51单片机串口工作方式0和1

合集下载

51单片机的串口通信程序(C语言)

51单片机的串口通信程序(C语言)

51单片机的串口通信程序(C语言) 51单片机的串口通信程序(C语言)在嵌入式系统中,串口通信是一种常见的数据传输方式,也是单片机与外部设备进行通信的重要手段之一。

本文将介绍使用C语言编写51单片机的串口通信程序。

1. 硬件准备在开始编写串口通信程序之前,需要准备好相应的硬件设备。

首先,我们需要一块51单片机开发板,内置了串口通信功能。

另外,我们还需要连接一个与单片机通信的外部设备,例如计算机或其他单片机。

2. 引入头文件在C语言中,我们需要引入相应的头文件来使用串口通信相关的函数。

在51单片机中,我们需要引入reg51.h头文件,以便使用单片机的寄存器操作相关函数。

同时,我们还需要引入头文件来定义串口通信的相关寄存器。

3. 配置串口参数在使用串口通信之前,我们需要配置串口的参数,例如波特率、数据位、停止位等。

这些参数的配置需要根据实际需要进行调整。

在51单片机中,我们可以通过写入相应的寄存器来配置串口参数。

4. 初始化串口在配置完串口参数之后,我们需要初始化串口,以便开始进行数据的发送和接收。

初始化串口的过程包括打开串口、设置中断等。

5. 数据发送在串口通信中,数据的发送通常分为两种方式:阻塞发送和非阻塞发送。

阻塞发送是指程序在发送完数据之后才会继续执行下面的代码,而非阻塞发送是指程序在发送数据的同时可以继续执行其他代码。

6. 数据接收数据的接收与数据的发送类似,同样有阻塞接收和非阻塞接收两种方式。

在接收数据时,需要不断地检测是否有数据到达,并及时进行处理。

7. 中断处理在串口通信中,中断是一种常见的处理方式。

通过使用中断,可以及时地响应串口数据的到达或者发送完成等事件,提高程序的处理效率。

8. 串口通信实例下面是一个简单的串口通信实例,用于在51单片机与计算机之间进行数据的传输。

```c#include <reg51.h>#include <stdio.h>#define BAUDRATE 9600#define FOSC 11059200void UART_init(){TMOD = 0x20; // 设置定时器1为模式2SCON = 0x50; // 设置串口为模式1,允许接收TH1 = 256 - FOSC / 12 / 32 / BAUDRATE; // 计算波特率定时器重载值TR1 = 1; // 启动定时器1EA = 1; // 允许中断ES = 1; // 允许串口中断}void UART_send_byte(unsigned char byte){SBUF = byte;while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志位}unsigned char UART_receive_byte(){while (!RI); // 等待接收完成RI = 0; // 清除接收完成标志位return SBUF;}void UART_send_string(char *s){while (*s){UART_send_byte(*s);s++;}}void main(){UART_init();UART_send_string("Hello, World!"); while (1){unsigned char data = UART_receive_byte();// 对接收到的数据进行处理}}```总结:通过以上步骤,我们可以编写出简单的51单片机串口通信程序。

串行通信

串行通信

3、串行通信工作方式 、
单工 A 发 A 发 收 B 收 广播电台 收音机
半双工
B 收 发
对讲机
全双工
A 发 收
B 收 发
电话机
4、波特率 、
波特率是指每秒钟传送信号的数量,单位为波特(Baud)。 波特率是指每秒钟传送信号的数量,单位为波特(Baud) 是指每秒钟传送信号的数量 波特 例:异步串行通信的数据传送的速率是120字符/秒,而每个字符规 异步串行通信的数据传送的速率是120字符/ 120字符 定包含10位( 1个起始位、8个数据位、1个停止位)数字,则传输 定包含10位 个起始位、 个数据位、 个停止位)数字, 10 波特率为: 波特率为: 120字符/秒× 10位/字符=1200位/秒= 1200bps 10位 字符=1200 =1200位 120字符/ 字符
(P3.1)
去申请中断
1、SBUF:串行发送 / 接收数据缓冲器 99H 、 : 发送 接收 2、SCON:串行口控制寄存器 、 :
SM0 SM1 SM2 REN TB8
98H
RB8 TI RI
3、PCON:特殊功能寄存器 :
SMOD
87H
4、IE:中断允许寄存器 、 :
EA ES
A8H
ET1 EX1 ET0 EX0
如何发送和接收数据 可中断、 可中断、可查询
MCS-51串行口的结构如下图所示: SBUF (发) A 累 加 器 波 特 率 发 生 器
T1
(门)移位寄存器 门 移位寄存器 发送控制器 TI
引脚 TxD
(P3.1)
CPU CPU 内 部
≥1
接收控制器 RI SBUF (收) 引脚 移位寄存器 RxD

51单片机串口设置及应用

51单片机串口设置及应用

51单片机串口设置及应用单片机的串口设置及应用是指通过单片机的串口功能来进行通信的一种方式。

串口通信是一种全双工通信方式,可以实现双向数据传输。

单片机通过串口可以与其他设备进行通信,如计算机、传感器、LCD显示屏等。

1. 串口设置:单片机的串口通信一般需要进行以下设置:(1)串口模式选择:要根据实际情况选择串口工作模式,一般有异步串口和同步串口两种。

(2)波特率设置:串口通信需要设置一个波特率,即数据传输速率。

常见的波特率有9600、19200、115200等,需要与通信的设备保持一致。

(3)数据位设置:设置传输的数据位数,常见的有8位、9位等。

(4)停止位设置:设置停止位的个数,常见的有1位、2位等。

(5)校验位设置:可以选择是否启用校验位,校验位主要用于检测数据传输的正确性。

2. 串口应用:串口通信在很多领域都得到广泛应用,下面列举几个常见的应用场景:(1)串口与计算机通信:通过串口可以实现单片机与计算机的通信,可以进行数据的读写、控制等操作。

例如,可以通过串口将传感器采集到的数据发送给计算机,由计算机进行进一步处理分析。

(2)串口与传感器通信:串口可以与各种传感器进行通信,可以读取传感器采集到的数据,并进行处理和控制。

例如,可以通过串口连接温度传感器,读取实时的温度数据,然后进行温度控制。

(3)串口与LCD显示屏通信:通过串口可以实现单片机与LCD显示屏的通信,可以将需要显示的数据发送给LCD显示屏进行显示。

例如,可以通过串口将单片机采集到的数据以数字或字符的形式显示在LCD上。

(4)串口与外部存储器通信:通过串口可以与外部存储器进行通信,可以读写存储器中的数据。

例如,可以通过串口读取SD卡中存储的图像数据,然后进行图像处理或显示。

(5)串口与其他设备通信:通过串口可以和各种其他设备进行通信,实现数据的传输和控制。

例如,可以通过串口与打印机通信,将需要打印的数据发送给打印机进行打印。

总结:单片机的串口设置及应用是一种实现通信的重要方式。

51单片机串口工作方式0和1

51单片机串口工作方式0和1

ACALL DELAY
CLR TI
; 手动清中断标志
RR A ; 循环位移
; 80H、40H、20H、10H、08H …
CLR P1.0
; CD4094 输出并口关闭
MOV SBUF,A ; 数据传出,产生中断
RETI
END
注: 延时子程序 DELAY 未给出
2021/5/15
方式 0 用于扩展并行 I/O口
=
/32
9600bps 1200bps
=
/12/计次/16
计1次 计3次 计3次 计6次 计12次 计24次
9.6kbit/s 实际10.416 = 6MHz/12/计次/16 1
0
2
FDH
1.2kbit/s 实际1.302 = 6MHz/12/计次/32 0
0
2
F4H
时钟振荡频率为6MHz或12 MHz时,产生的比特率偏差较大,
写入SBUF后自动开始发 送
2021/5/15
图5-1
请求中断
CPU响应中断后:CLR TI
5.2 用AT89C51的串行口扩展并行口
5.2.2 用74LS164扩展并行输出口
74LS164:8位串入并出移位寄存器。
图是利用74LS164扩展二个8位并行输出口的接口电路。

每当新数据写入SBUF,即把SBUF中的8位数据以串行移
• 数据区
发送数据区首址 20H,接收数据区首址 40H
• 主频选用
fosc = 6MHz
• T1 设置
,同时RI=0)时,串行口即开始接收数据。RXD为数据输入端
,TXD为移位脉冲信号输出端,也以fosc/12的固定比特率,

51单片机-串行口ppt课件

51单片机-串行口ppt课件

为发送时CPU是主动的,不会产生重叠错误。
最新课件
21
8.2.2 80C51串行口的控制寄存器
SCON 是一个特殊功能寄存器,用以设定串行口的工 作方式、接收/发送控制以及设置状态标志:
SM0和SM1为工作方式选择位,可选择四种工作方式:
最新课件
22
●SM2,多机通信控制位,主要用于方式2和方式3。 当接收机的SM2=1时可以利用收到的RB8来控制是否 激活RI(RB8=0时不激活RI,收到的信息丢弃; RB8=1时收到的数据进入SBUF,并激活RI,进而在 中断服务中将数据从SBUF读走)。当SM2=0时,不 论收到的RB8为0和1,均可以使收到的数据进入 SBUF,并激活RI(即此时RB8不具有控制RI激活的 功能)。通过控制SM2,可以实现多机通信。
起 空始 闲位
一个字符帧 数据位
校停 验止 位位
空 下一字符 闲 起始位
LSB
MSB
异步通信的特点:不要求收发双方时钟的
严格一致,实现容易,设备开销较小,但 每个字符要附加2~3位用于起止位,各帧 之间还有间隔,因此传输效率不高。
最新课件
9
2、同步通信
同步通信时要建立发送方时钟对接收方时钟的直接控制, 使双方达到完全同步。此时,传输数据的位之间的距离均 为“位间隔”的整数倍,同时传送的字符间不留间隙,即 保持位同步关系,也保持字符同步关系。发送方对接收方 的同步可以通过两种方法实现。
波特率=2SMOD/32×T1的溢出率 = 2SMOD × fosc/[ 32 × 12×(2K-初值)]
最新课件
19
回目录 上页 下页
3、传输距离与传输速率的关系
串行接口或终端直接传送串行信息位流的

51单片机模拟串口的三种方法

51单片机模拟串口的三种方法

//先传低位
} //查询计数器溢出标志位 void WaitTF0( void ) { while(!TF0); TF0=0; } 接收的程序,可以参考下一种方法,不再写出。这种办法个人感觉不错,接收和 都很准确,另外不需要计算每条语句的指令周期数。 方法三:中断法
中断的方法和计数器的方法差不多,只是当计算器溢出时便产生一次中断,用户 在中断程序中置标志,程序不断的查询该标志来决定是否发送或接收下一位,当然程 断进行初始化,同时编写中断程序。本程序使用Timer0中断。 #define TM0_FLAG P1_2 //设传输标志位 //计数器及中断初始化 void S2INI(void) { TMOD =0x02; //计数器0,方式2 TH0=0xA0; //预值为256-96=140,十六进制A0 TL0=TH0; TR0=0; //在发送或 接收才开始使用 TF0=0; ET0=1; //允许定时
//发送启始
位 Delay2cp(39); //发送8位数据位 while(i--) { TXD=(bit)(input&0x01); Delay2cp(36); input=input>>1; } //发送校验位(无) TXD=(bit)1; 位 Delay2cp(46); } //从串口读一个字节 uchar RByte(void) { uchar Output=0; uchar i=8; uchar temp=RDDYN; //发送8位数据位 Delay2cp(RDDYN*1.5); while(i--) { Output >>=1; if(RXD) Output Delay2cp(35); 占用26个指令周期 } while(--temp) 时间内搜寻结束位。 { Delay2cp(1); if(RXD)break; } return Output;

51单片机串行口的工作方式

51单片机串行口的工作方式
☞再比如要显示“3” 须令a b c d g 为“0” 电平,e f h为“1”电平。
hgfedcba
a
fg b
e
c
dh
共阳极
累加器 A hgfedcba
0C0H = “0”
0B0H = “3”
例:利用串行口工作方式0扩展出8位并行I/O 口,驱动共阳LED数码管显示0—9。
VCC TxD RxD
☞方式2的波特率 = fosc 2SMOD/64 即: fosc 1/32 或 fosc 1/64 两种
☞奇偶校验是检验串行通信双方传输的数据正确与 否的一个措施,并不能保证通信数据的传输一定正 确。
换言之:如果奇偶校验发生错误,表明数据传输 一定出错了;如果奇偶校验没有出错,绝不等于数 据传输完全正确。
☞ REN:串行口接收允许位。 REN=1 允许接收
☞ TB8,RB8,TI,RI等位由运行中间的情况 决定,可先写成 “0”
三、工作方式2: 9位UART(1+8+1+1位)两种波特率
☞由于波特率固定,常用于单片机间通讯。 数据由8+1位组成,通常附加的一位 (TB8/RB8)用于“奇偶校验”。
☞ 溢出率:T1溢出的频繁程度 即:T1溢出一次所需时间的倒数。
☞ 波特率 =
2SMOD fosc 32 12(2n - X)
其中:X 是定时器初值
☞ 初值 X = 2n -
2SMOD fosc 32 波特率 12
常用波特率和T1初值查表
☞表格有多种, 晶振也不止一种
串口波特率 (方式1,3)
74LS164
hgfedcba
A B
CLK
CLR
74LS164

51单片机串口工作方式0和1解析

51单片机串口工作方式0和1解析

RXD
7.1.1 串行口控制寄存器SCON b7 b6 b5 b4 b3 b2 b1 TI b0 RI
SM0 SM1 SM2 REN TB8 RB8
9FH 9EH 9DH 9CH 9BH 9AH 99H 98H
SM0、SM1 —— 串行接口工作方式定义位
• SM0、SM1 = 00 —— 方式 0,8位同步移位寄存器 • SM0、SM1 = 01 —— 方式 1,10 位异步接收发送 • SM0、SM1 = 10 —— 方式 2,11 位异步接收发送 • SM0、SM1 = 11 —— 方式 3,11 位异步接收发送 注意: 方式 0 的特点,方式 2、方式 3 的差异
寄存器 SCON、PCON、SBUF
寄存器 IE、IP
• MCS-51 单片机串Fra bibliotek接口工作方式 方式 0 方式 2 方式 1 方式 3
有两个数据缓冲寄存器 SBUF,一个输入移位寄存器,一个 串行控制寄存器SCON和一个特殊功能寄存器PCON等组成。 8 位SBUF是全双工串行接口寄存器, 它是特殊功能寄存器, 地址为 99H,不可位寻址;串行输出时为发送数据缓冲器,发送
时钟振荡频率为6MHz或12 MHz时,产生的比特率偏差较大, 故用到串口通信时通常选用11.0592MHZ晶体振荡器。
串行口的结构
• MCS-51 单片机串行接口的硬件
P3.0 位的第二功能 —— 收端 RXD P3.1 位的第二功能 —— 发端 TXD
• MCS-51 单片机串行接口的控制
比特率 比特率
= /12
P.110
=
/32 计1次 计3次 计3次 计6次 计12次 计24次
=
/12/计次/16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串口工作方式
5.1 方式0 同步移位寄存器方式,比特率固定为fosc/12。 常用于外接移位寄存器,以扩展并行I/O口,SM2位必须为0 。 1.方式0发送: 当CPU执行写入发送缓冲器SBUF的指令时,串行口即把SBUF 中的8位数据以fosc/12的固定比特率从RXD引脚串行输出,低 位在先,TXD引脚输出同步移位脉冲,发送完8位数据置“1” 中断标志位TI
方式 1 用于串行通信 例3:8031串行口双工方式收发 ASCII 字符,最高 1 位用来作奇偶校验位,采用奇校验方式, 波特率为 1200 。
• 工作方式
用T1作为波特率发生器,B=(2SMOD/32)×T1溢出率。
• 方式 1(续) 异步发送时的工作过程
• 发送条件 —— 清 SCON 中发送中断标志 TI = 0 • 发送指令 —— MOV SBUF,A 注: 需发送的 8 位字节数据送串行数据缓冲器 SBUF 后将启动异步发送开始。 • 起始位 0、停止位 1 在执行发送指令时自动加入 • 发送传输线 —— TXD、GND • 发送 10 位数据结束 —— 发送中断标志 TI = 1 注: 若需继续发送,置TI = 0,送数据到 SBUF
0 1 1
1 0 1
1 2 3
可变
fosc/64或fosc/32
11位异步收发 11位异步收发
可变
• 5.3.1 方式 0 —— 移位寄存器输入/输出方式
串行口为同步移位寄存器方式
非串行通信用方式-扩展并行I/O
• 用并入串出移位寄存器扩展并行输入口 • 用串入并出移位寄存器扩展并行输出口
RXD、TXD 线的作用
RXD/ TXD/
清0 串行口工作于方式0: 同步移位寄存器方式 发送
fosc/12
图5-2-1
74HC595: 8位串入并出移位寄存器,带锁存及三态输出功能。 (相当于74LS164+273+244)
2.方式0接收
写入SBUF后自动开始发送
向串口的 SCON 写入控制字(置为方式 0 ,并置“ 1 ” REN 位, 同时RI=0)时,串行口即开始接收数据。RXD为数据输入端, TXD 为移位脉冲信号输出端,也以 fosc/12 的固定比特率,当
PD TD L
TDL:等待方式位 PD:掉电方式 GF1、 GF2通用标志位
ANL PCON,#7FH:对SMOD ORL 位清零 PCON,#80H:对SMOD
串行口的4种工作方式
SM0 串行口工作方式选择位 SM1
SM0 0 SM1 方式 0 0 功 能 波特率 fosc/12
同步移位寄存器
10位异步收发
收到8位数据时置“1” RI。表示一帧数据接收完,时序如下:
RI=‘0’时
其中REN=‘1’
请求中断
图5-2
CPU响应中断后:CLR RI
P.159-160
5.2.1
用74LS165扩展并行输入口
74LS165:8位并入串出移位寄存器。 图9-22是利用74LS164扩展二个8位并行输入口的接口电路。 每当向SCON写入控制字为方式0且REN=“1” , 即串行移入8位数据到SBUF
P.105
1.方式1发送
写入SBUF后自动开始发送
请求中断 可写下一个要发送的数据
图7-8 2.方式1接收
图7-9
请求中断 可从SBUF读取新接收的数据
P.109 5.3.1 比特率的制定方法 方式 0、方式2 的比特率是固定的;方式 1 、方式 3比特率由定时器T1的 溢出率来确定。 5.3.2 定时器T1产生比特率的计算 (1)方式0波特率=时钟频率fosc×1/12,不受SMOD位的值的影响。若 fosc=12MHz,比特率为fosc/12即1Mb/s。 (2)方式2波特率=(2SMOD/64)×fosc 若fosc=12MHz: SMOD=0 比特率=187.5kb/s; SMOD=1 比特率=375kb/s (3)方式1或方式3时,比特率为: 比特率= (2SMOD/32)×T1的溢出率 = fosc/12/(T1计数次数) × (2SMOD/32) 实际设定比特率时,T1常设置为方式2定时(自动装初值)这种方式不仅操 作方便,也可避免因软件重装初值而带来的定时误差。
串行口控制寄存器SCON
b7
b6
b5
b4
b3
b2
b1 TI
b0 RI
SM0 SM1 SM2 REN TB8 RB8
9FH 9EH 9DH 9CH 9BH 9AH 99H 98H
SM2 —— 多机通信控制位(方式2和3)
• SM2 = 0,无多机通信
• SM2 = 1,允许多机通信
REN —— 串行口接收数据控制位
比特率 比特率
= /12
P.110
=
/32
=
/12/计次/16
计 1次 计 3次
9600bps
计 3次 计 6次 计12次
1200bps
计24次
9.6kbit/s 实际10.416 = 6MHz/12/计次/16 1.2kbit/s 实际1.302 = 6MHz/12/计次/32
1 0
0 0
2 2
RXD
7.1.1 串行口控制寄存器SCON b7 b6 b5 b4 b3 b2 b1 TI b0 RI
SM0 SM1 SM2 REN TB8 RB8
9FH 9EH 9DH 9CH 9BH 9AH 99H 98H
SM0、SM1 —— 串行接口工作方式定义位
• SM0、SM1 = 00 —— 方式 0,8位同步移位寄存器 • SM0、SM1 = 01 —— 方式 1,10 位异步接收发送 • SM0、SM1 = 10 —— 方式 2,11 位异步接收发送 • SM0、SM1 = 11 —— 方式 3,11 位异步接收发送 注意: 方式 0 的特点,方式 2、方式 3 的差异
• RXD — 串 → 并、并 → 串 数据传送线
• TXD — 同步时钟线,同步时钟为 fosc/12(固定波特率) 注:为应用串行接口扩展并行接口的方式。
方式 0 用于扩展并行 I/O口
• 串 → 并方式,扩展并行输出口
电路图
8031
RXD
串入并出移位寄存器
DATA
TXD
CLK
功能线 • RXD —— 接移位寄存器的数据输入端 • TXD —— 接移位寄存器的同步时钟端 注: 注意信号方向
寄存器只写不读,数据从

发送端TXD(P3.1)输出; 串行输入时为接收数 据缓冲器,接收寄存 器只读不写,数据从
CPU
波 特 率 发 生 器 T1
SBUF
发送控制器 串行口中断TXD TI+接收端 RXD(P3.0)
输入;由指令确定是对发 送寄存器或接收寄存器作用。
接收控制器 RI
SBUF
移位寄存器
写入SBUF后自动开始发送
请求中断
图5-1
CPU响应中断后:CLR TI
5.2 用AT89C51的串行口扩展并行口 5.2.2 用74LS164扩展并行输出口
74LS164:8位串入并出移位寄存器。
图是利用74LS164扩展二个8位并行输出口的接口电路。 . 每当新数据写入SBUF,即把SBUF中的8位数据以串行移出
寄存器 SCON、PCON、SBUF
寄存器 IE、IP
• MCS-51 单片机串行接口工作方式
方式 0 方式 2 方式 1 方式 3
有两个数据缓冲寄存器 SBUF,一个输入移位寄存器,一个 串行控制寄存器SCON和一个特殊功能寄存器PCON等组成。 8 位SBUF是全双工串行接口寄存器, 它是特殊功能寄存器, 地址为 99H,不可位寻址;串行输出时为发送数据缓冲器,发送
• 编程
START: JB P1.0,START ; 若 K 未合上则循环查询 SETB P1.1 ; CD4014 并行数据输入有效 MOV SCON,#00X1XXX0B ; 方式 0,REN = 1 允许接收,RI = 0 CLR P1.1 ; CD4014 串行数据输出有效 LOOP: JNB RI,LOOP ; 若 RI = 0 数据未收完 ; 若 RI = 1 数据已收完 CLR RI ; 手动清 RI,准备下次传送数据 MOV A,SBUF
方式 0 用于扩展并行 I/O口
• 并 →串方式,扩展输入口
电路图
8031
RXD TXD
并入串出移位寄存器
DATA CLK
功能线 • RXD —— 接移位寄存器的数据输出端 • TXD —— 接移位寄存器的同步时钟端 注: 注意信号方向
方式 0 用于扩展并行 I/O口 例1:用 8031 的串口外接 1 个串入并出移位寄存器 芯片CD4094 扩展为 8 位并行输出口,并口接 8 个 LED,并循环轮流显示。
• REN = 1,允许串行口接收数据 • REN = 0,禁止串行口接收数据 由软件置位或清除
7.1.2 特殊功能寄存器PCON
• 串行数据传送速率控制寄存器 —— PCON
b7 SMOD
b6
b5
b4
b3
b2
b1
b0
GF1 GF2
地址:87H SMOD = 0,定义波特率不变 SMOD = 1,定义波特率加倍 注:PCON 寄存器的地址为87H, 仅 b7 位有用,不可位寻址。
• 电路图
8031
RXD TXD P1.0 DATA CLK
CD4094
TBS
方式 0 用于扩展并行 I/O口
• 编程
ORG 0000H LJMP MAIN ORG 0023H LJMP SBR MAIN: MOV SCON,#00H; 方式 0,TI = 0 SETB EA SETB ES MOV A,#80H ; 初值,左边 LED 亮 CLR P1.0 ; CD4094 输出并口关闭 MOV SBUF,A ; 数据传出,产生中断 LOOP: SJMP $
相关文档
最新文档