x y a b+=(0a b >>)经过点2(1,)2,过顶点(,0)a ,(0,)b 的直线与圆2223x y +=相切,则椭圆的方程为(A )2212x y += (B )223142x y += (C )224133x y += (D )228155x y += 9.已知某品牌的手机从1米高的地方掉落时,第一次未损坏的概率为0.3,在第一次未损坏的情况下第二次也未损坏的概率为0.1.则这样的手机从1米高的地方掉落两次后仍未损坏的概率为(A )0.25 (B )0.15 (C )0.1 (D )0.0310.如果2(25)310x a x a +-+-=在区间(1,3)内有且只有一个实数解,则实数a 的取值范围是(A )716a <<(B )716a ≤<或1621425a +=(C )716a <≤ (D )716a <<或1621425a +=11.《九章算术》是中国古典数学最重要的著作.《九章算术》的“商功”一章中给出了很多几何体的体积计算公式.如图所示的几何体,上底面1111A B C D 与下底面ABCD 相互平行,且ABCD 与1111A B C D 均为长方形.《九章算术》中,称如图所示的图形为“刍童”.如果AB a =,BC b =,11A B c =,11B C d =,且两底面之间的距离为h ,记“刍童”的体积为V ,则(A )[(2)(2)]6h V c a d a c b =+++ (B )[(2)(2)]3hV c a d a c b =+++ (C )[(2)(2)]6h V c a d a c b =+++ (D )[(2)(2)]3hV c a d a c b =+++12.已知数列{}n a 的前n 项的和为n S ,且11a =-,22a =,37a =.又已知当2n >时,112332n n n n S S S S +--=-++恒成立.则使得12111722()11155k k a a a -+++≥+++ 成立的正整数k 的取值集合为(A ){|9,}k k k ≥∈N (B ){|10,}k k k ≥∈N(C ){|11,}k k k ≥∈N (D ){|12,}k k k ≥∈N第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.在了解全校学生每年平均阅读了多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为6;乙同学抽取了一个容量为15的样本,并算得样本的平均数为5.已知甲、乙两同学抽取的样本合在一起正好组成一个容量为25的样本,则合在一起后的样本的平均数为_____________.14.已知α是第四象限角,且π3sin()35α+=,则πsin()12α+=_____________. 15. 在平面直角坐标系xOy 中,过点(1,0)的一条直线与函数3()1f x x =-的图像交于P ,Q 两点,则线段PQ 长的最小值是 .16.双曲线22221x y a b-=的左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,P 为双曲线上一点,已知直线1PA ,2PA 的斜率之积为2425,1260F PF ∠=,1F 到一条渐近线的距离为6,则:(1)双曲线的方程为_______________;(2)△12PF F 的内切圆半径与外接圆半径之比为_______________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(12分)已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB 边上的高为332. (1)求B ∠的大小;(2)求cos 3cos AC A B +的值.18.(12分)如图,AB ,CD 分别是圆柱1OO 下底面、上底面的直径,AD ,BC 分别是圆柱的母线,ABCD 是一个边长为2的正方形,E ,F 都是下底面圆周上的点,且30EAB ∠=,45FAB ∠=,点P 在上底面圆周上运动.(1)判断直线AF 是否有可能与平面PBE 平行,并说明理由; (2)判断直线BE 是否有可能与平面P AE 垂直,并说明理由;(3)设平面P AE 与平面ABCD 所成夹角为θ(90θ≤),求cos θ的取值范围.19.(12分)为了了解青少年的创新能力与性别的联系,某研究院随机抽取了若干名青少年进行测试,所得结果如图1所示.图1更进一步,该研究院对上述测试结果为“优秀”的青少年进行了知识测试,得到了每个人的知识测试得分x 和创新能力得分y ,所得数据如下表所示.x 31 33 3538 39 42 45 45 47 49 52 54 57 57 60 y 6 6 7 9 9 9 10 12 12 12 13 15 16 18 19 x 63 65 65 68 71 71 73 75 77 80 80 80 83 83 84 y 21 24 25 27 31 33 36 40 42 44 46 49 51 57 54 x 84 85 86 87 90 90 91 92 93 95 y59 62 64 68 71 75 80 88 83 90根据这些数据,可以作成图2所示的散点图.图2(1)通过计算说明,能否有95%的把握认为性别与创新能力是否优秀有关.附:22(),()()()()n ad bc K a b c d a c b d -=++++2()0.0500.0100.001.3.841 6.63510.828P K k k ≥(2)从测试结果为“优秀”的青少年中,随机抽取2人,用X 表示抽得的人中,知识测试得分和创新能力得分都超过70分的人数,求(1)P X =.(3)根据前述表格中的数据,可以计算出y 关于x 的回归方程为ˆ 1.2747.92yx =-: ①根据回归方程计算:当[50,70]x ∈时,ˆy的取值范围. ②在图2中作出回归直线方程,并尝试给出描述y 与x 关系的更好的方案(只需将方案用文字描述即可,不需要进行计算).20.(12分)已知抛物线24y x =的焦点为F ,倾斜角为锐角的直线l 与抛物线交于A ,B 两点,且直线l 过点(2,0)-,||13AB =.(1)求直线l 的方程;(2)如果C 是抛物线上一点,O 为坐标原点,且存在实数t ,使得()OC OF t FA FB =++,求||FC .21.(12分)已知函数sin ()xf x x =. (1)求曲线()y f x =在ππ(,())22f 处的切线方程;(2)求证:2()16x f x >-;(3)求证:当0 1.1x <≤时,ln(1)()x f x x+>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为2cos 2sin x t y t θθ=-+⎧⎨=-+⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1ρ=,且直线l 与曲线C 相交于A ,B 两点.(1)写出曲线C 与直线l 的一般方程,并求直线l 的斜率的取值范围; (2)设(2,2)P --,且::||||57PA PB =,求直线l 的斜率.23.[选修4-5:不等式选讲](10分) 已知函数()|21||1|f x x x =+--. (1)求不等式()3f x >的解集; (2)如果“x ∀∈R ,25()2f x t t ≥-”是真命题,求t 的取值范围.。

相关文档
最新文档