(完整word版)红外测温仪工作原理及应用(一)
红外测温仪的工作原理介绍

红外测温仪的工作原理介绍红外测温仪是一种基于红外辐射原理测量物体温度的仪器,应用广泛于工业、农业、医疗、环保等领域。
在许多行业中,红外测温仪成为必备的工具之一。
本文将为大家介绍红外测温仪的工作原理,以及它在实际应用中的优点和限制。
工作原理红外测温仪的工作原理基于物体的红外辐射。
一般情况下,物体的温度越高,它所辐射出的红外辐射能量就越强。
红外测温仪利用这一特性,测量物体表面辐射出的红外辐射能量,从而推算得到物体表面的温度。
红外测温仪主要由光学系统、信号处理系统和显示系统组成。
它的光学系统包括物镜、红外过滤器和检测器。
通过物镜将物体表面的红外辐射反射聚焦在检测器上,检测器将这些信号转化成电信号并送入信号处理系统。
信号处理系统负责计算并显示物体表面的温度值。
红外测温仪可以通过调节量程来适应不同温度范围内的测量。
优点与传统的温度检测方法相比,红外测温仪具有以下优点:1.非接触式测量。
红外测温仪可以在不接触物体的情况下测量其温度,避免了传统的测温方法可能造成的损伤或污染。
2.快速高效。
红外测温仪可以快速地测量物体表面的温度,取代传统的温度测量方式,提高工作效率。
3.范围广。
红外测温仪适用于各种材料和环境,能够测量超过1000℃的高温物体,也适用于测量较低温度的物体,如-50℃左右的冷冻食品。
4.精度高。
红外测温仪可以消除传统温度检测方法中的温度偏差,精度高,可靠性强。
限制红外测温仪的应用受到一些限制:1.环境影响。
无论是室内还是室外,红外测温仪的准确度都受到环境温度、湿度、特定颜色、遮挡和反射等因素的影响。
2.技术限制。
红外测温仪的准确度和范围受到机器本身的技术限制,例如检测器的灵敏度、量程、距离和视场等。
3.物体特性。
红外测温仪不能测量表面长时间不能达到平衡温度的物体,例如表面太光滑、镜面反射或呈现局部高光物体。
结论红外测温仪通过光学系统、信号处理系统及显示系统检测物体表面的红外辐射能量,从而推算得到物体表面的温度。
红外测温仪的原理及应用

红外测温仪的原理及应用1. 红外测温仪的工作原理红外测温仪是一种用于非接触式测量物体表面温度的仪器。
它利用物体发出的红外辐射来测量物体的温度,通过该仪器能够实现快速、准确地测量目标物体的温度,无需直接接触物体。
红外测温仪的工作原理主要基于以下两个原理:1.1 热辐射原理所有物体都会发出一定量的红外辐射。
根据斯特藩-玻尔兹曼定律,物体发出的红外辐射功率与物体的绝对温度的四次方成正比。
红外测温仪通过测量物体发出的红外辐射来间接测量物体的温度。
1.2 热导率原理物体表面的温度会随着物体内部温度的变化而变化。
红外测温仪利用物体表面的温度变化来推断物体内部温度的变化。
通过测量物体表面的温度变化,可以间接测量物体内部的温度。
2. 红外测温仪的应用红外测温仪广泛应用于各个领域,包括但不限于以下几个方面:2.1 工业制造在工业制造过程中,红外测温仪被用于监测和控制机器设备的温度。
例如,在钢铁冶炼过程中,红外测温仪可以用来监测炉内的温度,确保炉温保持在合适的范围内。
此外,红外测温仪还可以用于检测产品质量,如检测焊接点的温度是否符合标准。
2.2 食品安全在食品加工和储存过程中,红外测温仪可以用来监测食品的温度。
例如,在餐饮业中,可以使用红外测温仪来检测食材的温度,确保食材储存和处理的安全性。
此外,红外测温仪还可以用来检测食品加热设备的温度,确保烹饪过程中的食品安全。
2.3 医疗保健在医疗保健领域,红外测温仪被广泛用于测量人体温度。
由于红外测温仪无需接触人体,因此可以减少与传统接触式测温方法相比的交叉感染风险。
红外测温仪通常用于测量额头、耳朵等部位的温度,可以快速、准确地检测患者的体温变化,为及时采取必要的医疗措施提供支持。
2.4 环境监测红外测温仪可以用于环境监测,例如测量大气温度、土壤温度等。
通过监测环境的温度变化,可以了解气候变化、土壤健康等因素,从而做出相应的应对措施。
2.5 安全防护红外测温仪可以在安全防护中发挥重要作用。
红外测温方法的工作原理及测温(自己总结的)。

红外测温方法的工作原理及测温(自己总结的)。
红外测温方法的工作原理及测温仪在自然界中,当物体的温度高于绝对零度时,由于其内部热运动的存在,会向四周辐射电磁波,其中包括波段位于0.75~100μm的红外线。
红外测温仪就是利用这一原理制作而成的。
温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数。
在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。
传统的接触式测温仪表如热电偶、热电阻等,需要与被测物质进行充分的热交换,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。
目前,红外温度仪因具有使用方便、反应速度快、灵敏度高、测温范围广、可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。
表1常用测温方法对比精度(%)测温方法温度传感器测温范围(°C)接触式热电偶 -200~1800热电阻 -50~300非接触式红外测温 -35~2000其它示温材料 -50~3300红外测温仪的工作原理及特点1.1黑体辐射与红外测温原理一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。
物体的红外辐射能量的大小及其按波长的分布与其表面温度有着密切的关系。
因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
黑体辐射定律是以波长表示的黑体光谱辐射度,是一切红外辐射理论的出发点。
由于黑体的光谱辐射功率与绝对温度之间满足普朗克定理,因此可以通过测量黑体的辐射出射度来确定其表面温度。
红外测温仪具有使用方便、反应速度快、灵敏度高、测温范围广、可实现在线非接触连续测量等众多优点。
作为一种常用的测温技术,红外测温显示出较明显的优势。
根据式(1),单位面积上黑体的辐射功率可以表示为Pb(λΤ),其中λ为波长,Τ为绝对温度。
根据这个关系,可以得到图1中黑体辐射的光谱分析。
从图1中可以看出,随着温度的升高,物体的辐射能量越强。
红外线测温技术的原理和应用

红外线测温技术的原理和应用红外线测温技术是一种非接触式温度测量方法,广泛应用于工业、医疗、消防等领域。
它通过检测物体发射的红外辐射能量来测量物体的表面温度。
本文将详细介绍红外线测温技术的原理和应用。
一、红外线测温技术的原理红外线(IR)是在电磁波谱中紧邻可见光的一个频段,其波长范围为0.75μm-1000μm(微米)。
红外线的特点是能够通过大气层,并且被热物体发射。
红外线测温技术基于物体的发射与吸收红外辐射的原理来进行测量。
红外线测温技术的原理可以归结为以下几个关键步骤:1.热能发射:所有物体都会发射红外辐射能量,其强度与物体的温度成正比。
温度越高,物体发射的红外辐射能量越大。
2.红外辐射接收:测温设备(红外测温仪或红外相机)通过感应元件接收物体发射的红外辐射能量。
3.信号处理:测温设备将接收到的红外辐射能量转换成电信号,并进行滤波、放大等处理。
4.温度计算:通过校准和算法,将接收到的电信号转换为与物体表面温度对应的数值。
5.显示或记录:获得物体的表面温度数值后,可以通过显示屏或记录设备显示或记录下来。
二、红外线测温技术的应用红外线测温技术具有非接触、快速、准确等优点,因此在许多领域得到了广泛的应用。
1.工业领域在工业生产中,红外线测温技术可以用于监测和控制物体的温度。
例如,可以用于炉温监测、电子元件的温度检测、冶金工艺中的温度控制等。
红外线测温技术可以实时地检测物体的温度变化,帮助提高生产效率和质量。
2.电力行业红外线测温技术在电力行业的应用主要包括电力设备的温度检测和故障诊断。
通过对输电线路、变压器、开关设备等的温度进行监测,可以早期发现潜在的故障并采取相应的措施,预防事故的发生,保障电力系统的安全运行。
3.医疗和健康 care红外线测温技术在医疗和健康 care 领域的应用日益广泛。
例如,在医院中,可以使用红外测温仪快速测量人体表面的温度,尤其是在流行病期间,可以实现快速筛查和诊断。
此外,红外线测温技术也可用于测量食品、水源等的温度,以确保食品安全和水质安全。
红外测温仪的原理及应用_上_刘准仪

54 ( 总 694页) 家电检修技术 < 资料版 >2012 第 11 期
图 8 三相异步电动机的反转示图
的,因而在测量小目标时要注意目标距离。红外测温仪 距离系数(光学分辨率)K 的定义是,被测目标的距离 L 与被测目标的直径 D 之比,即 K=L/D。
测头
D
最近距离
L
图 2 测温目标尺寸与测温仪视场关系图
危险的或难以接触的物体,而不会污染或损坏被测物 测温仪必须调节为只读出发射的能量。
体。红外测温仪每秒可测若干个数据,而普通接触式
测量误差通常由其他光源反射的红外能量引起
测温仪每测量一个温度数值,通常就需要若干分钟的 的。红外测温仪一般都是按黑体(发射率 ε=1.00)
时间,测量速度慢。红外测温仪分为便携式、在线式、 分度的,而实际上,物质的发射率都小于 1.00。
非接触红外测温仪采用红外技术可快速、方便地 置。
村 测量物体的表面温度。不需要机械的接触被测物体而
1. 选择被测物质发射率
快速测得温度数值。只需瞄准,按动触发器,在 LCD 显
所有物体都会发射、反射和透射能量,只有发射
电 示屏上直接读出温度数据。
的能量能指示物体的温度。当红外测温仪测量表面温
工
红外测温仪的最大优点是:能可靠地测量热的、 度时,仪器能接收到所有这三种能量。因此,所有红外
度数据,为此要保证安排好测量 距离与光斑尺寸之比以及视场。
表 1 ST20、ST30、ST60、ST80 便携式红外测温仪的规格
用红外测温仪时有几件重要的
事要记住:
(1)只测量物体表面温度,
红外测温仪不能测量物体内部
温度。
(2)不 能 透 过 玻 璃 进 行 测
红外测温仪的原理及应用介绍

红外测温仪的原理及应用介绍红外测温仪的原理红外测温仪是基于物体发射红外线的原理进行温度测量的仪器。
根据热力学第二定律,每个物体在温度为T时都会发射红外线,这些红外线的波长和发射强度随着温度的升高而增加。
因此,如果我们能够测量红外线的波长和强度,就可以确定物体的温度。
现代红外测温仪是利用一种叫做热电偶的技术来测量物体的温度。
热电偶是由两种不同的金属制成的导线,在两端连接成一个回路。
当热电偶的两端处于不同温度时,就会产生一个由电势差引起的电流。
这个电势差的大小与两端之间的温度差有关。
因此,我们可以用热电偶来测量物体表面和环境之间的温度差,从而推断物体的温度。
红外测温仪的应用红外测温仪广泛应用于各种领域,例如:工业制造红外测温仪在工业领域中的应用很广泛,例如测量机械设备的运行温度、检测高温炉炉墙和管道等。
环境监测红外测温仪也可以用于环境监测,例如检测地表温度、森林火灾等。
医疗保健红外测温仪也可以用于医疗保健,例如测量病人体温、检测病人的动脉和静脉等。
建筑施工在建筑施工中,红外测温仪可以测量材料表面的温度,例如测量混凝土的硬化过程、检测建筑物中的水分等。
农业种植在农业种植中,红外测温仪可以测量植物表面的温度,例如测量植物吸收的阳光能量和冷却速率,以便更有效地管理温室环境和农田作物。
结论红外测温仪是一种基于物体发射红外线的原理进行温度测量的仪器。
由于其精度高、测量速度快、便携性好等优点,它在各个领域都有着广泛的应用,从农业种植到工业加工,从医疗保健到环境监测,都有着它的身影。
随着技术的不断发展,相信红外测温仪的应用范围和精度等方面也会越来越好,使其在越来越多的领域中发挥重要作用。
红外测温方法的工作原理及测温仪

红外测温仪的工作原理及其应用摘要:红外测温的物理基础是黑体辐射定律。
具有非接触测温、测量结果迅速、准确的特点,同时在使用中也存在一些注意的问题。
目前已在很多领域都有不同的应用。
关键字:红外;辐射;测温仪1. 概述1800年,英国物理学家F .W .赫胥尔从热的观点来研究各种色光时,发现了红外线。
当时他称之为“不可见之光”。
之后,人们花了一百多年的时间认识红外辐射的电磁本质,并建立了热辐射的基本规律,为红外技术的应用奠定了理论基础。
随着光学技术、半导体技术、电子技术的不断发展,红外技术也日趋完善,其中红外测温技术也形成了完整的理论并成功地应用于医学、工农业、矿业等领域。
2. 红外测温理论基础(1) 红外辐射(红外线、红外光)红外线是电磁波谱中,波长0.76μm~1000μm 范围的电磁辐射,位于红外光与无线电波之间。
与可见光的反射、折射、干涉、衍射和偏振等特性相同。
同时具有粒子性。
对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。
红外辐射的本质是热辐射。
热辐射包括紫外光、可见光辐射,但是在0.76μm~40μm 红外辐射热效应最大。
自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。
辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。
(2) 黑体辐射规律黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量关系。
黑体是一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状等特性无关。
斯特藩和玻耳兹曼通过实验和计算得出黑体辐射定律:40)(T T M σ=式中:)(0T M —— 温度为T 时,单位时间从黑体单位面积上辐射出的总辐射能,称为总辐出度;σ一—斯特藩玻耳兹曼常量;T 一—物体温度。
上式是黑体的热辐射定律。
实际物体(非黑体)的辐射定律一般比较复杂,需借助于黑体的辐射定律来研究。
设被测物体的温度为T 时,总辐出度为M 等于黑体在温度为F T 时的总辐出度Mo ,即:440,T T M M Fεσσ==化简得 41εF T T =其中ε为发射率,不同物体的发射率不同,具体材料的ε值可通过查表或实验得到,T 为被测物体的辐射温度,所以已知被测物体的ε和F T ,就可算出物体的真实温度。
红外测温仪方案

红外测温仪方案随着科技的不断进步,红外测温技术在各个领域得到了广泛应用。
红外测温仪作为一种非接触式测温工具,具有精准、高效、安全、便捷等特点,被广泛应用于医疗、工业、能源、环保等领域。
本文将介绍红外测温仪的基本原理、应用领域以及一种简单实用的红外测温仪方案。
一、红外测温仪的基本原理红外测温仪利用物体辐射能量与温度之间的关系来测量物体的温度。
其基本原理是根据物体表面的热辐射能量进行测量,通过红外光学系统对目标进行感知,接收被感知物体辐射出的红外能量,经过相应的计算和转换,输出目标物体的表面温度数据。
红外测温仪的核心部件是红外探测器和光学系统。
红外探测器负责接收红外辐射能量,并将其转化为电信号输出。
光学系统则用于对目标进行聚焦和收集红外辐射能量,以提高测温的准确度和稳定性。
二、红外测温仪的应用领域1. 医疗领域红外测温技术在医疗领域中发挥着重要的作用。
红外测温仪可以快速、准确地测量人体体温,无需接触,避免交叉感染的风险,对于防控传染病、发现患者体温异常具有重要意义。
特别是在公共场所、医院、机场等人员密集的地方,红外测温仪成为一种必不可少的工具。
2. 工业领域在工业领域,红外测温仪被广泛应用于设备状况监测、能源消耗控制等方面。
通过测量设备表面的温度,可以及时判断设备是否运行正常,预测设备的故障,并采取相应的维修和保养措施,以提高设备的可靠性和安全性。
红外测温仪还可以用于监测高温工作环境,确保工人的安全。
3. 建筑领域在建筑领域,红外测温仪可以用于检测建筑物表面的温度分布,发现建筑物中存在的隐蔽热桥或热漏点,从而提出相应的节能建议。
通过红外测温仪的应用,可以提高建筑物的能源利用效率,降低能源消耗,减少温室气体排放。
三、一种简单实用的为了方便用户在日常生活和工作中使用红外测温仪,一种简单实用的红外测温仪方案被提出。
该方案主要包括以下几个部分。
1. 硬件设备该方案采用小型便携式红外测温仪作为测温设备。
该测温仪具有小巧轻便的外观设计,适合携带,方便用户在不同场景中使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外测温仪工作原理及应用(一)摘要:本文结合国内外红外技术的发展和应用,简绍了红外技术的基础理论,阐述了红外热像仪的工作原理、发展和分类。
1.概述红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。
近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。
比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。
非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。
在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。
红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。
任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。
红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。
目前应用红外诊技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。
像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。
红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的预防性试验维修(预防试验是50年代引进前苏联的标准)提高到预知状态检修,这也是现代电力企业发展的方向。
特别是现在大机组、超高电压的发展,对电力系统的可靠运行,关系到电网的稳定,提出了越来越高的要求。
随着现代科学技术不断发展成熟与日益完善,利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种故障的检测)。
它备受国内外电力行业的重视(国外70年代后期普遍应用的一种先进状态检修体制),并得到快速发展。
红外检测技术的应用,对提高电气设备的可靠性与有效性,提高运行经济效益,降低维修成本都有很重要的意义。
是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。
采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。
利用热像仪检测在线电气设备的方法是红外温度记录法。
红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。
与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比,热像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。
它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障,揭示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。
带电设备的红外诊断技术是一门新兴的学科。
它是利用带电设备的致热效应,采用专用设备获取从设备表面发出的红外辐射信息,进而判断设备状况和缺陷性质的一门综合技术。
2.红外基础理论1672年,人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿做出了单色光在性质上比白色光更简单的著名结论。
使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。
1800年,英国物理学家F.W.赫胥尔从热的观点来研究各种色光时,发现了红外线。
他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩形孔,孔内装一个分光棱镜。
当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。
为了与环境温度进行比较,赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。
试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其他温度的批示数值高。
经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。
于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。
红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发现是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。
红外线的波长在0.76~100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
通过红外探测器将物体辐射的功率信号转换成电信号后,成像装置的输出信号就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理,传至显示屏上,得到与物体表面热分布相应的热像图。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
2.1热像仪原理红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等技术2.2热像仪的发展1800年,英国物理学家F.W.赫胥尔发现了红外线,从此开辟了人类应用红外技术的广阔道路。
在第二次世界大战中,德国人用红外变像管作为光电转换器件,研制出了主动式夜视仪和红外通信设备,为红外技术的发展奠定了基础。
二次世界大战后,首先由美国德克萨兰仪器公司经过近一年的探索,开发研制的第一代用于军事领域的红外成像装置,称之为红外寻视系统(FLIR),它是利用光学机械系统对被测目标的红外辐射扫描。
由光子探测器接收两维红外辐射迹象,经光电转换及一系列仪器处理,形成视频图像信号。
这种系统、原始的形式是一种非实时的自动温度分布记录仪,后来随着五十年代锑化铟和锗掺汞光子探测器的发展,才开始出现高速扫描及实时显示目标热图像的系统。
六十年代早期,瑞典AGA公司研制成功第二代红外成像装置,它是在红外寻视系统的基础上以增加了测温的功能,称之为红外热像仪。
开始由于保密的原因,在发达的国家中也仅限于军用,投入应用的热成像装置可的黑夜或浓厚幕云雾中探测对方的目标,探测伪装的目标和高速运动的目标。
由于有国家经费的支撑,投入的研制开发费用很大,仪器的成本也很高。
以后考虑到在工业生产发展中的实用性,结合工业红外探测的特点,采取压缩仪器造价。
降低生产成本并根据民用的要求,通过减小扫描速度来提高图像分辨率等措施逐渐发展到民用领域。
六十年代中期,AGA公司研制出第一套工业用的实时成像系统(THV),该系统由液氮致冷,110V电源电压供电,重约35公斤,因此使用中便携性很差,经过对仪器的几代改进,1986年研制的红外热像仪已无需液氮或高压气,而以热电方式致冷,可用电池供电;1988年推出的全功能热像仪,将温度的测量、修改、分析、图像采集、存储合于一体,重量小于7公斤,仪器的功能、精度和可靠性都得到了显著的提高。
九十年代中期,美国FSI公司首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的一种凝成像装置,技术功能更加先进,现场测温时只需对准目标摄取图像,并将上述信息存储到机内的PC卡上,即完成全部操作,各种参数的设定可回到室内用软件进行修改和分析数据,最后直接得出检测报告,由于技术的改进和结构的改变,取代了复杂的机械扫描,仪器重量已小于二公斤,使用中如同手持摄像机一样,单手即可方便地操作。
如今,红外热成像系统已经在电力、消防、石化以及医疗等领域得到了广泛的应用。
红外热像仪在世界经济的发展中正发挥着举足轻重的作用。
2.3热像仪分类红外热像仪一般分光机扫描成像系统和非扫描成像系统。
光机扫描成像系统采用单元或多元(元数有8、10、16、23、48、55、60、120、180甚至更多)光电导或光伏红外探测器,用单元探测器时速度慢,主要是帧幅响应的时间不够快,多元阵列探测器可做成高速实时热像仪。
非扫描成像的热像仪,如近几年推出的阵列式凝视成像的焦平面热像仪,属新一代的热成像装置,在性能上大大优于光机扫描式热像仪,有逐步取代光机扫描式热像仪的趋势。
其关键技术是探测器由单片集成电路组成,被测目标的整个视野都聚焦在上面,并且图像更加清晰,使用更加方便,仪器非常小巧轻便,同时具有自动调焦图像冻结,连续放大,点温、线温、等温和语音注释图像等功能,仪器采用PC卡,存储容量可高达500幅图像。
红外热电视是红外热像仪的一种。
红外热电视是通过热释电摄像管(PEV)接受被测目标物体的表面红外辐射,并把目标内热辐射分布的不可见热图像转变成视频信号,因此,热释电摄像管是红外热电视的光键器件,它是一种实时成像,宽谱成像(对3~5μm及8~14μm 有较好的频率响应)具有中等分辨率的热成像器件,主要由透镜、靶面和电子枪三部分组成。
其技术功能是将被测目标的红外辐射线通过透镜聚焦成像到热释电摄像管,采用常温热电视探测器和电子束扫描及靶面成像技术来实现的。
热像仪的主要参数有:2.3.1工作波段;工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。
2.3.2探测器类型;探测器类型是指使用的一种红外器件。