命题及四种命题PPT优秀课件

合集下载

1-1 命题与四种命题 ppt

1-1 命题与四种命题 ppt
是否存在相关 性呢?
三个概念
1、互逆命题:如果第一个命题的条件(或题设)是第二个 命题的结论,且第一个命题的结论是第二个命题的条件,那 么这两个命题叫互逆命题。如果把其中一个命题叫做原命题, 那么另一个叫做原命题的逆命题。 2、互否命题:如果第一个命题的条件和结论是第二个命题 的条件和结论的否定,那么这两个命题叫做互否命题。如果 把其中一个命题叫做原命题,那么另一个叫做原命题的否命 题。 3、互为逆否命题:如果第一个命题的条件和结论分别是第 二个命题的结论的否定和条件的否定,那么这两个命题叫做 互为逆否命题。
1.1.1-1.1.2命题 与四种命题
高二数学 选修 1-1
第一章
常用逻辑用语
歌德是18世纪德国的一位著名文艺大师,一天, 他与一位批评家“狭路相逢”,这位文艺批评家生性 古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明, 一边高地往前走。一边大声说道:“我从来不给傻子 让路!”而对如此的尴尬的局面, 但只是歌德笑容可掏,谦恭的闪在一旁,一边有 礼貌回答道“呵呵,我可恰恰相反,”结果故作聪明 的批评家,反倒自讨没趣。
呢?
观察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
(1)若x>2,则x2≥4
(4)若x2≤4 ,则x<2。
互为逆否命题 原命题 (原命题的)逆否命题
原命题: 若p, 则q 逆否命题: 若┐q, 则┐p
例如,命题“同位角相等,两直线平行”的逆否命题是 原命题与其逆 否命题的真假 “两直线不平行,同位角不相等”。
你能分析此故事中歌德与批评家 的言行语句吗?
常用逻辑用语
“数学是思维的科学”
逻辑是研究思维形式和规律的科学.
逻辑用语是我们必不可少的工具.
通过学习和使用常用逻辑用语,掌握常用逻辑 用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.

四种命题及其关系PPT课件

四种命题及其关系PPT课件

-
2
观察命题(1)与命题(2)的条件和结论之间 分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数;
2. 若f(x)是周期函数,p 则f(x)是正弦函数;q
q
p
互逆命题:一个命题的条件和结论分别是另
一个命题的结论和条件,这两个
命题叫做互逆命题。
原 命 题:其中一个命题叫做原命题。
逆 命 题:另一个命题叫做原命题的逆命题。
即 原命题:若p,则q 逆命题:若q,则p
-
3
观察命题(1)与命题(3)的条件和结论之间 分别有什么关系?
1.
2.
若3. f若(xf)(是x)正不弦是函正数弦,函p则数f,(x则)是f(周x)期不函是数周;期q函数.
非p
非q
为书写简便,常把条件p的否定和结论q 的否定分别记作 “非p” “非q”
互否命题 原命题 (原命题的)否命题
-
16
(2)两个三角形全等,则它们的面积相等.
. 逆命题:两个三角形的面积相等,则它们全等.
否命题:两个三角形不全等,则它们的面积不 相等.
逆否命题:两个三角形的面积不相等,则它们 不全等.
原命题 (真) 否命题 (假)
逆命题 (假) 逆否命题 (真)
-
17
(3)相等的角是对顶角
逆命题: 对顶角相等. 否命题: 不相等的角不是对顶角. 逆否命题: 不是对顶角就不相等.
解:
逆命题:当c >0 时,若ac >bc ,则a >b.
逆命题为真. 否命题:当c >0 时,若a ≤b ,则ac ≤ bc .
否命题为真.
逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b . 逆否命题为真.

命题及四种命题培训课件.ppt

命题及四种命题培训课件.ppt
条件和结论的否定
像这样,一个命题的条件和结论恰好是另一 个命题的条件的否定和结论的否定,这样的两个 命题叫做互否命题,其中一个叫原命题,另一个 叫原命题的否命题.
vv
否命题
一般地,把条件p,结论q的否定分别记作“ p, q”, 读作“非p”、“非q”.
因此若原命题为“若p,则q”, 则否命题为:若 p,则q”

逆命题:若ab=0,则a=0 假
否命题:若a 0,则ab 0 假
逆否命题:若ab 0,则a 0 真
4原命题:若a b,则a2 b2 假
相等; • ④如果两个三角形的面积不相等,那么它们不
全等;
vv
观察命题①与命题②的条件和结论之间 分别有什么关系?
①如果两个三角形全等,那么它们的面积相等; ②如果两个三角形的面积相等,那么它们全等;
可以发现命题①与②的 条件与结论互换了
像这样,一般地,对于两个命题,如果一个命 题的条件和结论分别是另一个命题的结论和条 件,那么我们把这样的两个命题叫做互逆命题, 其中一个命题叫原命题,另一个叫做原命题的 逆命题。
正面 词语 否定
等于 大于 小于 不等于 不大于 不小于
是 不是
都是 不都是
正面 词语 否定
全 不全
至少有 一个
一个也 没有
能 不能
P或q
非p且 非q
P且q
非p或 非q
vv
例1.写出下列命题的逆命题、否命题与逆否
命题并判断真假
1原命题:若x2 3x 2 0,则x 2

逆命题:若x 2,则x2 3x 2 0
的,可以判断真假的陈述句叫做命题. 命题的定义的要点:能判断真假的陈述句.

命题的定义及四种命题(共29张PPT)

命题的定义及四种命题(共29张PPT)

课堂小结
定义3:条一件般和结地论,对于两个命题,如果一个
命题否的定
否恰定好是另一个命题的结论的
和条件的
,那么我们把这样的两个命题叫做 逆否命题
互为
.其中一个命题叫做原命题,另一
个命题叫做原命题的逆否命题.
否命题:若┐p,则┐q
例如,原命题:同位角相等,两直线平行。
否命题:同位角不相等,两直线不平行。
观察命题(1)与命题(4)的条件和结论之间分别 有什么关系?
若f(x)是正弦函数,则f(x)是周期函数; 1. (5)3 能被2整除; q 逆命题:若一个整数能被5整除,则这个数的末位数字是0. 若f(x)不是周期函数p,则f(x)不是正弦函数. 4. 若整数a能被2整除,则a是偶数;
命题“若整数a是素数,则a是奇数。”具有“若p则
q”的形式。
p
q
通常,我们把这种形式的命题中的p叫做命题
的条件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式而不 是唯一的形式,也可写成“如果p,那么q” “只要 p,就有q”等形式。
“若p则q”形式的命题的书写
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论 。
条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
例3 把下列命题改写成“若p则q”的形 式,并判定真假。
”具有(“若p1则q)”的形垂式。 直于同一条直线的两个平面平行;
若x)是正弦函数,则f(x)是周期函数;
若两个平面垂直于同一直线,则这两个平面平行。 真 如何判断一个语句是不是命题?
(1) 原命题:若一个整数的末位数字是0,则这
个整数能被5整除;
真命题

《四种命题的概念》课件

《四种命题的概念》课件

符号表述方式
符号表述方式是数学中常用的命题表述方式,它通过数学符号和公式来表示数学 概念、定理和性质等。
符号表述方式具有表达精确、简练的特点,但有时候对于初学者来说不太容易理 解。
图形表述方式
图形表述方式是通过几何图形来表示数学概念、定理和性质等。 图形表述方式具有直观、形象的特点,能够帮助人们更好地理解抽象的数学概念。
05
四种命题的练习题与解析
练习题一及解析
练习题一:写出下列 命题的否定
所有的猫都是动物。
存在一个实数x,使 得x^2 + x + 1 < 0 。
练习题一及解析
3是一个偶数。 解析
存在一个实数x,使得x^2 + x + 1 ≥ 0。
练习题一及解析
存在一个动物不是猫。
3是一个奇数。
练习题二及解析
四种命题是指:原命题、逆命题、逆否命题和等价命题。
在此添加您的文本16字
原命题指的是条件和结论都为真的命题,如“若a>b,则 a+c>b+c”。
在此添加您的文本16字
逆命题是将原命题的条件和结论互换得到的命题,如“若 a+c>b+c,则a>b”。
在此添加您的文本16字
逆否命题是逆命题的否命题,即同时否定条件和结论得到 的命题,如“若a≤b,则a+c≤b+c”。
在此添加您的文本16字
等价命题是与原命题等价的命题,即两者可以相互推导。
命题的分类依据
01
根据条件和结论的真假值,可以 将命题分为真命题和假命题两类 。
02
真命题是指条件为真且结论为真 的命题,假命题则是条件或结论 至少有一个为假的命题。

《四种命题的关系》课件

《四种命题的关系》课件
四种命题的实例分析
实例一:真假命题的判断
总结词
通过具体例子,理解真假命题的判断方法。
详细描述
在数学中,一个命题的真假是根据其是否符合事实或逻辑来确定的。例如, “2+2=4”是一个真命题,因为它符合数学中的加法规则。而“2+2=5”是一 个假命题,因为它不符合加法的运算规则。
实例二:命题推理的应用
02
03
04
逆命题:若q,则p
逆否命题:若非q,则非p
逆否命题的逆命题:若非p, 则非q
02
四种命题之间的关系
命题之间的逻辑关系
1 2 3
互为逆否的两个命题真假性相同
这意味着如果一个命题是真的,那么它的逆否命 题也是真的;如果一个命题是假的,那么它的逆 否命题也是假的。
逆命题与否命题同真假
这意味着如果一个命题的逆命题是真的,那么原 命题也是真的;如果一个命题的否命题是真的, 那么原命题也是真的。
详细描述
在数学中,原命题是一个明确的陈述,如“所有直角都是90度”。逆命题是将原命题的主语和谓语互换得到的, 如“所有90度的角都是直角”。否命题是改变原命题的前件或后件得到的,如“不是直角的角不一定是90度”。 逆否命题是将逆命题的前件或后件否定得到的,如“不是90度的角一定不是直角”。
05
四种命题的练习题与答案
商业决策
在商业决策中,企业家常常需要 利用四种命题的关系,分析市场 趋势和风险,以制定合理的商业
计划。
家庭关系
在家庭关系中,家长常常需要利 用四种命题的关系,处理家庭矛
盾和纠纷,以维护家庭和谐。
人际交往
在人际交往中,人们常常需要利 用四种命题的关系,理解对方的 意图和需求,以建立良好的人际

《命题及四种命题》课件

《命题及四种命题》课件
详细描述
总结词
如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,则这两个命题称互为逆否命题。
详细描述
互为逆否命题是四种命题中的一种,它指的是两个命题之间的一种关系。如果一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,那么这两个命题就是互为逆否命题。例如,“所有动物都是生物”和“所有非生物都不是动物”就是一对互为逆否命题。
互逆命题和互否命题的关系
互逆命题之间不一定是互否命题,互否命题之间也不一定是互逆命题。互逆命题和互否命题的真假性没有必然联系。
互为逆否命题:如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个命题的真假性相反,则这两个命题称互为逆否命题。如:原命题为“若a=b,则a^2=b^2”,其逆否命题为“若a^2≠b^2,则a≠b”。
在解决代数方程时,常常需要使用四种命题来推导和证明方程的解。例如,可以通过逆命题或否命题来证明一个代数方程是否有解。
在代数方程中的应用
在几何学中的应用
四种命题在推理逻辑中有着广泛的应用。例如,通过使用四种命题,可以构建有效的推理链条,从而证明某个结论的正确性。
在推理逻辑中的应用
在决策制定过程中,可以使用四种命题来分析各种可能性和结果。例如,可以通过分析命题的真假来评估某个决策的风险和收益。
反归纳推理
命题逻辑与推理
一个明确的陈述,具有真或假两种状态。
命题
由简单命题通过逻辑联结词组合而成的命题。
复合命题
不能再分解为更简单形式的命题。
原子命题
从一般到特殊的推理,必须保证前提真实和推理形式正确。
演绎推理

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系
否命题:若一个数不是实数,则它的平方不是非 负数.真命题.
逆否命题:若一个数的平方不是非负数,则这个 数不是实数.真命题.
(2)逆命题:若两个三角形全等,则这两个三角形 等底等高.真命题.
否命题:若两个三角形不等底或不等高,则这两 个三角形不全等.真命题.
逆否命题:若两个三角形不全等,则这两个三角 形不等底或不等高.假命题.
答案:若sinα≠sinβ,则α≠β
5.把命题“当x=2时,x2-3x+2=0”写成“若p, 则q”的形式,并写出它的逆命题、否命题与逆否命题, 并判断它们的真假.
解:原命题:若x=2,则x2-3x+2=0,真命题. 逆命题:若x2-3x+2=0,则x=2,假命题. 否命题:若x≠2,则x2-3x+2≠0,假命题. 逆否命题:若x2-3x+2≠0,则x≠2,真命题.
方法 2:先判断原命题的真假. 因为 a,x 为实数,且关于 x 的不等式 x2+(2a+ 1)x+a2+2≤0 的解集非空. 所以 Δ=(2a+1)2-4(a2+2)≥0,即 4a-7≥0, 解得 a≥74.因为 a≥74,所以 a≥1, 所以原命题为真. 又因为原命题与其逆否命题等价, 所以逆否命题为真.
逆否命题 真 真 假 假
思考感悟 四种命题中真命题的个数可能为多少? 提示:由于互为逆否关系的命题同真同假,真 命题可能有 0 个,2 个或 4 个.
尝试应用
1.若x>y,则x2>y2的否命题是( ) A.若x≤y,则x2>y2 B.若x>y, 则x2<y2 C.若x≤y,则x2≤y2 D.若x<y, 则x2<y2 答案:C
方法 3:利用集合的包含关系求解. 命题 p:关于 x 的不等式 x2+(2a+1)x+a2+2≤0 有非空解集. 命题 q:a≥1. 所以 p:A={a|关于 x 的不等式 x2+(2a+1)x+ a2+2≤0 有实数解}={a|(2a+1)2-4(a2+2)≥0}= {a|a≥74}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逆命题
若q则p 互 否
互为
逆否
否命题
若﹁p则﹁q
互逆
逆否命题
若﹁q则﹁p
5
2.四种命题的真假
看下面的例子: 1)原命题:若a=0, 则ab=0。(真)
逆命题:若ab=0, 则a=0。 (假) 否命题:若a≠ 0, 则ab≠0。 (假) 逆否命题:若ab≠0,则a≠0。 (真)
(假) 2) 原命题:若a > b, 则 ac2>bc2。 逆命题:若ac2>bc2,则a>b。(真) 否命题:若a≤b,则ac2≤bc2。 (真)
否命题是--“来了的是不该来的!”从而导致张 三认为自己是不该来的。 李四走的原因是“不该走的又走了”,其逆否 命题是“没有走的是应该走的”,从而使李四 觉得主人在赶自己走。 小结:在判断四种命题的真假时,只需判断两种命题的
真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
11
见 P 3 例设 1 : 数 列 { a } 和 { b } 是 公 比 不 相 等 n n 的 两 个 等 比 数 列 , 又 c a b , n n n
逆否命题:若ac2≤bc2,则a≤b。 (假)
6
一般地,四种命题的真假性,有而 且仅有下面四种情况:
原命题 真 真 逆命题 真 假 否命题 真 假 逆否命 题 真 真








7
总结:
(1) 原命题为真,则其逆否命题一定为真。但
其逆命题、否命题不一定为真。
(2) 若其逆命题为真,则其否命题一定为真。但
求 证 : { c } 不 可 能 是 等 比 数 列 . n
反证法
(1)正难则反的思想; (2)它是从命题结论的反面出发,引出矛盾,从而肯定 命题的结论,即欲证”若p,则q“为真命题,先从否定结 论(即非q)出发,经过正确的逻辑推理导出矛盾,从而 得出非q为假,则原命题为真。 (3)注意:此处是命题的否定,要区别于否命题。 (4)若原命题是:“若p,则q”;则其否命题是:“若非p, 则非q”,,而此命题的否定则是:“若p,则非q”。 (5)否命题的真假与其原命题无关联;而命题的否定不 12 成立时,该命题必定是正确的。即后面要讲的“p与非p,
1.1命题及其关系 (二 )
1.1.3四种命题的相互关系
1
三个概念
逆命题。 ________
回顾
交换原命题的条件和结论,所得的命题是 同时否定原命题的条件和结论,所得的命
否命题。 题是________ 交换原命题的条件和结论,并且同时否定, 逆否命题。 所得的命题是__________
2.四种命题真假的个数可能为( )个。 答:0个、2个、4个。 例:原命题:若A∪B=A, 则A∩B=φ。 (假) 逆命题:若A∩B=φ,则A∪B=A。 (假) 否命题:若A∪B≠A,则A∩B≠φ。
(假)
逆否命题:若A∩B≠φ,则A∪B≠A。
(假)
9
2 2 解 : 由 于 b 4 a c ( a c ) 4 a c 2 ( a c ) 0 , 则 原 命 题 为 真 , 故 10 其 逆 否 命 题 也 为 真 .
2
原命题,逆命题,否命题,逆否命题题: 若┐p, 逆否命题: 若┐q, 则 q 则 p 则┐q 则┐p
3
观察与思考

1 ) 若 f ( x ) 是 正 弦 函 数 , 则 f ( x ) 是 周 期 函 数 。
2 ) 若 f ( x ) 是 周 期 函 数 , 则 f ( x ) 是 正 弦 函 数 。
其原命题、逆否命题不一定为真。
想一想? 由以上三例及总结我们能发现什么? 即(1)原命题与逆否命题同真假。 逆命题与否命题同真假。
即互为逆否的两个命题同真假!
8
练一练 1.判断下列说法是否正确。
(对) )一个命题的逆命题为真,它的逆否命题不一定为真 2)一个命题的否命题为真,它的逆命题一定为真。 (对) (错) )一个命题的原命题为假,它的逆命题一定为假。 (错) )一个命题的逆否命题为假,它的否命题为假。
15
1.命题的四种形式之间的关系,提供了一个判断命题 真假的手段,由于互为逆否命题的两个命题是等价 命题,它们同真或同假,所以当一个命题不易判断 时,可以通过判断其逆否命题的真假来判断原命题 的真假 2、用反证法证题的一般步骤是什么?
例题 1:见P3之5题命题”若m>1/4, 例题讲解 2 则x -x+1=0无实根”的否命题的等 价命题是 解:若mx2-x+1=0无实根,则m>1/4 2 见题6、判断二次函数y=ax +bx+ c中,若b=a+c,则该二次函数不 存在有零点”,它的逆否命题是_, 并判断其真假.
见P3:主人邀请张三、李四、王五三个人吃饭聊天,时间 到了,只有张三和李四两人准时赶到,王五打来电话说: “临时有急事,不能来了。”主人听了随口说了句: “你看看,该来的没有来。”张三听了,脸色一沉,起 来一声不吭地走了;主人愣了片刻,又道:“哎,不该 走 的又走了。”李四听了大怒,拂袖而去。请你用逻辑学 原理解释这两人离去的原因。 解:张三走的原因是:“该来的没有来”,逆
反证法的一般步骤:
(1)假设命题的结论不成立,即假 设结论的反面成立; (2)从这个假设出发,经过推理 论证,得出矛盾; (3) 由矛盾判定假设不正确, 从而肯定命题的结论正确。
反设
归谬
结论
13
今日作业: 见P4达标练习,特别是第6题:反证法。
2 且a x 2 y ,b y 2z ,
2
上交作业 : 设 a、 b、 c均为实数 ,
6 至少有一个是大于零的 .
c z 2 x , 求证在 a、 b、 c中
2
2
3
14
课 堂 小 结
原命题 若p则q 互 否 命 题 真 假 无 关 否命题 若﹁ p则﹁ q 逆命题 若q则p
互 否 命 题 真 假 无 关
逆否命题 若﹁ q则﹁p
3 ) 若 f ( x ) 不 是 正 弦 函 数 , 则 f ( x ) 不 是 周 期 函 数 。
4 ) 若 f ( x ) 不 是 周 期 函 数 , 则 f ( x ) 不 是 正 弦 函 数 。
你能说出其中任意 两个命题之间的关 系吗?
4
1、四种命题之间的 关系
原命题
若p则q 互 否
互逆
相关文档
最新文档