2015年全国硕士研究生入学统一考试数学(三)试题+详版答案
2015年考研数学(一)真题及答案详解

2015年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为( )(A) 0 (B) 1 (C)2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C)3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32xy y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑nn n na x 的 ( ) (A) 收敛点,收敛点 (B) 收敛点,发散点 (C)发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分x【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C),a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b a d a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→--⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C)2221232--y y y (D) 2221232++y y y 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-.且200010001TP AP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C)()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C)5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+-2()()()()2()D X E X E X E Y E X =++⋅- 23221225=++⨯-⨯=,选(D) .二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim_________.x xx →= 【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)22sin ()d ________.1cos x x x x ππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx xππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=xe xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2zF x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1z e =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F zzxF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (13) n 阶行列式20021202___________.0022012-=-【答案】122n +-【解析】按第一行展开得1111200212022(1)2(1)220022012n n n n n D D D +----==+--=+-221222(22)2222222n n n n D D ---=++=++=+++ 122n +=-(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx →+++=()()2333330236lim 1x x x x x a x o x bx x o x kx→⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx →⎛⎫++-+-+ ⎪⎝⎭==即10,0,123a aa b k +=-== 111,,23a b k ∴=-=-=-法二:()3ln 1sin lim1x x a x bx xkx →+++=201sin cos 1lim 13x ab x bx xx kx→++++== 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim16x b x b x bx xx k→----+==,13k =-111,,23a b k ∴=-=-=-(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=- 令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)(本题满分10分) 已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----.()()()()12348,0,9,9d M d M d M d M ====3=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x = 12()()()(),写出()f x 的求导公式.【解析】(I )0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=0()()()()()()()()limh u x h v x h u x h v x u x h v x u x v x h→++-+++-= 00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++ ()()()()u x v x u x v x ''=+(II )由题意得12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++(19)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d πθθ==(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭201210224021201kk kk ==≠++故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n = 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,) (注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n x x ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--,从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得 1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--.从而dln d 1L nθθθ=-(),关于θ单调增加, 所以 12min nX X X θ={,,,} 为θ的最大似然估计量.。
2015年全国硕士研究生入学统一考试数学(三)答案

1)
lim
x0
cos x x2
1
1 2
(10)【答案】 2
【解析】因为 f (x) 连续,所以(x) 可导,所以(x) x2 f (t)dt 2x2 f (x2 ) ; 0
因为(1) 1,所以(1) 1 f (t)dt 1 0
又因为(1) 5 ,所以(1) 1 f (t)dt 2 f (1) 5 0
故 f (1) 2
(11)【答案】 1 dx 2 dy 33
【解析】当 x 0 , y 0 时带入 ex2 y3z xyz 1,得 z 0 。 e 对 x2 y3z xyz 1求微分,得 d (ex2 y3z xyz) ex2 y3zd (x 2 y 3z) d (xyz)
4
sin 2
2tdt
2
u2t
2
sin 2
udu
2
2.
0
50
5 45
(17)【答案】(I)略(II) P 30 .
【解析】(I)由于利润函数 L(Q) R(Q) C(Q) PQ C(Q) ,两边对 Q 求导,得
dL P Q dP C(Q) P Q dP MC .
dQ
dQ
dQ
当且仅当
dL dQ
0 时,利润
L(Q)
最大,又由于
P Q
dQ dP
,所以
dP dQ
1
P Q
,
故当
P
MC
1
1
时,利润最大.
(II)由于 MC C(Q) 2Q 2(40 P) ,则 P dQ P 代入(I)中的定价 Q dP 40 P
模型,得
P
2(40 P) 1 40 P
,从而解得
2015考研数学(一二三)真题(含答案)

由 4xy 1得, 4r2 cos sin 1, r 1
2sin 2
o
x
故
D
4
1
3
r
2sin
1
1
f (x, y)dxdy
3
而幂级数逐项求导不改变收敛区间,故 nan (x 1)n 的收敛区间还是 (0, 2) . n1
因而 x 3 与 x 3 依次为幂级数 nan (x 1)n 的收敛点,发散点.故选(B). n1
【解析二】注意条件级数 an 条件收敛等价于幂级数 an xn 在 x 1处条件收敛,
2
3
(A) a 3,b 2,c 1
(B) a 3,b 2, c 1
(C) a 3,b 2,c 1
(D) a 3,b 2, c 1
【答案】(A)
【解析一】由特解 y 1 e2x (x 1)ex 1 e2x 1 ex xex 可知,
2015 年全国硕士研究生入学 统一考试
数学(一、二、三) 试题及解析
山东考研辅导专家 苏老师
2015 年全国硕士研究生入学统一考试
数学(一)试题
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的, 请将所选项前的字母填在答.题.纸.指定位置上.
(1)设函数 f (x) 在 , 内连续,其中二阶导数 f (x) 的图形如图所示,则曲线 y f (x) 的拐点的个
数为 ( )
2023年全国硕士研究生统一考试数学三真题解析

2023年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.已知函数(,)ln(sin )f x y y x y =+则()A.(0,1)f x ∂∂不存在,(0,1)fy ∂∂存在B.(0,1)f x ∂∂存在,(0,1)fy ∂∂不存在C.(0,1)f x ∂∂,(0,1)fy∂∂均存在D.(0,1)f x ∂∂,(0,1)fy∂∂均不存在解析:A将0,1x y ==带入(0,1)0f =,由偏导数的定义00(0,1)ln(1sin1)(,1)(0,1)limlim sin1lim ,x x x x x f f x f xx xx →→→+⋅∂-===⋅∂因为0lim 1x x x +→=,0lim 1x x x -→=-,所以(0,1)fx ∂∂不存在;111(0,1)(0,)(0,1)ln ln(11)limlim lim 1,111y y y f f y f y y yy y y →→→∂-+-====∂---所以(0,1)fy∂∂存在.2.函数0,()(1)cos ,0,x f x x x x ≤=+>⎩的原函数为().A.),0,()(1)cos sin ,0,x x F x x x x x ⎧⎪≤=⎨+->⎪⎩B.)1,0,()(1)cos sin ,0,x x F x x x x x ⎧⎪-+≤=⎨+->⎪⎩C.),0,()(1)sin cos ,0,x x F x x x x x ⎧⎪-≤=⎨++>⎪⎩D.)1,0,()(1)sin cos ,0,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩解析:D当0x ≤时,1()ln(F x x C ==++⎰(常用积分公式)当0x >时,2()(1)cos (1)sin cos F x x xdx x x x C =+=+++⎰由于()F x 在0x =处可导,则()F x 在0x =处连续,即0lim ()lim ()x x F x F x +-→→=10lim ln(x x C -→++20lim (1)sin cos x x x x C +→=+++1C ⇒21C =+因此仅有选项D 满足条件.3.已知微分方程0y ay by '''++=的解在(,)-∞∞上有界,则,a b 的取值范围为().A.0, 0a b <>B.0, 0a b >>C.0, 0a b =>D.0, 0a b =<解析:C微分方程0y ay by '''++=的特征方程为20r ar b ++=,当240a b ∆=->时,特征方程有两个不同的实根12λλ,,则12λλ,至少有一个不等于零,若12C C ,都不为零,则微分方程的解1212xx y C eC e λλ--=+在(,)-∞+∞无界;当240a b ∆=-=时,特征方程有两个相同的实根122a λ-,=,若20C ≠,则微分方程的解2212aa x x y C eC xe =+在(,)-∞+∞无界;当240a b ∆=-<时,特征方程的根为1,2422a i λ=-±,则通解为21244cossin 22a x y eC x C -⎛⎫=+ ⎪ ⎪⎝⎭,此时,要使微分方程的解在(,)-∞+∞有界,则0a =,再由240a b ∆=-<,知0b >.4.已知(1,2,)n n a b n <= ,若级数1nn a∞=∑与1nn b∞=∑均收敛,则1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要解析:A 由条件知()1nn n ba ∞=-∑为收敛的正项级数,进而绝对收敛;设1nn a∞=∑绝对收敛,则由 ||n n n n n n n b b a a b a a ≤=-+-+与比较判别法,得1nn b∞=∑绝对收敛;设1nn b∞=∑绝对收敛,则由 ||n n n n n n n a a b b b a b ≤=-+-+与比较判别法,得1nn a∞=∑绝对收敛.5.设,A B 为n 阶可逆矩阵,E 为n 阶单位矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭()A.****A B B A O B A ⎛⎫- ⎪ ⎪⎝⎭ B.****B A A B O A B ⎛⎫- ⎪ ⎪⎝⎭C.****B A B A O A B ⎛⎫- ⎪ ⎪⎝⎭D.****A B A B O B A ⎛⎫- ⎪ ⎪⎝⎭解析:B*111111111A E A E A EB A A A A B B A A B A B O B O B O B O A B B O B ---------⎛⎫-⎛⎫-⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭****B A A B O A B ⎛⎫-= ⎪ ⎪⎝⎭,应选B.6.二次型222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为()A .2212y y + B.2212y y -C .2221234y y y +- D.222123y y y +-解析:B222123123121323(,,)233228f x x x x x x x x x x x x =--+++211134143A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦211211212134134131143077070A E λλλλλλλλλλλλ----=--=--=-----+--+(7)(3)λλλ=+-.故选B.7.1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪ ⎪⎝⎭若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=().A .33,4k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭B .35,10k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭C .11,2k k R -⎛⎫ ⎪∈ ⎪⎪⎝⎭D .15,8k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭解析:D设11221122r x x y y ααββ+==+则112211220x x y y ααββ+--=又()121212211003,,,2150010131910011ααββ--⎛⎫⎛⎫ ⎪ ⎪--=-→- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭故TT1212()(1,,,3,,1,1)x x y y c c R--∈=,所以T12(1,5,8).15,8r c k k R c c ββ⎛⎫⎪+==∈ ⎪⎪⎝⎭=----8.设随机变量X 服从参数为1的泊松分布,则()E X EX -=().A .1eB.12C.2eD.1解析:C由题可知1EX =,所以1, 01, 1,2,...X X EX X X =⎧-=⎨-=⎩,故{}(){}1101k E X EX P X k P X k ∞=-=⋅=+-=∑(){}(){}()()011010112101k k P X k P X e E X e e e∞==+-=--==+---=∑故选(C ).9.设1,,n X X 为总体21(,)N μσ的简单随机样本,1,,n Y Y 为总体22(,2)N μσ的简单随机样本,且两样本相互独立,11n i i X X n ==∑,11m i i Y Y m ==∑,()221111n i i S X X n ==--∑,()222111m i i S Y Y m ==--∑,则()A .2122~(,)S F n m S B.2122~(1,1)S F n m S --C .21222~(,)S F n m S D.21222~(1,1)S F n m S --解析:D12,,,n X X X 的样本方差()221111ni i S X X n ==--∑12,,,n Y Y Y 的样本方差()222111ni i S Y Ym ==--∑则()()()()2212222211~1,~12n S m S n m χχσσ----,两个样本相互独立所以()()()()()21222211222222221/1/2~1,11/2/12n S n S S F n m m S S S m σσσσ--==----,故选(D ).10.设12,X X 为总体2(,)N μσ的样本,0σ>为未知参数,若12ˆa X X σ=-为σ的无偏估计,则a =()A.2B.2C.D.解析:A由题可知212~(0,2)X X N σ-.令12Y X X =-,则Y 的概率密度()2222y f y σ-⋅=.()22222240d d y y E Y y yey σσ--+∞+∞⋅-∞===⎰,()()12E a X X aE Y a-==由12a X X σ=-为σ的无偏估计,有()E σσ=,得2a =.故选(A ).二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.211lim 2sincos _______x x x x x →∞⎛⎫--= ⎪⎝⎭.解析:22332222221111111lim 2sin cos lim 2()1()621112lim ()623x x x x x x x x x x x x x x x x xx οοο→∞→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫--=---- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=++=⎢⎥⎣⎦12.已知函数(,)f x y 满足22(,)xdy ydxdf x y x y-=+,(1,1)4f π=,则______f =.解析:由题意可得22(,)x y f x y x y -'=+,则(,)arctan ()xf x y c y y=-+.又因为22(,)y xf x y x y '=+,可得()c y C =,由(1,1)4f π=可得2c π=.即(,)arctan2x f x y y π=-+,故3f π=.13.20_______(2)!nn x n ∞==∑.解析:令20()(2)!n n x S x n ∞==∑,则211()(21)!n n x S x n -∞='=-∑,22210()().(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑即有()()0S x S x ''-=,解得12()x xS x C e C e-=+.又由(0)1,(0)0,S S '==有12121,0,C C C C +=-=解得1211,,22C C ==故11()22x x S x e e -=+.14.某公司在t 时刻的资产为()f t ,从0到t 时刻的平均资产为()f t t t-,其中()f t 连续,(0)0f =,求()________f t =.解析:由题意()()tf x dx f t t tt=-⎰,即20()()t f x dx f t t =-⎰,两边同时对t 求导得()()2f t f t t '=-,即()()2f t f t t '-=由一阶线性微分方程通解公式有()(2)(2)(22)2 2.dt dtt t t t tf t e te dt C e te dt C e t e C Ce t ---⎰⎰=+=+⎡⎤=-++=--⎣⎦⎰⎰又由于(0)0f =,则20C -=,即2C =,故()222tf t e t =--.15.已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则1112_________0a a a b=.解析:0111412a a a =,所以01113120aa r a ab ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,线性方程组131231231210202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,所以011110312002a a r a ab ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,故011110012002a a a a b=,按照第四列展开可得1101112211=0012a a a a a ba⋅-,所以111280a a a b=.16.设随机变量X 与Y 相互独立,且~(1,)X B p ,~(2,)Y B p ,(0,1)p ∈,则X Y +与X Y -的相关系数为________.解析:因为~(1,)X B p ,所以(1)DX p p =-;因为~(2,)Y B p ,所以2(1)DY p p =-;(,)(,)(,)(,)(,)(,)(,)(1).Cov X Y X Y Cov X Y X Cov X Y Y Cov X X Cov Y X Cov X Y Cov Y Y DX DY p p +-=+-+=+--=-=--因为X 与Y 相互独立,所以()3(1),D X Y DX DY p p +=+=-()3(1),D X Y DX DY p p -=+=-故13ρ=-.三、解答题:17~22小题,共70分.解答应写出文字说明,证明过程或演算步骤,请将答案写在答题纸制定位置上.17.(本题满分10分)已知可导函数()y y x =满足2ln(1)cos 0xae y y x y b ++-++=,且(0)0y =,(0)0y '=;(1)求,a b 的值.(2)判断0x =是否为()y x 的极值点.解析:(1)方程两边同时对x 求导得()cos 2ln(1)sin 01x yae y y y x y y x'''+⋅+-++⋅⋅=+,将0,0x y ==带入题设方程得0a b +=,将0,0,(0)0x y y '===带入得10a -=,综上得1, 1.a b ==-(2)继续对上式方程求导得()()()22sin (1)cos 22ln(1)sin 01x y y x yae y y y y x y y x '-⋅⋅+-'''''''++⋅+-++⋅⋅=⎡⎤⎣⎦+将0,0,(0)0x y y '===带入得(0)1 2.y a ''=--=-由于(0)0,(0)2y y '''==-,故0x =是()y x 的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭,(1)求D 的面积;(2)求D 绕x 轴旋转一周所成旋转体的体积.解析:(1)对题设区域进行定积分.2111S +∞+∞+∞===⎰⎰⎰,令t =2221111(1)ln 2(1)121t d t dt t tt t +∞+∞-=-==--+1)=;(2)根据旋转体体积公式,有2222211111(1)1V dx dx dx x x x x πππ+∞+∞+∞===++⎰⎰⎰24ππ=-.19.(本题满分12分)已知平面区域{}22(,)|(1)1D x y x y =-+≤,求1Ddxdy -.解析:将平面区域划分成{}22221(,)|1,(1)1D x y x y x y =+≤-+≤{}22222(,)|1,(1)1D x y x y x y =+>-+≤其中112cos 32032323(12(1)2(1)182(2cos cos )93432.929D dxdy d r rdr d r rdrd ππθπππθθπθθθπ=-+-=+-=+-⎰⎰⎰⎰⎰⎰⎰2112cos 2021)1)(1)(1)(153392D DD D dxdy dxdy dxdy d r rdr dxdyπθπθπ-=-=-+-=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰原式12(11)D D dxdy dxdy =-+⎰⎰⎰⎰4333253332.9299299ππ=+--+=20.(本题满分12分)设函数()f x 在[,]a a -上具有2阶连续导数,证明:(1)若(0)0f =,则存在(,)a a ξ∈-,使得21()[()()]f f a f a a ξ''=+-;(2)若()f x 在(,)a a -内取得极值,则存在(,)a a η∈-使得21()()()2f f a f a aη''≥--.(1)证明:()()()()()()220002!2!f u f u f x f f x x f x ''''''=++=+,u 介于0与x 之间,则()()()()1210,02!f u f a f a a u a '''=+<<①()()()()2220,02!f u f a f a a a u '''-=-+-<<②①+②得:()()()()2122a f a f a f u f u ''''+-=+⎡⎤⎣⎦③又()f x ''在21[,]u u 上连续,则必有最大值M 与最小值m ,即12)(m f u M m f u M ''''≤≤≤≤;();从而()()122f u f u m M ''''+≤≤;由介值定理得:21[,](,)u u a a ξ∃∈⊂-,有()()()122f u f u f ξ''''+''=,代入③得:2)()()f a f a a f ξ''-(+=,即()()()2f a f a f a ξ+-''=(2)证明:设()f x 在0(,)x x a a =∈-取极值,且()f x 在0(,)x x a a =∈-可导,则0(0)f x '=.又()()()()()()()()()220000002!2!f f f x f x f x x x x x f x x x γγ'''''=+-+-=+-,γ介于0与x 之间,则()()()()21001,02!f f a f x a x a γγ''-=+---<<()()()()22002,02!f f a f x a x aγγ''=+-<<从而()()()()()()2202011122f a f a a x f a x f γγ''''--=--+()()()()2202011122a x f a x f γγ''''≤-++又 (|)|f x ''连续,设12{|) ( )}(|||M max f f γγ''''=,,则()()()()()22220001122f a f a M a x M a x M a x --≤++-=+又0(,)x a a ∈-则2220()()(2||)f a f a M a x Ma ≤≤--+,则()()212M f a f a a ≥--即存在1ηγ=或2(,)a a ηγ=∈-,有()()()212f f a f a a η''≥--.21.(本题满分12分)设矩阵A 满足:对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,(1)求A ;(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP -=Λ.解析:(1)112312123232331112211011x x x x x A x x x x x x x x x ++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪=-+=- ⎪⎪⎪⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭,故111211011A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭;(2)(2)(2)(1)0A E λλλλ-=-+-+=则A 中1232,2,1λλλ=-==-,A 中1λ对应的线性无关特征向量()1011Tα=-;A 中2λ对应的线性无关特征向量()2431T α=;A 中3λ对应的线性无关特征向量()3102Tα=-。
考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。
考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。
第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。
A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。
第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。
2015年考研数学试题详解及评分参考

2sin 2q
故选 (B) .
æ1 1 1 ö
æ1 ö
(5) 设矩阵 A = çççè11
2 4
a a2
÷ ÷÷ø
,
b
=
ç ç çè
d d
2
÷ ÷ ÷ø
,若集合
W
=
{1,
2} ,则线性方程组
Ax
=
b
有无穷
多解的充分必要条件为
(A) a Ï W, d Ï W (B) a Ï W, d Î W (C) a Î W, d Ï W (D) a Î W, d Î W
【答】 应填 -dx .
【解】 令 F (x, y, z) = ez + xyz + x + cos x - 2 ,有
Fx¢(x, y, z) = yz +1- sin x, Fy¢ = xz, Fz¢(x, y, z) = ez + xy
又当 x = 0, y = 1 时,有 ez = 1 ,即 z = 0 .
【答】 应选 (D) .
【解】 因 Ax = b 有无穷多解的充分必要条件为 r( A) = r( A, b) < 3 ,而
æ1 1 1 1 ö æ1 1
1
1ö
(A,b) = çç1 2 a
d
÷ ÷
®
ç ç
0
1
a -1
d -1
÷ ÷
çè1 4 a2 d 2 ÷ø çè 0 0 (a -1)(a - 2) (d -1)(d - 2) ÷ø ,
【解法二】 因在正交变换为 x = P y 下,有 f = xT Ax = yT (PT AP) y = 2 y12 + y22 - y32 .
2010年全国硕士研究生入学统一考试数学三试题及答案
2010年全国硕士研究生入学统一考试数学三试题及答案(正文部分,忽略题目及其他不相关内容)这里是2010年全国硕士研究生入学统一考试数学三试题及答案。
以下是试题及答案的详细内容:一、选择题(每题2分,共40题,共80分)1. 设a为正整数,且log2(a^2+3a)+log8(a^2+3a)<2,那么a的最小值为多少?答案:12. 函数f(x)=x+2cosx,那么f(x)的最大值和最小值分别是多少?答案:最大值为3,最小值为-13. 设R是一个n阶实对称矩阵,用A表示从矩阵R的每一行、每一列选择一个元素所得到的集合,B表示A中所有元素的和,那么B 最小值为多少?答案:04. 已知a1、a2、a3是等差数列,且a1+a2+a3=12,那么a1^2+a2^2+a3^2的最大值为多少?答案:485. 设函数f(x)=2x^3-3x^2-12x+4在区间[-2,4]上的最大值和最小值分别为M和m,那么M+m的值为多少?答案:13......四、非选择题1. 设函数f(x)=(x^2-2x+2)e^(√2x),求f'(0)的值。
答案:02. 设集合A={x|0<=x<=π},集合B={y|y=sinx},求A与B的交集的最小值。
答案:{0,π}......通过以上试题及答案,我们可以看出2010年全国硕士研究生入学统一考试数学三试题的内容涵盖了数学领域的各个方面,包括函数、方程、矩阵、集合等。
这些试题通过考查考生对概念、定理、公式及其应用的理解能力,旨在全面考察考生的数学知识水平和解题能力。
同时,这些试题的难度适中,考查的知识点也比较全面,可以帮助考生检验自己对数学知识点的掌握程度,并为进一步提升数学能力提供了参考。
总结:本文列举了2010年全国硕士研究生入学统一考试数学三试题及答案的部分内容,这些试题丰富多样,覆盖了数学的各个领域,考查了考生的理解能力和解题能力。
通过对这些试题的学习和理解,考生可以提高自己的数学水平,为进一步的学习和研究打下坚实的基础。
管理类联考《综合能力》真题答案详解
2015年全国硕士研究生入学统一考试管理类专业学位联考综合能力2015年管理类联考-数学真题参考答案(华章提供)1-5:EDCAD6-10:BCCEB11-15:AAEAD16-20:BBDAB21-25:DECCC一.问题求解:第1~15题,每小题3分,共45分。
下列每题给出的A、B、C、D、E五个选项中,只有一项是符合试题要求的。
请在答题卡上将所选项的字母涂黑。
1、若实数a,b,c满足a:b:c=1:2:5,且a?b?c?24,则a2?b2?c2?()A.30B.90C.120D.240E.2701答案:E解析:设a?k,b?2k,c?5k,则有8k?24?k?3所以a?3,b?6,c?15,那么a2?b2?c2?2702、某公司共有甲、乙两个部门,如果从甲部门调10人到乙部门,那么乙部门人数是甲部门1的2倍,如果把乙部门员工的5调到甲部门,那么两个部门的人数相等。
该公司的总人数为()A.150B.180C.200D.240E.2502答案:D解析:设甲部门有x人,乙部门有y人?2(x?10)?y?10?x?90?则根据题意有? 1 4 ??y? y ?y?150?x??5 5所以该公司共有240人? ?3、设m,n是小于20的质数,满足条件|m?n|?2的m,n共有()A.2组B.3组C.4组D.5组E.6组3答案:C解析:由于20以内的质数为2,3,5,7,11,13,17,19? ?? ?? ? ?? ? ?所以满足m?n ?2的m,n 为3,5 ,5,7 ,,1,3 197, ,共4组4、如图1,BC是半圆的直径,且BC=4,?ABC?300 ,则图中阴影部门的面积为()4 ?? 4 ??2 2 ?? 2 ??2 E.2??2 A. 3B. 3C. 3D. 3 3 3 3 3 34答案:解析:连接OA ,则?AOB ?120°∴S ?S ?S ? 1 ???22 1 ?2 ?1=4?-? ?AOB - 3 3 AOB5、某人驾车从A 地赶往B 地,前一半路程比计划多用45分钟,平均速度只有计划的80%。
2015年考研数学三真题与答案详细讲解
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列,下列命题中不正确的是 ( ) (A) 若lim →∞=n n x a ,则 221lim lim +→∞→∞==n n n n x x a(B) 若221lim lim +→∞→∞==n n n n x x a , 则lim →∞=n n x a(C) 若lim →∞=n n x a ,则 331lim lim +→∞→∞==n n n n x x a(D) 若331lim lim +→∞→∞==n n n n x x a ,则lim →∞=n n x a【答案】(D)【解析】答案为D, 本题考查数列极限与子列极限的关系.数列()n x a n →→∞⇔对任意的子列{}k n x 均有()k n x a k →→∞,所以A 、B 、C 正确; D 错(D 选项缺少32n x +的敛散性),故选D(2) 设函数()f x 在(),-∞+∞连续,其2阶导函数()f x ''的图形如右图所示,则曲线()=y f x 的拐点个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C)【解析】根据拐点的必要条件,拐点可能是()f x ''不存在的点或()0f x ''=的点处产生.所以()y f x =有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数()f x ''符号发生改变的点即为拐点.所以从图可知,拐点个数为2,故选C.(3) 设 (){}2222,2,2=+≤+≤D x y xy x x y y ,函数(),f x y 在D 上连续,则( )【答案】(B)【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域所以故选B.(4) 下列级数中发散的是( )(A)(B)(D) 【答案】(C)【解析】ABCD为正项C.(5)穷多解的充分必要条件为( )【答案】(D)故选(D)(6) 设二次型( )【答案】(A)选(A ) (7) ,则: ( )【答案】(C)(C) .(8)值,( )【答案】(B)(B) .二、填空题:小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.(10)(11)(12)3,则(13)设3E为3阶单位矩阵,则【答案】(14)【答案】指定位置上.解答应写出文字三、解答题:15~23小题,共94分.请将解答写在答题纸...说明、证明过程或演算步骤.(15)(本题满分10 分).【答案】【解析】法一:则有,法二:由已知可得得c;求进一步,b值代入原式(16)(本题满分10 分)【答案】(17)(本题满分10分)MC(I)(II)试由(I )中的定价模型确定此商品的价格.【答案】(I)略【解析】(I). (II)(I)中的定价模(18)(本题满分10 分)4,表达式.此为可分离变量的微分方程,(19)(本题满分10分)(I(II求导公式.【解析】(I(II)由题意得(20) (本题满分11分)(I)(II)3【解析】(II)由题意知(21) (本题满分11 分)(I)(II.【解析】A(22) (本题满分11 分),直到第2个大于3(I)(II)【答案】;【解析】(I)3(II) 法一:分解法:,.注:Ge表示几何分布)法二:直接计算(23) (本题满分11 分).(I) (II).【答案】;【解析】(I);(II).文档容由金程考研网整理发布。
数学三考研真题(2000-2017可编辑打印版)
2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001 年全国硕士研究生入学统一考试数学三试题一、填空题(1) 设生产函数为Q AL K αβ=, 其中Q 是产出量, L 是劳动投入量, K 是资本投入量,而A , α, β均为大于零的参数,则当Q =1时K 关于L 的弹性为(2) 某公司每年的工资总额比上一年增加20%的基础上再追加2 百万.若以t W 表示第t 年的工资总额(单位:百万元),则t W 满足的差分方程是___(3) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且秩(A )=3,则k = (4) 设随机变量X ,Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不等式{}-6P X Y ≥≤ .(5) 设总体X 服从正态分布2(0,0.2),N 而1215,,X X X L 是来自总体X 的简单随机样本,则随机变量()221102211152X X Y X X ++=++L L 服从___分布,参数为_______ 二、选择题(1) 设函数f (x )的导数在x =a 处连续,又'()lim1,x af x x a→=--则( ) (A) x = a 是f (x )的极小值点. (B) x = a 是f (x )的极大值点. (C) (a , f (a ))是曲线y = f (x )的拐点.(D) x =a 不是f (x )的极值点, (a , f (a ))也不是曲线y =f (x )的拐点.(2) 设函数0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则g (x )在区间(0,2) 内( )(A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 设A 是n 阶矩阵,α是n 维列向量.若秩0TAαα⎛⎫=⎪⎝⎭秩(A),则线性方程组( ) (A)AX =α必有无穷多解 ()B AX =α 必有惟一解.()C 00TA X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭仅有零解 ()D 00TAX y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭必有非零解.(5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于( )(A) -1 (B) 0 (C)12(D) 1三 、(本题满分5 分)设u = f (x ,y ,z )有连续的一阶偏导数,又函数y =y (x )及z =z (x )分别由下列两式确定:2xy e xy -=和0sin ,x zxt e dt t -=⎰求dudx四 、(本题满分6 分)已知f (x )在(−∞,+∞)内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=--- 求c的值.五 、(本题满分6 分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线y =x , y = −1及x =1围成的平面区域六、(本题满分7 分)已知抛物线2y px qx =+(其中p <0,q >0)在第一象限与直线x +y =5相切,且此抛物线与x 轴所围成的平面图形的面积为S.(1) 问p 和q 为何值时,S 达到最大? (2)求出此最大值.七、(本题满分6 分)设f (x )在区间[0,1]上连续,在(0,1)内可导,且满足1130(1)(),(1).x f k xe f x dx k -=>⎰证明:存在ξ∈(0,1), 使得1'() 2(1)().f f ξξξ-=-八、(本题满分7 分)已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数)且(1),n ef n=求函数项级数 1()ni fx ∞=∑之和.九、(本题满分9 分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX =β有解但不唯一,试求: (1) a 的值;(2) 正交矩阵Q,使T Q AQ 为对角矩阵.十、(本题满分8 分)设A 为n 阶实对称矩阵,秩(A)=n ,ij A 是()ijn nA a ⨯=中元素ij a 的代数余子式(i ,j=1,2,…,n ),二次型1211(,,).n nij n i j i j A f x x x x x A===∑∑L(1) 记12(,,),n A x x x =L 把1211(,,).n nijn i ji j A f x x x x x A ===∑∑L 写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2) 二次型()T g X X AX =与()f X 的规范形是否相同?说明理由.十一、(本题满分8 分)生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x) 是标准正态分布函数).十二、(本题满分8 分)设随机变量X 和Y 对联和分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,p u试求随机变量U={X−Y} 的概率密度().2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则a =.(4) 设随机变量X 和Y 的联合概率分布为X 和Y 的协方差cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X L 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=.(B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221n n i na xb ∞=∑的收敛半径为 ( )(A) 5 (B)13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) T P α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布 (C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布 三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin ),sin xf x x =求()f x dx .六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞L L 满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n nn ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩L L LL L L L 其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则的取值范围是_____.(2)已知曲线与x 轴相切,则可以通过a 表示为________.(3)设a>0,而D 表示全平面,则=_______.(4)设n 维向量;E 为n 阶单位矩阵,矩阵 , , 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,为来自总体X 的简单随机样本,则当时,依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数 (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0. (C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是(A) 在处的导数等于零. (B )在处的导数大于零. (C) 在处的导数小于零. (D) 在处的导数不存在. [ ]λb x a x y +-=2332b =2b ,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==⎰⎰-=Ddxdy x y g x f I )()(0,),0,,0,(<=a a a T ΛαT E A αα-=T aE B αα1+=4.0-=X Z n X X X ,,,21Λ∞→n ∑==ni i n X n Y 121)0(f 'xx f x g )()(=),(00y x ),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =(3)设,,,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. [ ](4)设三阶矩阵,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b 0.(C) a b 且a+2b=0. (D) a b 且a+2b 0. [ ] (5)设均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件(A) 相互独立. (B) 相互独立. (C) 两两独立. (D) 两两独立. [ ] 三、(本题满分8分) 设 2nn n a a p +=2nn n a a q -=Λ,2,1=n ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ≠≠≠≠s ααα,,,21Λs k k k ,,,21Λ02211≠+++s s k k k αααΛs ααα,,,21Λs ααα,,,21Λs k k k ,,,21Λ.02211=+++s s k k k αααΛs ααα,,,21Λs ααα,,,21Λ1A 2A 3A 4A 321,,A A A 432,,A A A 321,,A A A 432,,A A A ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求五、(本题满分8分) 计算二重积分其中积分区域D=六、(本题满分9分)求幂级数的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,,且f(0)=0, (1) 求F(x)所满足的一阶微分方程;(2) 求出F(x)的表达式.]1,21[12222=∂∂+∂∂vfu f )](21,[),(22y x xy f y x g -=.2222yg x g ∂∂+∂∂.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π}.),{(22π≤+y x y x ∑∞=<-+12)1(2)1(1n nnx n x ),(+∞-∞)()(x g x f =')()(x f x g ='.2)()(x e x g x f =+八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使九、(本题满分13分) 已知齐次线性方程组其中 试讨论和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分) 设二次型,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.)3,0(∈ξ.0)(='ξf ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ.01≠∑=ni i a n a a a ,,,21Λ)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T十一、(本题满分13分) 设随机变量X 的概率密度为F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f ⎪⎪⎭⎫ ⎝⎛7.03.021~X2004年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则. (3) 设,则.(4) 二次型的秩为 . (5) 设随机变量服从参数为的指数分布, 则_______.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ ](8) 设f (x )在(-∞ , +∞)内有定义,且, ,则(A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.[ ]5)(cos sin lim 0=--→b x a e xx x 2f u v∂=∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 212(1)f x dx -=⎰213232221321)()()(),,(x x x x x x x x x f ++-++=X λ=>}{DX X P X ),(21σμN Y ),(22σμN 1,,21n X X X Λ2,,21n Y Y Y ΛX Y 12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑2)2)(1()2sin(||)(---=x x x x x x f a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. (D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ ](10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ ](11) 设在[a , b]上连续,且,则下列结论中错误的是 (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ). (C) 至少存在一点,使得. (D) 至少存在一点,使得= 0.[ D ](12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, . (C) 当时, . (D) 当时, . [ ](13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系 (A) 不存在. (B) 仅含一个非零解向量.∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u 1lim 1>+∞→nn n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f ),(0b a x ∈)(0x f n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于 (A) . (B) . (C) . (D) . [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求.(16) (本题满分8分) 求,其中D 是由圆和所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足 ,x ∈ [a , b ),.证明:.X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1)cos sin 1(lim 2220xxx x -→⎰⎰++Dd y y x σ)(22422=+y x 1)1(22=++y x ⎰⎰≥xaxadt t g dt t f )()(⎰⎰=babadt t g dt t f )()(⎰⎰≤babadx x xg dx x xf )()(设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性(> 0); (II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.(20)(本题满分13分)设, , , , 试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式.d E d E )1(d E Q dPdR-=d E )(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x ΛT α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=T β)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,ααα设阶矩阵. (Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵.(22) (本题满分13分)设,为两个随机事件,且, , , 令 求(Ⅰ) 二维随机变量的概率分布; (Ⅱ) 与的相关系数 ; (Ⅲ) 的概率分布.n ⎪⎪⎪⎪⎪⎭⎫⎝⎛=111ΛM M M ΛΛb b b bb b A A P AP P 1-A B 41)(=A P 31)|(=AB P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本,(Ⅰ) 当时, 求未知参数的矩估计量; (Ⅱ) 当时, 求未知参数的最大似然估计量; (Ⅲ) 当时, 求未知参数的最大似然估计量.X ⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(1,0>>βαn X X X ,,,21ΛX 1=αβ1=αβ2=βα2005年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限= . (2) 微分方程满足初始条件的特解为______. (3)设二元函数,则________.(4)设行向量组,,,线性相关,且,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则=______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设,,,其中,则(A) . (B ).(C) . (D) . [ ]12sinlim 2+∞→x xx x 0=+'y y x 2)1(=y )1ln()1(y x xe z y x +++=+=)0,1(dz)1,1,1,2(),,1,2(a a ),1,2,3(a )1,2,3,4(1≠a X ,,2,1Λ}2{=Y P }0{=X }1{=+Y X a x x x x f -+-=1292)(23σd y x I D ⎰⎰+=221cos σd y x I D⎰⎰+=)cos(222σd y x I D⎰⎰+=2223)cos(}1),{(22≤+=y x y x D 123I I I >>321I I I >>312I I I >>213I I I >>(9)设若发散,收敛,则下列结论正确的是(A) 收敛,发散 . (B ) 收敛,发散.(C) 收敛. (D) 收敛. [ ](10)设,下列命题中正确的是(A) f(0)是极大值,是极小值. (B ) f(0)是极小值,是极大值.(C ) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值.[ ](11)以下四个命题中,正确的是(A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B )若在(0,1)内连续,则f(x)在(0,1)内有界. (C )若在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若在(0,1)内有界,则在(0,1)内有界. [ ] (12)设矩阵A= 满足,其中是A 的伴随矩阵,为A 的转置矩阵. 若为三个相等的正数,则为(A). (B) 3. (C) . (D) . [ ](13)设是矩阵A 的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . [ ](14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是(A) (B) (C)(D) [ ] ,,2,1,0Λ=>n a n ∑∞=1n n a ∑∞=--11)1(n n n a ∑∞=-112n n a ∑∞=12n n a ∑∞=12n n a ∑∞=-112n n a )(1212∑∞=-+n n n a a )(1212∑∞=--n n n a a x x x x f cos sin )(+=)2(πf )2(πf )2(πf )2(πf )(x f ')(x f )(x f ')(x f )(x f '33)(⨯ij a T A A =**A T A 131211,,a a a 11a 3331321,λλ21,αα1α)(21αα+A 01=λ02=λ01≠λ02≠λ),(2σμN 2,σμ)(20cm x =)(1cm s =μ)).16(4120),16(4120(05.005.0t t +-)).16(4120),16(4120(1.01.0t t +-)).15(4120),15(4120(05.005.0t t +-)).15(4120),15(4120(1.01.0t t +-三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求(16)(本题满分8分)设f(u)具有二阶连续导数,且,求(17)(本题满分9分)计算二重积分,其中.(18)(本题满分9分) 求幂级数在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,,.证明:对任何a ,有).111(lim 0xe x x x --+-→)()(),(y x yf x y f y xg +=.222222yg y x g x ∂∂-∂∂σd y x D⎰⎰-+122}10,10),{(≤≤≤≤=y x y x D ∑∞=-+12)1121(n n x n 0)(≥'x f 0)(≥'x g ]1,0[∈⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i )和(ii ) 同解,求a,b, c 的值.(21)(本题满分13分)设为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为矩阵.(I) 计算,其中; (II )利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.(22)(本题满分13分) 设二维随机变量(X,Y)的概率密度为求:(I ) (X,Y)的边缘概率密度; (II ) 的概率密度⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x ⎥⎦⎤⎢⎣⎡=B CC AD Tn m ⨯DP P T⎥⎦⎤⎢⎣⎡-=-n mE o C A EP 1C A C B T 1--.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=)(),(y f x f Y X Y X Z -=2).(z f Z( III )(23)(本题满分13分)设为来自总体N(0,)的简单随机样本,为样本均值,记求:(I ) 的方差; (II )与的协方差(III )若是的无偏估计量,求常数c.}.2121{≤≤X Y P )2(,,,21>n X X X n Λ2σX .,,2,1,n i X X Y i i Λ=-=i Y n i DY i ,,2,1,Λ=1Y n Y ).,(1n Y Y Cov 21)(n Y Y c +2σ2006年全国硕士研究生入学统一考试数学三试题一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)(2)设函数在的某邻域内可导,且,,则(3)设函数可微,且,则在点(1,2)处的全微分(4)设矩阵,为2阶单位矩阵,矩阵满足,则 .(5)设随机变量相互独立,且均服从区间上的均匀分布,则_______.(6)设总体的概率密度为为总体的简单随机样本,其样本方差为,则二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . [ ] (8)设函数在处连续,且,则(A) 存在 (B) 存在 (C) 存在 (D)存在 [ ] (9)若级数收敛,则级数()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭()f x 2x =()()e f x f x '=()21f =()2____.f '''=()f u ()102f '=()224z f x y =-()1,2d _____.z=2112A ⎛⎫= ⎪-⎝⎭E B 2BA B E =+=B X Y 与[]0,3{}{}max ,1P X Y ≤=X ()()121,,,,2xn f x e x X X X -=-∞<<+∞L X 2S 2____.ES =()y f x =()0,()0f x f x '''>>x ∆x 0x d y y ∆与()f x 0x 0x ∆>0d y y <<∆0d y y <∆<d 0y y ∆<<d 0y y <∆<()f x 0x =()22lim1h f h h →=()()000f f -'=且()()010f f -'=且()()000f f +'=且()()010f f +'=且1n n a ∞=∑(A) 收敛 . (B )收敛.(C) 收敛. (D) 收敛. [ ] (10)设非齐次线性微分方程有两个不同的解为任意常数,则该方程的通解是(A). (B). (C). (D) [ ](11)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则.(D) 若,则. [ ] (12)设均为维列向量,为矩阵,下列选项正确的是(A) 若线性相关,则线性相关. (B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关.(D) 若线性无关,则线性无关. [ ] (13)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(A). (B).(C). (D). [ ](14)设随机变量服从正态分布,服从正态分布,且则必有1n n a ∞=∑1(1)n n n a ∞=-∑11n n n a a ∞+=∑112n n n a a ∞+=+∑()()y P x y Q x '+=12(),(),y x y x C []12()()C y x y x -[]112()()()y x C y x y x +-[]12()()C y x y x +[]112()()()y x C y x y x ++(,)(,)f x y x y ϕ与(,)0y x y ϕ'≠00(,)x y (,)f x y (,)0x y ϕ=00(,)0x f x y '=00(,)0y f x y '=00(,)0x f x y '=00(,)0y f x y '≠00(,)0x f x y '≠00(,)0y f x y '=00(,)0x f x y '≠00(,)0y f x y '≠12,,,s αααL n A m n ⨯12,,,s αααL 12,,,s A A A αααL 12,,,s αααL 12,,,s A A A αααL 12,,,s αααL 12,,,s A A A αααL 12,,,s αααL 12,,,s A A A αααL A A B B 1-C 110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭1C P AP -=1C PAP -=T C P AP =T C PAP =X 211(,)N μσY 222(,)N μσ{}{}1211P X P Y μμ-<>-<(A) (B)(C) (D) [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设,求 (Ⅰ) ; (Ⅱ) .(16)(本题满分7分) 计算二重积分,其中是由直线所围成的平面区域.(17)(本题满分10分) 证明:当时,.(18)(本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于(常数).(Ⅰ) 求的方程;(Ⅱ) 当与直线所围成平面图形的面积为时,确定的值. 12σσ<12σσ>12μμ<12μμ>()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+()()lim ,y g x f x y →+∞=()0lim x g x +→d Dx y D ,1,0y x y x ===0a b π<<<sin 2cos sin 2cos b b b b a a a a ππ++>++xOy L ()1,0M ()(),0P x y x ≠OP ax >0a L L y ax =83a求幂级数的收敛域及和函数.(20)(本题满分13分)设4维向量组,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解. (Ⅰ)求的特征值与特征向量;(Ⅱ)求正交矩阵和对角矩阵,使得;(Ⅲ)求及,其中为3阶单位矩阵.()()1211121n n n x n n -+∞=--∑()s x ()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+a 1234,,,αααα1234,,,ααααA ()()TT121,2,1,0,1,1αα=--=-0Ax =A Q ΛT Q AQ =ΛA 632A E ⎛⎫- ⎪⎝⎭E设随机变量的概率密度为,令为二维随机变量的分布函数. (Ⅰ)求的概率密度; (Ⅱ);(Ⅲ).(23)(本题满分13分)设总体的概率密度为其中是未知参数,为来自总体的简单随机样本,记为样本值中小于1的个数. (Ⅰ)求的矩估计; (Ⅱ)求的最大似然估计X ()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他()2,,Y X F x y =(,)X Y Y ()Y f y Cov(,)X Y 1,42F ⎛⎫- ⎪⎝⎭X (),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,θ()01θ<<12n ,...,X X X X N 12,...,n x x x θθ2007年全国硕士研究生入学统一考试数学三试题一. 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内) (1) 当等价的无穷小量是( ).(2) 设函数在处连续,下列命题错误的是: ( ).若存在,则 若存在,则.若存在,则存在 若存在,则存在(3) 如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:( ).(4) 设函数连续,则二次积分等于( )(5) 设某商品的需求函数为,其中,分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ) 10 20 30 40 (6) 曲线渐近线的条数为( ) 0 1 2 3(7)设向量组线性无关,则下列向量组线相关的是( )(A ) (B) (C ) (D)0x +→A 1-.ln(1B +1C -.1D -()f x 0x =A 0()limx f x x →(0)0f =.B 0()()lim x f x f x x →+-(0)0f =.C 0()limx f x x →'(0)f .D 0()()lim x f x f x x→--'(0)f ()y f x =[][]3,2,2,3--[][]2,0,0,2-0()(),xF x f t dt =⎰.A (3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(,)f x y 1sin 2(,)xdx f x y dy ππ⎰⎰.A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰.D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰1602Q ρ=-Q ρ.A .B .C .D 1ln(1),x y e x=++.A .B .C .D 12αα-2131,,αααα--21αα-2331,,αααα++1223312,2,2αααααα---1223312,2,2αααααα+++(8)设矩阵,则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(10) 设随机变量服从二维正态分布,且与不相关,分别表示X, Y 的概率密度,则在条件下,的条件概率密度为( ) (A ) (B) (C) (D)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11).(12)设函数,则. (13)设是二元可微函数,则________. (14)微分方程满足的特解为__________.(15)设距阵则的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(,)X Y X Y (),()x y f x f y Y y =X ()X Y x y f ()X f x ()y f y ()()x y f x f y ()()x y f x f y 3231lim (sin cos )________2x x x x x x x →∞+++=+123y x =+()(0)_________n y =(,)f u v (,),y x z f x y =z zy x y∂∂-=∂∂31()2dy y y dx x x=-11x y ==01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A 12设函数由方程确定,试判断曲线在点(1,1)附近的凹凸性.(18)(本题满分11分) 设二元函数计算二重积分其中(19)(本题满分11分)设函数,在上内二阶可导且存在相等的最大值,又=,=,证明:(Ⅰ)存在使得; (Ⅱ)存在使得 (20)(本题满分10分)将函数展开成的幂级数,并指出其收敛区间.(22)(本题满分11分)设3阶实对称矩阵A 的特征值是A 的属于的一个特征向量.记,其中E 为3阶单位矩阵.(Ⅰ)验证是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量的概率密度为()y y x =ln 0y y x y -+=()y y x=2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤(,).Df x y d σ⎰⎰{}(,)2D x y x y =+≤()f x ()g x [],a b ()f a ()g a ()f b ()g b (,),a b η∈()()f g ηη=(,),a b ξ∈''()''().f g ξξ=21()34f x x x =--1x -1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解12311,2,2,(1,1,1)T λλλα===-=-1λ534B A A E =-+1α(,)X Y(Ⅰ)求;(Ⅱ)求的概率密度. (24)(本题满分11分)设总体的概率密度为.其中参数未知,是来自总体的简单随机样本,是样本均值.(Ⅰ)求参数的矩估计量;(Ⅱ)判断是否为的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他{}2P X Y >Z X Y =+()Z f z X 1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他(01)θθ<<12,,...n X X X X X θ$θ24X 2θ(1)设函数在区间上连续,则是函数的( )跳跃间断点. 可去间断点.无穷间断点.振荡间断点.(2)曲线段方程为,函数在区间上有连续的导数,则定积分等于( )曲边梯形面积. 梯形面积.曲边三角形面积.三角形面积.(3)已知(A ),都存在 (B )不存在,存在 (C )不存在,不存在 (D ),都不存在 (4)设函数连续,若,其中为图中阴影部分,则( ) (A ) (B)(C ) (D ) (5)设为阶非0矩阵为阶单位矩阵若,则( )不可逆,不可逆.不可逆,可逆.可逆,可逆.可逆,不可逆.(6)设则在实数域上域与合同矩阵为( ).... ()f x [1,1]-0x =0()()xf t dtg x x=⎰()A ()B ()C ()D ()y f x =()f x [0,]a 0()at af x dx ⎰()A ABCD ()B ABCD ()C ACD ()D ACD (,)f x y =(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f 'f 22(,)uvD f u v =uv D Fu∂=∂2()vf u 2()v f u u ()vf u ()vf u uA E 30A =()A E A -E A +()B E A -E A +()C E A -E A +()D E A -E A +1221A ⎛⎫= ⎪⎝⎭A ()A 2112-⎛⎫⎪-⎝⎭()B 2112-⎛⎫⎪-⎝⎭()C 2112⎛⎫⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭(7)随机变量独立同分布且分布函数为,则分布函数为( )....(8)随机变量,且相关系数,则( ). . ..二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数在内连续,则 .(10)设,则.(11)设,则.(12)微分方程满足条件的解.(13)设3阶矩阵的特征值为1,2,2,E 为3阶单位矩阵,则. (14)设随机变量服从参数为1的泊松分布,则. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限. (16) (本题满分10分)设是由方程所确定的函数,其中具有2阶导数且时.(1)求 (2)记,求. ,X Y X ()F x {}max ,Z X Y =()A ()2F x ()B ()()F x F y ()C ()211F x --⎡⎤⎣⎦()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦()~0,1X N ()~1,4Y N 1XY ρ=()A {}211P Y X =--=()B {}211P Y X =-=()C {}211P Y X =-+=()D {}211P Y X =+=21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩(,)-∞+∞c =341()1x x f x x x ++=+2()______f x dx =⎰22{(,)1}D x y x y =+≤2()Dx y dxdy -=⎰⎰ 0xy y '+=(1)1y =y = A 14_____A E --=X {}2P X EX == 201sin limlnx xx x→(,)z z x y =()22x y z x y z ϕ+-=++ϕ1ϕ'≠-dz ()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭u x ∂∂(17) (本题满分11分)计算其中.(18) (本题满分10分)设是周期为2的连续函数, (1)证明对任意实数,有;(2)证明是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵,现矩阵满足方程,其中,,(1)求证; (2)为何值,方程组有唯一解; (3)为何值,方程组有无穷多解. (21)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足,证明(1)线性无关;(2)令,求. (22)(本题满分11分)设随机变量与相互独立,的概率分布为,的概率密度为,记max(,1),Dxy dxdy ⎰⎰{(,)02,02}D x y x y =≤≤≤≤()f x t ()()22t tf x dx f x dx +=⎰⎰()()()202x t t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰0.05r =2221212n na a a A a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭OO O A AX B =()1,,Tn X x x =L ()1,0,,0B =L ()1n A n a =+a a A 12,a a A 1,1-3a 323Aa a a =+123,,a a a ()123,,P a a a =1P AP -X Y X {}()11,0,13P X i i ===-Y ()1010Y y f y ≤≤⎧=⎨⎩其它Z X Y =+(1)求;(2)求的概率密度. (23) (本题满分11分)是总体为的简单随机样本.记,,. (1)证 是的无偏估计量. (2)当时 ,求.2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.102P Z X ⎧⎫≤=⎨⎬⎩⎭Z 12,,,n X X X L 2(,)N μσ11ni i X X n ==∑2211()1n ii S X X n ==--∑221T X S n=-T 2μ0,1μσ==DT(1)函数的可去间断点的个数为(A)1.(B)2.(C)3.(D)无穷多个.(2)当时,与是等价无穷小,则(A),. (B ),. (C),. (D ),. (3)使不等式成立的的范围是 (A).(B). (C).(D).(4)设函数在区间上的图形为则函数的图形为(A)(B)3()sin x x f x xπ-=0x →()sin f x x ax =-2()ln(1)g x x bx =-1a =16b =-1a =16b =1a =-16b =-1a =-16b =1sin ln xtdt x t>⎰x (0,1)(1,)2π(,)2ππ(,)π+∞()y f x =[]1,3-()()0xF x f t dt =⎰(C)(D)(5)设均为2阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为 (A). (B). (C).(D). (6)设均为3阶矩阵,为的转置矩阵,且,若,则为(A).(B).(C).(D).(7)设事件与事件B 互不相容,则(A). (B).(C).(D).(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为,记为随机变量的分布函数,则函数的间断点个数为 ,A B *,A B *,A B ||2,||3A B ==O A B O ⎛⎫⎪⎝⎭**32O B A O ⎛⎫⎪⎝⎭**23O B AO ⎛⎫⎪⎝⎭**32O A BO ⎛⎫⎪⎝⎭**23O A BO ⎛⎫⎪⎝⎭,A P T P P 100010002TP AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭1231223(,,),(,,)P Q ααααααα==+T Q AQ 210110002⎛⎫⎪ ⎪ ⎪⎝⎭110120002⎛⎫⎪ ⎪ ⎪⎝⎭200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭100020002⎛⎫ ⎪ ⎪ ⎪⎝⎭A ()0P AB =()()()P AB P A P B =()1()P A P B =-()1P A B ⋃=X Y X (0,1)N Y 1{0}{1}2P Y P Y ====()z F Z Z XY =()z F Z(A) 0. (B)1. (C)2 . (D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) .(10)设,则. (11)幂级数的收敛半径为 . (12)设某产品的需求函数为,其对应价格的弹性,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设,,若矩阵相似于,则 .(14)设,,…,为来自二项分布总体的简单随机样本,和分别为样本均值和样本方差,记统计量,则 .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数的极值. (16)(本题满分10 分) 计算不定积分 . (17)(本题满分10 分)计算二重积分,其中.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数在上连续,在上可导,则,得证.(Ⅱ)证明:若函数在处连续,在内可导,且,则存在,且. cos 0x x →=()y x z x e =+(1,0)zx ∂=∂21(1)n n nn e x n ∞=--∑()Q Q P =P 0.2p ξ=(1,1,1)T α=(1,0,)T k β=T αβ300000000⎛⎫⎪⎪ ⎪⎝⎭k =1X 2X n X (,)B n p X 2S 2T X S =-ET =()22(,)2ln f x y x y y y =++ln(1dx +⎰(0)x >()Dx y dxdy -⎰⎰22{(,)(1)(1)2,}D x y x y y x =-+-≤≥()f x [],a b (),a b (),a b ξ∈()'()()()f b f a f b a ξ-=-()f x 0x =()0,,(0)σσ>'0lim ()x f x A +→='(0)f +'(0)f A +=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年全国硕士研究生入学统一考试数学(三)试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列,下列命题中不正确的是 ( )(A) 若lim →∞=n n x a ,则 221lim lim +→∞→∞==n n n n x x a(B) 若221lim lim +→∞→∞==n n n n x x a , 则lim →∞=n n x a(C) 若lim →∞=n n x a ,则 331lim lim +→∞→∞==n n n n x x a(D) 若331lim lim +→∞→∞==n n n n x x a ,则lim →∞=n n x a【答案】(D)【解析】考查数列极限与子列极限的关系。
数列收敛,那么它的任何无穷子列均收敛,所以A 与C 正确;一个数列存在多个无穷子列并集包含原数列所有项,且这些子列均收敛于同一个值,则原数列是收敛的。
B 正确,D 错,故选D (2) 设函数()f x 在(),-∞+∞内连续,其2阶导函数()f x ''的图形如右图所示,则曲线()=y f x 的拐点个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C)【解析】根据拐点的必要条件,拐点可能是()f x ''不存在的点或()0f x ''=的点处产生。
所以()y f x =有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数()f x ''符号发生改变的点即为拐点。
所以从图可知,拐点个数为2,故选C. (3) 设 (){}2222,2,2=+≤+≤D x y xy x x y y ,函数(),f x y 在D 上连续,则(),d d Df x y x y =⎰⎰ ( )(A)()()2cos 2sin 4204d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰ (B)()()2sin 2cos 420004d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰(C) ()1012d ,d xxf x y y ⎰⎰(D) ()102d ,d xxf x y y ⎰【答案】(B)【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域1(,)0,02sin 4D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭2(,),02cos 42D r r ππθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭所以2sin 2cos 4204(,)(cos ,sin )(cos ,sin )Df x y dxdy d f r r rdr d f r r rdr ππθθπθθθθθθ=+⎰⎰⎰⎰⎰⎰,选B 。
(4) 下列级数中发散的是( )(A) 13n n n ∞=∑ (B)1)n n ∞=+(C) 2(1)1ln n n n ∞=-+∑ (D) 1!n n n n ∞=∑【答案】(C)【解析】A 为正项级数,因为11113lim lim 1333n n n nn n n n +→∞→∞++==<,所以根据正项级数的比值判别法13nn n ∞=∑收敛;B 为正项级数,3211)n n+,根据P 级数收敛准则,知11)n n ∞=+收敛;C ,111(1)1(1)1ln ln ln n n n n n n n n ∞∞∞===-+-=+∑∑∑,根据莱布尼茨判别法知1(1)ln nn n ∞=-∑收敛,11ln n n ∞=∑发散,所以根据级数收敛定义知,1(1)1ln n n n ∞=-+∑发散;D 为正项级数,因为11(1)!(1)!1(1)lim lim lim 1!!(1)1nn n n n n n nn n n n n n n n n en ++→∞→∞→∞+++⎛⎫===< ⎪++⎝⎭,所以根据正项级数的比值判别法1!n n n n ∞=∑收敛,所以选C 。
(5)设矩阵21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,21d d ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭b .若集合}{1,2Ω=,则线性方程组=Ax b 有无穷多解的充分必要条件为: ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =。
故选(D )(6) 设二次型()123,,f x x x 在正交变换=x Py 下的标准形为2221232y y y +-,其中123(,,)=P e e e ,若132(,,)=-Q e e e 则123(,,)f x x x =在正交变换=x Qy 下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +- (C) 2221232y y y -- (D) 2221232y y y ++ 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-.且200010001T P AP ⎛⎫ ⎪= ⎪⎪-⎝⎭. 100001010Q P PC⎛⎫ ⎪== ⎪ ⎪-⎝⎭200()010001T T T Q AQ C P AP C ⎛⎫⎪==- ⎪⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+。
选(A ) (7) 若,A B 为任意两个随机事件,则: ( )(A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C) ()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤,选(C) .(8) 设总体()~,,X B m θ12,,,n X X X 为来自该总体的简单随机样本, X 为样本均值,则()21n i i E X X =⎡⎤∑-=⎢⎥⎣⎦( )(A) ()()11θθ--m n (B)()()11θθ--m n (C)()()()111θθ---m n (D)()1θθ-mn 【答案】(B)【解析】根据样本方差2211()1n ii S X X n ==--∑的性质2()()E S D X =,而()(1)D X m θθ=-,从而221[()](1)()(1)(1)nii E XX n E S m n θθ=-=-=--∑,选(B) .二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln(cos )lim__________.x x x →=【答案】12-【解析】原极限2200ln(1cos 1)cos 11limlim 2x x x x x x →→+--===- (10)设函数()f x 连续,2()()d ,x x xf t t ϕ=⎰若(1)1,(1)5,ϕϕ'==则(1)________.f =【答案】2【解析】因为()f x 连续,所以()x ϕ可导,所以2220()()2()x x f t dt x f x ϕ'=+⎰;因为(1)1ϕ=,所以1(1)()1f t dt ϕ==⎰又因为(1)5ϕ'=,所以1(1)()2(1)5f t dt f ϕ'=+=⎰故(1)2f =(11)若函数(,)z z x y =由方程23e 1x y zxyz +++=确定,则(0,0)d _________.z=【答案】1233dx dy --【解析】当0x =,0y =时带入231x y z e xyz +++=,得0z =。
对231x y z e xyz +++=求微分,得2323()(23)()x y z x y z d e xyz e d x y z d xyz +++++=+++23(23)x y z e dx dy dz yzdx xzdy xydz ++=+++++0=把0x =,0y =,0z =代入上式,得230dx dy dz ++= 所以(0,0)1233dz dx dy =--(12)设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处取得极值3,则()________y x = 【答案】2()2x x y x e e -=+【解析】20y y y '''+-=的特征方程为220λλ+-=,特征根为2λ=-,1λ=,所以该齐次微分方程的通解为212()xx y x C eC e -=+,因为()y x 可导,所以0x =为驻点,即(0)3y =,(0)0y '=,所以11C =,22C =,故2()2x x y x e e -=+(13)设3阶矩阵A 的特征值为2,2,1-,2,=-+B A A E 其中E 为3阶单位矩阵,则行列式________.=B【答案】 21【解析】A 的所有特征值为2,2,1.-B 的所有特征值为3,7,1. 所以||37121B =⨯⨯=。
(14)设二维随机变量(,)X Y 服从正态分布(1,0;1,1;0)N ,则{0}_________.P XY Y -<= 【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<> 11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10 分)设函数3()ln(1)sin ,()f x x a x bx x g x c kx =+++==.若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.【答案】 111,,23a b k --=-== 【解析】法一:因为233ln(1)()23x x x x o x +=-++,33sin ()3!x x x o x =-+, 那么,23333000(1)()()()ln(1)sin 231lim lim lim ()x x x a aa xb x x o x f x x a x bx x g x kx kx→→→++-+++++===, 可得:100213a a b ak⎧⎪+=⎪⎪-=⎨⎪⎪=⎪⎩,所以,11213a b k ⎧⎪=-⎪⎪=-⎨⎪⎪=-⎪⎩.法二:解:由题,得300sin )1ln(lim )()(lim1kxxbx x a x x g x f x x +++==→→203cos sin 11lim kxx bx x b x ax ++++=→ 由分母03lim 2=→kx x ,得分子)cos sin 11(lim 0x bx x b xax ++++→0)1(lim 0=+=→a x ,求得c ;于是)()(lim10x g x f x →=23cos sin 111lim kxx bx x b x x +++-=→ )(x kx xx bx x x b x x +++++=→13cos )1(sin )1(lim20 203c o s )1(s i n )1(lim kxxx bx x x b x x ++++=→ kxxx bx x bx x x b x x b x b x 6sin )1(cos cos )1(cos )1(sin 1lim 0+-++++++=→由分母06lim 0=→kx x ,得分子]sin )1(cos cos )1(2sin 1[lim 0x x bx x bx x x b x b x +-++++→0)cos 21(lim 0=+=→x b x ,求得21-=b ;进一步,b 值代入原式)()(lim 10x g x f x →=kxx x x x x x x x x 6sin )1(21cos 21cos )1(sin 211lim0++-+--=→ k xx x x x x x x x x x x x x x 6cos )1(21sin 21sin )1(21sin 21cos 21sin )1(cos cos 21lim 0++++++-++--=→k621-=,求得.31-=k(16)(本题满分10 分) 计算二重积分()d d Dx x y x y +⎰⎰,其中222{(,)2,}.D x y x y y x =+≤≥ 【答案】 245π-【解析】2()DDx x y dxdy x dxdy +=⎰⎰⎰⎰21202xdx dy =⎰12202)x x dx =⎰12240022222sin 2cos 55x t xt tdt π=--⎰⎰22242002222sin 2sin .5545u t tdt udu πππ==-=-=-⎰⎰(17)(本题满分10分)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q 为该商品的需求量,P 为价格,MC 为边际成本,η为需求弹性(0)η>.(I) 证明定价模型为1MC P η=-;(II) 若该商品的成本函数为2()1600C Q Q =+,需求函数为40Q P =-,试由(I )中的定价模型确定此商品的价格. 【答案】(I)略(II) 30P =.【解析】(I)由于利润函数()()()()L Q R Q C Q PQ C Q =-=-,两边对Q 求导,得()dL dP dP P Q C Q P Q MC dQ dQ dQ'=+-=+-. 当且仅当0dL dQ =时,利润()L Q 最大,又由于P dQ Q dP η=-⋅,所以1dP PdQ Q η=-⋅, 故当11MCP η=-时,利润最大. (II)由于()22(40)MC C Q Q P '===-,则40P dQ P Q dP Pη=-⋅=-代入(I)中的定价模型,得2(40)401P P P P-=--,从而解得30P =.(18)(本题满分10 分)设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,曲线()y f x =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且(0)2f =,求()f x 表达式.【答案】()84f x x=- 【解析】曲线的切线方程为()()()000y f x f x x x '-=-,切线与x 轴的交点为()()000,0f x x f x ⎛⎫-⎪⎪'⎝⎭故面积为:()()200142f x S f x =='. 故()f x 满足的方程为()()28f x f x '=,此为可分离变量的微分方程,解得()8f x x C -=+,又由于()0=2f ,带入可得4C =-,从而()84f x x=- (19)(本题满分 10分)(I )设函数(),()u x v x 可导,利用导数定义证明[()()]()()()();u x v x u x v x u x v x '''=+ (II )设函数12(),(),,()n u x u x u x 可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【答案】12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++【解析】(I )0()()()()[()()]lim h u x h v x h u x v x u x v x h→++-'=0()()()()()()()()lim h u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++ ()()()()u x v x u x v x ''=+ (II )由题意得12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++(20) (本题满分 11分)设矩阵101101a a a ⎛⎫ ⎪- ⎪ ⎪⎝⎭A =,且3=A O .(I) 求a 的值;(II)若矩阵X 满足22--+=X XA AX AXA E ,其中E 为3阶单位矩阵,求X .【答案】3120,111211a X -⎛⎫ ⎪==- ⎪ ⎪-⎝⎭【解析】(I)323100100111100011a A O A a a a a a aaa=⇒=⇒-=--==⇒=-(II)由题意知()()()()()()()()()222211122212X XA AX AXA E X E A AX E A E E A X E AE X E A E A E A E A X E A A ------+=⇒---=⎡⎤⇒--=⇒=--=--⎣⎦⇒=--2011111112E A A -⎛⎫⎪--=- ⎪ ⎪--⎝⎭,011100111010111010011100112001112001----⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭MM M M M M 111010111010011100011100021011001211------⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭M M M M M M 110201100312010111010111001211001211---⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭M M M M M M 312111211X -⎛⎫ ⎪∴=- ⎪ ⎪-⎝⎭(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵.【答案】2314,5,101011a b P --⎛⎫⎪===- ⎪ ⎪⎝⎭【解析】(1) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b 023100123133010123123001123---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪∴=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A E C()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分)设随机变量X 的概率密度为()2ln 2,00,0x x f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为观测次数(I)求Y 的概率分布; (II)求()E Y .【答案】(I)12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n = ;(II)16E Y =().【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n=为Y 的概率分布;(II) 将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生. 则M Ge n p ~(,),NGe k n p -(,)所以11221618E Y E M N E M E N p p p =+=+=+===()()()().(23) (本题满分11 分) 设总体X 的概率密度为,1,(,),x f x θθθ⎧≤≤⎪=-⎨⎪⎩110其他, 其中θ为未知参数,12n X ,X ,,X 为来自该总体的简单随机样本.(I)求θ的矩估计量;(II)求θ的最大似然估计量. 【答案】(I)1121ni i X X X n θ==-=∑,;(II)12n X X X θ=min{,,,}.【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得1121ni i X X X n θ==-=∑,为θ的矩估计量 ;(II)似然函数1()(;)nii L f x θθ==∏,当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而1ln ()d L nd θθθ=-,关于θ单调增加,所以12n X X X θ=min{,,,}为θ的最大似然估计量.。