22.1.4二次函数的图像和性质(4)
(用)22.1.4二次函数的图像和性质

的图象和性质
1 2 2 如何将 y x 6 x 21 转化成 y = a ( x - h) + k 的形 2 式? 1 2 y x 6 x 21 2 1 2 = (x - 12x +42) 2 1 2 = (x - 12x +36 - 36+42) 2 1 2 +3 = ( x - 6) 2
开口向下 对称轴是x=1 顶点是(1,-2)
对称轴是x=3 顶点是(3,7)
开口向下 对称轴是x=-2 顶点是(-2,-6)
我们已经知道二次函数y=a(x-h)2+k 的图象和性质,能否利用这些知识 1 2 来讨论二次函数 y x 6 x 21 图象和 2 性质?
1、探究二次函数
1 2 y x 6 x 21 2
b 4ac b 2 a x . 化简:去掉中括号 2a 4a
2
函数y=ax²+bx+c的对称轴、 b 4ac b 顶点坐标是什么?y a x 2a 4a .
2 2
这个结果通常称为求顶点坐标公式.
b y ax bx c的对称轴是:x 2a 2 b 4ac b 顶点坐标是:( , ) 2a 4a
2
函数y=ax²+bx+c的顶点式
如何求二次函数y=ax² +bx+c的对称轴和顶点坐标.
配方:
y ax2 bx c
c 2 b a x x a c 2
提取二次项系数
这个结果通常 称为求顶点坐 标公式.
2 b b b 2 c 配方:加上再 a x x 减去一次项系 数绝对值一半 a 2 a 2 a a 的平方 2 2 b 4ac b a x 整理:前三项化为平方形 2 2a 4a 式,后两项合并同类项
人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质

二次函数c bx ax y ++=2的图象和性质要点链接★二次函数y=ax ²+bx+c 可配方为:224()24b ac b y a x a a-=++,其顶点坐标为( , ),对称轴直线是 . ★求抛物线顶点和对称轴的方法:(1)直接代入顶点公式24(,)24b ac b a a --,对称轴公式2bx a=- (2)将函数y=ax ²+bx+c 配方成y=a (x-h )²+k 的形式得到顶点坐标和对称轴. ★a 、b 、c 与图象的关系:1.a 正负决定抛物线的 :a >0时, ;a <0时, .|a |决定抛物线的开口大小:|a |越大,则 ,|a |越小,则 .2.a 、b 同时决定 :①当b =0时,对称轴是 ;②左同右异,即当a 、b 同号时,对称轴在 ;当a 、b 异号时,对称轴在 .3.c 决定抛物线与y 轴 :①当c >0时,抛物线与y 轴交点在 ;②当c <0时,抛物线与y 轴交点在 ;③当c =0时,抛物线经过 . 题型一 直接利用c bx ax y ++=2获取图象信息例1 下列对于二次函数x x y -=2的图象描述正确的是( )A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的 【变式训练1】对于二次函数12842--=x x y 下列说法正确的是( ) A.图象开口向下 B.顶点坐标是(-1,3) C.当0<x 时,y 随x 的增大而减小 D.图象的对称轴是直线1-=x题型二 确定抛物线c bx ax y ++=2的解析式 角度a 利用平移规律确定抛物线的解析式例2 把抛物线322+-=x x y 沿x 轴向右平移2个单位长度,得到抛物线的解析式为 角度b 利用待定系数法确定抛物线的解析式例3 抛物线c bx ax y ++=2经过A (-2,4),B (6,4)两点,且顶点在x 轴上,则抛物线的解析式为 .【变式训练2】若函数k h x a y +-=2)(的图象经过原点,最小值为-8且形状与抛物线3222+--=x x y 相同,则此函数的解析式为 ;题型三 根据抛物线c bx ax y ++=2确定a 、b 、c 的关系例4 已知二次函数y=ax ²+bx+c (a≠0)的图象如图所示,有下列结论:①0<abc ;②c a b -<;③b c 32<;④)1)((≠+<+m b am m b a .其中正确的结论是 (只填序号)例4图 变式3图【变式训练3】已知二次函数y=ax ²+bx+c (a ≠0)的图象如图,现有下列结论:①abc >0;②0<++c b a ;③b =2a ;④a+b >0.其中正确的结论是 (只填序号). 题型四 二次函数y=ax ²+bx+c 与一次函数的双图象问题例5 一次函数y=ax+b (a ≠0)与二次函数y=ax ²+bx+c 在同一坐标系中的图象可能是( )题型五 二次函数y=ax ²+bx+c 的实际应用例6 某小说中有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度增长量y 是温度x 的二次函数,有下列说法: ①该植物在0℃时,每天高度增长量最大;②该植物在-6℃时,每天高度增长量仍能保持在20mm 以上;③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长,其中正确的有( )A.0个B.1个C.2个D.3个【变式训练4】某学校开展了多场足球比赛,在某场比赛中,一个足球被从地面上向上踢出,它距离地面的高度h (m )可以用公式t v t h 025+-=表示,其中)(s t 表示足球被踢出后经过的时间,)/(0s m v 是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( )A.5m/sB.10m/sC.20m/sD.40m/s题型六 二次函数的动态问题例7 如图,已知关于x 的二次函数y=x ²+bx+c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D.(1)求二次函数的解析式.(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在,请求出点P 的坐标.(3)有一个动点M 从点A 出发,以每秒1个单位长度的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M ,N 运动到何处时,△MNB 的面积最大,试求出最大面积.【变式训练5】如图,已知抛物线y=x²+bx+c过点A(1,0),C(0,-3).(1)求此抛物线对应的函数解析式,并确定其顶点.(2)在抛物线上存在一动点P,使△ABP的面积为10,请求出点P的坐标.中考演练考法一 二次函数c bx ax y ++=2的图象和性质例1.(2018成都)关于二次函数1422-+=x x y ,下列说法正确的是( ) A.图象与y 轴的交点坐标为(0,1) B.图象的对称轴在y 轴的右侧 C.当0<x 时,y 的值随x 值的增大而减小 D.y 的最小值为-3【变式训练1】(2018攀枝花)抛物线222+-=x x y 的顶点坐标为( ) A.(1,1) B.(-1,1) C.(1,3) D.(-1,3) 考法二 求二次函数的解析式 例2.(2018宁波)已知抛物线c bx x y ++-=221经过点)23,0(),0,1(. (1)求该抛物线的函数解析式; (2)将抛物线c bx x y ++-=221平移,使其顶点恰好落在原点,写出一种平移的方法及平移后的函数解析式.【变式训练2】(2018乌鲁木齐)把抛物线3422+-=x x y 向左平移1个单位长度,得到抛物线的解析式为 .【变式训练3】(2018湖州)已知抛物线)0(32≠-+=a bx ax y 经过点)0,3(),0,1(-,求b a ,的值考法三 抛物线c bx ax y ++=2与一次函数的双图象问题例3.(2017阜新)二次函数c bx ax y ++=2的图象如图所示,则一次函数c ax y +=的图象可能是( )【变式训练4】(2018德州)函数122+-=x ax y 和a ax y -=(a 是常数且0≠a )在同一平面直角坐标系中的图象可能是( )考法四 二次函数c bx ax y ++=2的图象与c b a ,,的关系例4.(2018日照)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列结论:①0<abc ;②02<-b a ;③22)(c a b +>;④若点),1(),,3(21y y -都在抛物线上,则有21y y >.其中正确的结论有( )A.4个B.3个C.2个D.1个例4图 变式5图【变式训练5】(2017遵义)如图,抛物线c bx ax y ++=2经过点(-1,0),对称轴为l ,有下列结论:①0>abc ;②0=+-c b a ;③02<+c a ;④0<+b a .其中,所有正确的结论是( )A.①③B.②③C.②④D.②③④考法五 二次函数的综合应用例5.(2018宁夏)如图,抛物线c bx x y ++-=231经过点)0,33(A 和点B (0,3),且这个抛物线的对称轴为直线l ,顶点为C.(1)求抛物线的解析式;(2)连接AB 、AC 、BC ,求△ABC 的面积.【变式训练6】(2018南通)在平面直角坐标系xOy 中,已知抛物线k k x k x y 25)1(222-+--=(k 为常数).(1)若抛物线经过点),1(2k ,求k 的值;(2)若抛物线经过点),2(1y k 和点),2(2y ,且21y y >,求k 的取值范围;(3)若将抛物线向右平移1个单位长度得到新的抛物线,当1≤x ≤2时,新抛物线对应的函数有最小值23-,求k 的值.课后作业1.用配方法将二次函数982--=x x y 化为k h x a y +-=2)(的形式为( )A.7)4(2+-=x yB.25)4(2--=x yC.7)4(2++=x yD.25)4(2-+=x y2.如图,二次函数bx ax y +=2的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数b x b a y +-=)(的图象大致是( )3.如图,抛物线c bx ax y ++=2的对称轴为直线x=1,且过点(3,0),有下列结论:①0>abc ;②a-b+c <0;③3a-c >0.其中正确结论的个数有( ) A.1 B.2 C.3 D.44.二次函数342++=x x y 的图象是由c bx ax y ++=2的图象向右平移1个单位长度,再向下平移2个单位长度得到的,则=a ,=b ,=c . 5.已知抛物线y=ax ²+bx+c 的图象如图,则|a-b+c |+|2a+b |= .6.已知如图,抛物线y=ax ²+bx+c 经过A (1,0),B (5,0),C (0,5)三点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标、对称轴;(3)若过点C 的直线与抛物线交于点E (4,m ),连接CB ,BE ,并求出△CBE 的面积.人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质7.如图,已知抛物线过点A(4,0),B(-2,0),C(0,-4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC上段上的一个动点,当图中阴影部分的面积最小时,求点M的坐标.11 / 11。
22.1 二次函数的图象和性质(第4课时)

(1,3)
y/m
O1 2 3 x/m
321
(1,3)
y/m
O1 2 3 x/m
321
小组评价与总结
这节课你有什么收获?
九、作业: 教科书习题22.1,第5题(2)(3),第7题(1).
十、课后反思
是x = h,顶点是(h,0),开口向下,顶点是抛物线的
最高点,a越小,抛物线的开口越小.当x<h时,y随
x的增大而增大,当x>h时,y随x的增大而减小.
小组合作
达标测评
例 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池
象特征和性质.
通过对二次函数 的探究,你能说出二次函数 的图象特征和性质
吗?
归纳:ห้องสมุดไป่ตู้
一般地,当a>0时,抛物线 的对称轴
是x = h,顶点是(h,0),开口向上,顶点是抛物线的
最低点,a越大,抛物线的开口越小.当x<h时,y随
x的增大而减小,当x>h时,y随x的增大而增大.
归纳:
一般地,当a<0时,抛物线 的对称轴
课题
22.1二次函数的图象和性质(第4课时)
课时
1
主备人:张红亮
一、教材内容分析
本课是在学生已经学习了二次函数y = ax 2,y = ax 2 + k的基础上,继续进行二次函数的学习,这是对二次函
数图象和性质研究的延续.
二、学情分析
三、教学目标(知识与技能,过程与方法,情感态度与价值观)
四、教学重点
五、教学难点
六、教学方法
九年级数学上册22、1二次函数的图象和性质4二次函数y=ax2+bx+c的图象和性质第2课时习题课件

(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上, 并写出平移后抛物线的解析式.
(2)答案不唯一,如:先向左平移2个单位长 度,再向下平移1个单位长度,得到的抛物线 的解析式为y=-x2,平移后抛物线的顶点为 (0,0),落在直线y=-x上.
考查角度二 已知面积求抛物线上点的坐标 16.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0). (1)求此抛物线的解析式;
考查角度一 抛物线的平移 15.如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过 点C(0,-3). (1)求抛物线的解析式和顶点坐标;
解:(1)设抛物线的解析式为y=a(x-1)(x-3). ∵抛物线过点C(0,-3),∴-3=a×(-1)×(-3), 解得a=-1,∴y=-(x-1)(x-3)=-x2+4x-3. ∵y=-x2+4x-3=-(x-2)2+1,∴顶点坐标为 (2,1).
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax2+bx+c的图象和性质 第2课时 用待定系数法求二次函数的解析式
知识点一 利用“一般式”求二次函数的解析式
1.已知二次函数y=x2+bx+c的图象经过点(-1,0)和(1,-2),则这个函
数的解析式为( ) B
A.y=x2-x+2
3
6.如图所示的抛物线的解析式为__y_=__2_x_2_-__4_x_+__2____.
7.已知二次函数当x=-1时,有最小值-4,且当x=0时,y=-3,则二次 函数的解析式为________________.
y=(x+1)2-4
知识点三 利用“交点式”求二次函数的解析式
数学人教版九年级上册22.1.4二次函数y=ax2 bx c的图像与性质.1.4二次函数y=ax2 bx c的图像与性质(胪中王伟

向上
向下
直线x=–3 直线x=1
活动2:创设情Leabharlann ,导入新课思考:我们已经知道二次函数y=a(x-h)2+k的图象和性质,容 1 2 y x 6x21 能否利用这些知识来讨论二次函数 的图象和性 2 质? 即怎样把函数 y 1x2 6x21 转化成 y=a(x-h) 2+k的形式? 2
ax bx c • 一般地,我们可以用配方法将 y 配方成
2
2 b b ac b b 2b b 2 2 24 a ( x x ) c a x x () () c a ( x ) a a 2 a 2 a 4 a a2 2
由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以 通过平移得到。
草图略
y
1 2 (x 4 x) 1 2
1 2 1 ( x 4 x 4 ) ×4 1 2 2 1 ( x 2)2 3 2
对称轴为直线x=-2 顶点坐标为(-2,-3) 当x=-2时,y最小值=-3
草图略
活动3:探究新知
22.1.4 二次函数
2 y ax bx c 的图像
y x2 6x21 2 1 2 12 x 21 提取二次项系数 x 2 1 2 1 x 12x 36 ×36 21 配方 2 2 配方后的表达 1 2 . 整理 x6 3 式通常称为配 2 方式或顶点式
用配方法。 1
1 2 描点、连线,画出函数 y x 6 3 2
二次本节课我们学习了哪些知识? 函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴
人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》

人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析《二次函数y=ax^2+bx+c的图象和性质》这一节是人教版数学九年级上册的教学内容。
本节课的主要内容是让学生了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。
通过本节课的学习,学生能够掌握二次函数图象的特点,理解二次函数的性质,并能够运用这些性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了二次函数的定义和一般形式,对二次函数有了初步的认识。
但是,学生对二次函数的图象和性质可能还比较陌生,需要通过本节课的学习来进一步理解和掌握。
同时,学生可能对一些概念和性质的理解还不够深入,需要通过教师的引导和学生的自主探索来加深理解。
三. 教学目标1.了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。
2.能够运用二次函数的性质解决实际问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.二次函数的图象和性质的理解和掌握。
2.运用二次函数的性质解决实际问题的能力的培养。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索。
2.采用案例分析的教学方法,通过具体的例子来讲解和展示二次函数的性质。
3.采用小组合作的学习方式,让学生在小组内进行讨论和交流,共同解决问题。
六. 教学准备1.准备相关的教学案例和实例,用于讲解和展示二次函数的性质。
2.准备教学课件和板书,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提出问题:“二次函数的图象和性质有哪些?”引导学生思考和探索。
2.呈现(10分钟)通过教学课件和板书,呈现二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。
同时,通过具体的例子来讲解和展示这些性质。
3.操练(10分钟)让学生通过观察和分析一些具体的二次函数图象,来识别和判断其性质。
人教版数学九年级上册22.1《二次函数的图象和性质(4)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(4)》教学设计一. 教材分析人教版数学九年级上册22.1《二次函数的图象和性质(4)》这一节主要讲述了二次函数的图象和性质。
在前面的学习中,学生已经掌握了二次函数的一般形式、顶点坐标、对称轴等概念。
本节内容是对这些知识的进一步拓展和深化,主要包括二次函数的增减性和最值问题。
教材通过丰富的例题和练习题,帮助学生理解和掌握二次函数的图象和性质,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数有一定的了解。
但学生在学习过程中,可能对二次函数的图象和性质的理解不够深入,尤其是对增减性和最值问题的解决方法。
因此,在教学过程中,教师需要关注学生的学习需求,通过实例讲解和练习,帮助学生巩固知识,提高解决问题的能力。
三. 教学目标1.理解二次函数的增减性,掌握判断二次函数单调性的方法。
2.掌握二次函数的最值问题,学会解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的增减性及其判断方法。
2.二次函数最值问题的解决方法。
五. 教学方法1.实例分析:通过具体的例子,让学生理解和掌握二次函数的增减性和最值问题。
2.练习巩固:通过大量的练习题,巩固所学知识,提高解决问题的能力。
3.小组讨论:鼓励学生之间相互讨论,共同解决问题,培养学生的合作精神。
六. 教学准备1.教学PPT:制作精美的PPT,展示二次函数的图象和性质。
2.练习题:准备适量的练习题,用于巩固所学知识。
3.教学视频:准备相关的教学视频,帮助学生更好地理解知识。
七. 教学过程1.导入(5分钟)利用教学视频或PPT,展示二次函数的图象和性质,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(15分钟)讲解二次函数的增减性,通过具体的例子,让学生理解和掌握判断二次函数单调性的方法。
同时,引导学生思考二次函数的最值问题,为新课的学习奠定基础。
22.1.4二次函数y=ax2+bx+c的图象和性质

1-������ + ������ = -1, 1 + ������ + ������ = 3,
拓展点一
拓展点二
拓展点三
拓展点四
利用待定系数法求二次函数的解析式时,如果已知三个条 件,通常列三元一次方程组求解,如果a,b,c中其中一个已知, 则列二元一次方程组求解.
拓展点一
拓展点二
拓展点三
拓展点四
分析:(1)将A点坐标代入抛物线解析式,求出a的值,即可确定出解 析式; (2)在抛物线解析式中令x=0求出y的值,即OC的长,根据对称轴求 出CD的长,根据抛物线的对称性确定出OB的长,利用梯形面积公式 即可求出梯形COBD的面积. 解:(1)将A(-1,0)代入y=a(x-1)2+4中,得0=4a+4,解得a=-1,则抛物 线解析式为y=-(x-1)2+4. (2)对于抛物线解析式,令x=0,得y=3,即OC=3, ∵抛物线y=-(x-1)2+4的对称轴为直线x=1,∴CD=1. ∵A(-1,0), ∴B(3,0),即OB=3, 1 则S梯形COBD= (1+3)×3=6.
2
������ ������
������ − 4������+c
即 y=ax2+bx+c(一般式)可以配方成 y=a
������ 2 ������ + 2������ 4������������-������ + 4������
2
(顶点式).
由以上可以得出:确定二次函数的顶点,可以先配方,配成顶点式 后,由顶点式 y=a(x-h)2+k,直接得出顶点为(h,k),也可以直接根据顶 点的公式得出顶点为
知识点一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.表达式:①一般式: ( ); )②顶点式: ( )
2.顶点坐标:①( , ) ②( , )
3.意义:①当 时, , 有最小值为 ; , 有最大值为
难点;理解二次函数一般形式y=ax2+bx+c的配方过程,发现并总结y=ax2+bx+c与y=a(x-h)2+k的内在联系。
指导
知识链接
复习旧知识:利用配方法将一般形式化为 的形式即顶点式 , 顶点坐标为( , ),对称轴为
一、:
情三、探索新知:
1.求二次函数y=x2-6x+21的顶点坐标与对称轴.
y=ax2
y=ax2+k
y=a(x-h)2
y=a(x-h)2+k
y=ax2+bx+c
开口方向
顶点
对称轴
最值
增减性
(对称轴左侧)
五、课堂练习
1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.
2.用两种方法求二次函数y=3x2+2x的顶点坐标.
3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.
解:将函数等号右边配方:y=x2-6x+21
2.画二次函数y=x2-6x+21的图象.
解:y=x2-6x+21配成顶点式为_______________________.
列表:
景:
x
…
3
4
56Βιβλιοθήκη 789…
y=x2-6x+21
…
…
3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.
四、理一理知识点:
②当 时, , 有最小值为 ; , 有最大值为
六、达标检测
1.用顶点坐标公式和配方法求二次函数y=x2-2-1的顶点坐标.
2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.
我的反思:
九 年 级 数 学 导 学 案
班级:姓名:小组:
课题
二次函数y=ax2+bx+c的图象与性质(1)
课型
新授课
课时
1课时
学习
目标
1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;
2.熟记二次函数y=ax2+bx+c的顶点坐标公式;
3.会画二次函数一般式一般形式的图象.
学习重点:通过图像和配方描述二次函数y=ax2+bx+c的性质