数学建模比赛的选拔问题
数学建模校内选拔赛的评比问题

数学建模校内选拔赛的评阅问题摘要:对于像全国数学建模竞赛这样的大型活动,竞赛后的评阅试卷过程往往需要很大的人力物力,如何评阅最少的试卷与又能体现出最大的公平度就能将优胜者选出是本文解决的关键问题。
为了实现兼顾公平,效率优先,我们制定如下两个指标:一是公平度,即必须保证评阅过程以及评阅结果公平、合理,必须避免因为评阅者的偏好不同或其它因素而对参赛论文造成误判;二是高效率,即面对大量答卷,既要在尽量短时间内完成阅卷,又要减少每位评阅者的阅卷数量,即使每位评阅者的工作量越少越好。
然后我们根据上述指标对题中所给方案进行合理性和缺点评价。
相对于理想情况,每个评阅者评阅所有答卷的方法,题中所述评阅方案评阅时间、评阅人数相对减少,评阅效率相对提高,但相对公平度较低。
于是由以上两个指标我们建立了圆桌模型,以此来实现阅卷过程中的公平度与高效率,并借助计算机仿真出每一轮评分中每一位阅卷者所给的分数,用大量数据来检验模型的合理性与准确性。
而题目中用到的四个变量、、、,我们通过查阅大量权威资料,对其之间存在的意义关系进行深入分析,试图建立其相关量间的规划模型。
在此过程中,假设每位评阅者阅卷量相同,采用计算机仿真,通过具体数据得到每位阅卷者所评阅的答卷总份数W。
但是在建立模型时,考虑的都是理想条件下的情况,与实际的情况可能会有出入。
所以可以根据现实生活中的改卷情况,构建系统偏差模型。
假设评阅人数与系统偏差呈线性关系,依据现实情况把线性关系表示出来,通过计算机进行模拟赋值,确定线性关系中的变量。
在重复问题(c)中模型方案,但要考虑到系统偏差。
最后在最优的1.2N 中选出优秀的N份。
关键词:公平度,高效,仿真,圆桌模型,系统偏差一问题重述某师范学院从2003年开始组队参加全国数学建模竞赛,由于此项活动不断发展,参赛者数量较大,(一般情况下,参加比赛的大约有200个队)。
选拔的方式主要是模仿全国赛,根据题目完成一篇科技论文。
评阅者主要根据论文来完成对其成绩的评定。
关于建模比赛采访的问题以及回答

关于建模比赛采访的问题以及回答一、背景介绍建模比赛是指由各大高校或企业举办的一种以模型建立和解决实际问题为主要目的的竞赛活动。
此类比赛通常会涉及到数学、计算机、物理等多个领域,旨在培养参赛者的团队协作、创新思维和实践能力。
二、采访问题1. 请问您是参加了哪个建模比赛?2. 参加该比赛的初衷是什么?3. 在比赛中,您所负责的任务是什么?4. 您觉得在该比赛中最大的收获是什么?5. 在整个比赛过程中,遇到了哪些困难?如何克服?三、回答1. 我参加了2019年由某高校主办的全国大学生数学建模竞赛。
2. 我们团队参加该比赛的初衷主要是想锻炼自己的团队协作能力和实践能力,同时也想通过此次比赛来提高自己在数学建模方面的水平。
3. 在该比赛中,我主要负责了数据分析和建立模型这两个方面。
具体来说,我们所选的题目是关于某城市交通拥堵情况的研究,我的任务就是通过对大量的交通数据进行分析,找出其中的规律并建立相应的模型,以期能够提出一些有效的解决方案。
4. 在参加该比赛的过程中,我觉得最大的收获就是锻炼了自己的团队协作和创新思维能力。
由于该比赛需要我们在有限时间内完成一系列复杂的任务,因此我们必须要密切合作、相互配合才能顺利完成。
而且在整个比赛过程中,我们还需要不断地创新和尝试各种方法来解决问题,这也让我受益匪浅。
5. 在整个比赛过程中,我们遇到了很多困难。
首先是数据质量问题。
由于数据来源不一、质量参差不齐,在处理数据时会遇到很多问题。
其次是时间紧迫问题。
由于比赛时间有限,我们必须尽快地找出规律并建立模型,这也给我们带来了一定压力。
最后是思路不清晰问题。
在面对复杂问题时,我们有时会陷入思维定势或者思路不清晰的状态,这也会影响我们的工作效率。
针对这些问题,我们团队采取了一些措施,比如加强数据质量的筛选、分工合作、设定时间节点等,最终顺利完成了比赛任务。
四、总结通过参加建模比赛,我深刻体会到了团队协作和创新思维的重要性。
数学建模研究生国赛选题

数学建模研究生国赛选题
在数学建模研究生国赛中,选题是非常重要的一环。
以下是一些可能适合作为选题的主题:
1. 优化问题:优化问题一直是数学建模的重要主题之一,包括线性规划、非线性规划、整数规划等。
这些问题涉及到如何在给定约束条件下最大化或最小化某个目标函数。
2. 机器学习与数据挖掘:机器学习和数据挖掘是当前非常热门的研究领域,涉及到分类、聚类、预测等任务。
这些问题需要使用各种算法来处理大量数据,并从中提取有用的信息和模式。
3. 图像处理和计算机视觉:图像处理和计算机视觉是当前研究的热点之一,涉及到图像识别、目标检测、图像分割等任务。
这些问题需要使用图像处理、计算机视觉和机器学习的相关算法和技术。
4. 动态规划:动态规划是研究具有重叠子问题和最优子结构特性的优化问题的算法。
这些问题通常涉及到时间序列数据或状态转移问题。
5. 组合优化与图论:组合优化和图论是数学建模中的经典问题,涉及到排列、组合、图论等领域。
这些问题通常涉及到图论中的算法和组合优化中的启发式算法。
当然,以上只是一些可能适合作为选题的主题,具体选择还需根据个人的兴趣和专业知识来决定。
在选择主题时,需要充分了解问题的背景和意义,明确建模的目标和意义,并选择适合的数学方法和工具来解决问题。
全国数学建模大赛题目

全国数学建模大赛题目摘要:一、全国数学建模大赛简介1.比赛背景与目的2.比赛分类与级别3.参赛对象与要求二、比赛题目类型及解题技巧1.题目类型概述a.数据题b.机理题c.分析题d.综合题2.解题技巧a.分析题目b.制定策略c.查找资料d.分工合作三、全国数学建模大赛题目举例1.数据题举例2.机理题举例3.分析题举例4.综合题举例四、比赛对参赛者的帮助与启示1.提升数学应用能力2.增强团队协作能力3.拓宽学术视野4.对未来发展的启示正文:全国数学建模大赛是我国面向全国大学生的一项重要数学竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育事业的发展。
该比赛按照难度和层次分为多个级别,涵盖了不同专业和年级的学生。
比赛要求参赛者具备扎实的数学基础和良好的逻辑思维能力,能够独立或团队协作解决复杂数学问题。
比赛题目类型多样,涵盖了数据题、机理题、分析题和综合题等。
对于参赛者来说,掌握各类题型的解题技巧至关重要。
首先,要深入分析题目,理解题目背景、要求和条件。
其次,要制定合适的策略,根据题目类型和自身优势进行分工合作。
然后,查找相关资料,为解题提供有力支持。
最后,注意时间分配,确保按时完成答卷。
以下是全国数学建模大赛中的一些题目举例:1.数据题:某企业生产某种产品,需要确定最佳生产策略以实现利润最大化。
参赛者需要根据提供的数据,建立数学模型,为企业提供决策建议。
2.机理题:考虑一种生物生长过程中的数学模型,参赛者需要分析生长过程中的关键因素,并预测未来的生长趋势。
3.分析题:分析某种经济现象背后的数学原理,参赛者需要运用经济学理论和数学方法,揭示现象背后的规律。
4.综合题:设计一种新型交通管理系统,参赛者需要综合运用多种数学知识,解决实际问题。
参加全国数学建模大赛对于参赛者来说具有多方面的帮助和启示。
首先,通过解决实际问题,参赛者可以提升自己的数学应用能力,将所学知识运用到实际中。
其次,比赛过程中的团队协作可以增强参赛者的团队协作能力,提高沟通与协作效果。
最new数学建模队员选拔组队问题PPT

问题二
队员编号
5 11 13 6 21 25 16 8 14 4
建模水平
0.032219 0.029622 0.027367 0.024771 0.024771 0.013769 0.030921 0.026069 0.023472 Max 0.0033517
编程水平
Max 0.009821 0.009821 0.009821 0.009821 0.009821 0.009821 0.005456 0.007639 0.005456 0.007639
⑶ 得特征向量并一致性检验
特征向量 0 [0.1095,0.3090,0.5815] 3.0037 最大特征值 一致性检验 CR CI 0.00185 0.0032 0.1
RI 0.58
通过一致性检
问题一
⑷ 对各项指标进行量化
① 将校赛名次一等奖,二等奖,三等奖,参赛 奖用7,5,3,1来代替 ②等级评分A,B,C,D用4.5,3.5,2.5,1.5来代替
第一组 第二组 第三组 第四组 第五组 最优 4 5 16 1 11 7 25 3 21 6 13 18 14 8 12 13 9 2 0.08856 0.08856 0.08856 0.080274 0.078721 0.076102 AAAA AAAA AAAA AAAB AABB ABBB
谢谢大家!
11
0.011786
12
0.006987
9
0.029002
1
0.032499
21
0.011786
13
0.006987
13
0.029002
16
0.032499
6
0.011786
数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,通过构造层次结构分析问题,通过对于决策中所涉及的因素和目标进行层次分解,将问题的各部分分解成若干层次,在该层次结构中使用定量和定性的方法来描述因素之间的关联和权重。
本文将利用层次结构模型,以及层次分析法,对数学建模队员的选拔进行分析。
层次结构模型在进行数学建模队员的选拔中,影响选拔的多个因素可以构建成一个层次结构模型。
例如:在数学建模队员选拔中,可以将最终选出的队员作为最终的目标,而影响选拔的因素可以分解成以下多个因素:1.专业水平:参赛者们的数学水平、学习能力、逻辑思维等问题。
2.团队合作能力:参赛者是否适应团队合作及与人组队互动等问题。
3.沟通和表达能力:参赛者的表达能力、口头和文字沟通交流等问题。
4.个人素质:如责任感、进取心、合作精神、团队协作精神等。
层次分析法在层次分析法中,问题通常首先进行分层,使用准则、子准则和指标以及目标来描述问题,并按照这种结构构造一个具有层次结构特征的问题描述。
接着,将问题中的各个层次之间的依赖关系描述出来,并将各个准则、子准则、指标和目标的重要性大小转化为数量化的比较关系。
比较矩阵是层次分析法中的核心概念。
比较矩阵是一种用于比较各个因素之间差异的矩阵视图,在比较矩阵中,每一个单元格代表两个不同的元素之间的相对权重。
比较矩阵的各行数值之和为1。
以数学建模队员选拔的专业水平为例:在该因素层面上考虑选择队员是否有良好的数学水平、学习能力、逻辑思维;在这些因素比较中,可以进行两两比较后形成下图所示的矩阵视图。
| 比较矩阵 | 数学水平 | 学习能力 | 逻辑思维 ||--------------|----------|----------|----------|| 数学水平 | 1 | 3 | 5 || 学习能力 | 1/3 | 1 | 3 || 逻辑思维 | 1/5 |1/3 | 1 |上表中的数字代表数量级:按比例表示数据之间的重要程度或优先级,并且满足归一化性质:对于矩阵中的每一列,它们的权重比之和应为1。
数学建模作业——游泳队的选拔问题

数学建模混合泳接力队选拔摘要本文研究的是体育赛事中混合泳队员的选拔问题。
结合运筹学中的指派问题及应用线性规划理论,我们建立0-1整数规划数学模型,运用MATLAB软件对模型进行求解,得出了较为科学的选拔方案。
为了从5名候选人中选出4名队员组成接力队,参加4×100米混合泳比赛,我们以5位候选人的平时游泳成绩的数据为基础,运用0-1整数规划建立相关的数学模型,求解出乙进行蝶泳→丙进行仰泳→丁进行蛙泳→甲进行自由泳的比赛方案。
此比赛方案下的比赛最佳总得分为z=251.4s。
混合泳的比赛成绩除了和团队的配合及一些外部因素相关外,更与队员在不同时期内的比赛发挥相关。
因此,当候选人的在成绩发生变化时,我们应依据具体情况,优化游泳队的选拔方案。
当然我们的模型也存在不足之处,在模型的改进中提出了改进方法。
关键字:混合泳队员选拔指派问题线性规划理论 0-1规划模型一、问题重述现拟从5名候选人中选出4名队员组成接力队,参加4100 米混合泳比赛。
5名队员的4种泳姿的百米平均成绩如下表:5名队员的4种泳姿的米平均成绩(表一)1.如何选择队员进行接力队才能获得最佳成绩?2.若队员丁的蛙泳成绩退步到1’15”2,戊的自由泳成绩进步到57”5,组成接力队的方案又当如何?二、问题分析混合泳队员的选拔问题中,主要有以下几个难点:①每个队员比赛成绩数据的分析;②每个队员进行哪个项目才能使团队混合泳成绩最佳;③当有队员的一些项目比赛成绩发生变化时,接力队方案如何选择。
因此,在怎样的选拔机制下,如何处理搜集的数据,建立何种数学模型,是我们首先要解决的问题。
对于问题一,如何选择队员进行接力赛才能使团队获得最佳成绩。
根据5名队员4种泳姿的百米平均成绩,由穷举法我们可以计算出最多有120种选拔方案。
假设队员在比赛现场发挥的成绩与其平均成绩一致。
我们结合0-1规划的思想,以混合泳 甲 乙 丙 丁 戊 蝶泳 1’06”8 57”2 1’18’ 1’10” 1’07”6 仰泳 1’15”6 1’06” 1’07”8 1’14”2 1’11” 蛙泳 1’27” 1’06”4 1’24”6 1’09”6 1’23”8 自由泳 58”6 53” 59”4 57”2 1’02”4总成绩最佳为目标函数,依据其各泳姿的百米平均成绩,建立合理的数学模型,由MATLAB 迅速求解选拔方案。
【精品】数学建模队员的选拔

【精品】数学建模队员的选拔数学建模是现代科学的重要组成部分,它关乎到科技的发展和国家的竞争力提升。
为了选拔出优秀的数学建模队员,我们学校举办了一次选拔活动。
以下是活动的过程和具体要求:一、选拔要求1. 数学基础扎实。
具有较好的数学素养,对数学知识掌握熟练,能快速准确地运用到实际问题中去。
2. 逻辑思维能力强。
能通过深入分析问题,清晰明了地构建模型,推导和解决问题。
3. 团队合作能力强。
具有良好的沟通合作能力,能够有效地与队友协作,共同完成任务。
二、选拔过程本次选拔活动主要分为三个环节:初赛、复赛和决赛。
1. 初赛初赛主要考察参赛者的数学基础,题目难度适中,内容涵盖代数、几何、概率等多个领域,选手需在限定时间内完成试题。
初赛成绩满足要求的参赛者才能晋级复赛。
2. 复赛复赛主要考察参赛者的团队合作能力和实际问题解决能力。
复赛由出题人出一道实际问题,各组队员需独立进行思考和探讨,在规定时间内完成模型构建、求解和分析,需要所有队员共同完成。
复赛成绩最优秀的队伍将进入决赛。
3. 决赛决赛则是在现场进行的模拟实际情境竞赛,由出题人提供完整的实际问题及相关数据,各队在限定时间内构建模型并给出解决方案,需要考虑模型的合理性、解决方案的可操作性以及方案的可行性等。
经过评分,成绩最优秀的队伍将成为建模队伍的代表,前往参加国际数学建模竞赛等相关活动。
三、竞赛收获1. 丰富科技文化知识,提高数学、计算机技能和素养;2. 获得数学建模竞赛的荣誉称号,为日后的学习、就业和发展提供参考;3. 提高团队协作能力,锻炼解决实际问题的能力,同时也增强了交流沟通、判断决策和组织协调能力等。
通过这次选拔活动,我们选出了一批优秀的数学建模队员,他们在后续的培训中不断深化了对数学建模的理解,提高了自己的能力水平,为将来的国际竞赛打下了坚实的基础。
我们相信,在未来的科技创新中,他们一定能够发挥自己的才华和智慧,为推动科技进步贡献一份力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模比赛的选拔问题卢艳阳 王伟 朱亮亮(黄河科技学院通信系,郑州)摘 要本文是关于全国大学生数学建模竞赛选拔的问题,依据数学建模组队的要求,每队应具备较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件等的综合实力,在此前提下合理的分配队员,利用层次分析法,建立合理分配队员的数学模型,利用MATLAB ,LONGO 工具求出最优解。
、问题一:依据建模组队的要求,合理分配每个队员是关键,主要由团队精神、建模能力、编程能力、论文写作能力、思维敏捷以及数学知识等等,经过讨论分析,确定良好的数学基础、建模能力,编程能力为主要参考因素。
问题二:根据表中所给15人的可参考信息,我们对每个队员的每一项素质进行加权,利用层次分析法选出综合素质好的前9名同学,然后利用0-1规划的相关知识对这9人进行合理分组,利用MATLAB 、LINGO 得到其中一个如下的分组:'1s 、10s 、4s ;2s 、11s 、14s ;6s 、13s 、8s问题三:我们将所选出的这9名同学和这个计算机编程高手的素质进行量化加权,然后根据层次分析法,利用MATLAB 工具进行求解,得出了最佳解。
由于我们选取队员参考的是这个人的综合素质,而不是这个人的某项素质,并由解出的数据可以看出这个计算机编程高手不能被直接录用。
所以说只考虑某项素质,而不考虑其他的素质的同学是不能被直接录用的。
问题四:根据前面三问中的分组的思路,我们通过层次分析法先从所有人中依据一种量化标准选出符合要求的高质量的同学,然后利用0-1变量进行规划,在根据实际问题的约束,对问题进行分析,然后可以得出高效率的分组。
关键字:层次分析法 加权量化 0-1变量 LINDO MATLAB问题重述一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
数学建模需要学生具有较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件的能力、较强的语言表达能力和写作能力、良好的团队合作精神,同时还要求思维敏捷,对建立数学模型有较好的悟性。
目前选拔队员主要考虑以下几个环节:数学建模培训课程的签到记录;数学建模的笔试成绩,上机操作,学生个人简介,面试,老师和学生的推荐等,通过这种方式选拔出队员。
然后按照3人一组分为若干小组,为了使得小组具有较好的知识结构,一般总是将不同专业的学生安排在一起,使得每个小组至少包含一位数学基础较好的同学、计算机编程能力强的同学。
各组通过做题进行交流和磨合,合作比较好的保留,合作不好的进行调整。
下表列出了15个学生的部分信息,空白处为学生不愿意提供或未能了解的情况1.根据你们所了解的数学建模知识,选拔数学建模队员要考察学生的哪些情况?哪些素质是数学建模的关键素质,如何进行考察?2.根据上表中信息,建立建模队员选拔的数学模型,从中选出9位同学,并组成3个队,使得这三个队具有良好的知识机构。
3.有的指导老师在对学生机试的时候发现一个计算机编程高手,然后直接录用,不再考察其它情况,这种做法是否可取。
4.为数学建模教练组写1份1000-1500字的报告,提出建模队员选拔机制建议,帮助教练组提高建模队员选拔的效率和质量。
符号说明o :目标层i c :准则层各准则,i =1~6 j p :方案层各方案,j=1~15 w :准则层权值i w :方案层j p 对准则层c 的权值'w :方案层p 对目标层o 的总排序权值 j s :各个参与选取的同学RI :机一致性指标m ax :正互反矩阵的最大特征值 CI :一致性指标 CR :一致性比率A :正互反矩阵k D :方案层对准则层的比较矩阵T:选拔队员的各项量化指标Nw:是第m个人对第n个参考项目的选择系数,也是所设的0-1变量,m=1~9,mnn=1~3,n分别对应的是笔试,机试以及思维敏捷和知识面综合起来的一个指标模型假设1.假设在选拔中可以做到公平选拔;2.假设那位计算机高手除了计算机编程其他水平都按平均水平;3.假设题目中所给的数据——其他情况,作为对机试的附加分考虑;4.假设笔试成绩好就是数学成绩好,机试等级高就是编程水平;5.假设选拔过程取决于表中所给的各项条件,且表中的数据都是客观公正的;模型的建立与求解问题一:选拨数学建模队员要考察学生的那些情况,那些素质是数学建模的关键素质,如何进行考察?问题的分析考虑到数学建模一种综合性较强,需要参赛队伍所具备的知识较为全面的的竞赛。
所以,在考虑组队时要充分考虑各队员的特点,尽可能做到优势互补,将团队的力量发挥到最大。
在众多需要考虑的因素中,数学基础较好、计算机编程能力强和论文写作能力强,是三个关键性的因素。
而对于本题中,我们只需要考虑数学基础和计算机编程能力的。
所以,在考虑分组时,目的就是即要使得参加竞赛的人员综合能力最优,又要使得数学基础和计算机编程能力组合后达到最优。
模型的求解:建模分组主要由团队精神、建模能力、编程能力、论文写作能力、思维敏捷以及数学知识等等,经过讨论分析,确定良好的数学基础、建模能力,编程能力为主要参考因素,其他因素为次要参考。
问题二:根据上表信息,建立建模队员选拨的数学模型,从中选出9位同学并组成3个队,使得这三个队具有良好的知识机构。
问题的分析;由表中所给参考的内容考虑到所在专业和班级不同,则认为个人班级排名不能真实的反映他们实力排名,在此不做参考,对其他的六个方面进行量化加权,利用层次分析法对15个人进行比较,然后利用0-1变量对选出了的9个人进行合理的分组。
将此模型按层次分析法分为三层如下图:模型的求解: 建立层次将决策问题分成3个层次:目标层o (数学建模队员的选拔);准则层i c (选拔队员的6指标),分别记为)6,5,4,3,2,1(c i =i ;方案层j p (15名学生),分别记为)15,,2,1( =n P n 。
确定准则层对目标层的权重设要比较各准则54321,,,.,c c c c c 对目标o 的重要性。
对于任意两个因素,用ic 和j c 对o 的影响程度之比,构造一个正互反矩阵如下:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=12/13/14/15/15/1212/13/14/14/13212/13/13/143212/12/1543211543211A这是一个六阶正互反矩阵,经计算求的A 的最大特征值为0808.6max ≈λ ,相应的特征向量作归一化有()rw 0.0464 0.0702 0.1116 0.1801 0.2959 0.2959=对应的随机一致性指标24.1=RI ,拔优秀队员4p15p3p 2p……目标层O :准则层C :方案层P :1p 其他情况听课次数知识面思维敏捷机试成绩笔试成绩则一致性指标0.0162166)/5-(max =-=λCI一致性比率指标0.10.0130<==RICICR 于是w 可以作为c 层对o 层的权重向量。
量化过程:对于每一个人的起点都是0;对笔试成绩每10分为1,不做约等听课次数1-2次为1,3-4为2,5-6为3 思维敏捷A 为4,B 为3,C 为2,D 为1 机试A 为4,B 为3,C 为2,D 为1 知识面A 为4,B 为3,C 为2,D 为1其他情况作为奖励,上过建模课,考过计算机等级,学过MATLAB 为2,考过程序员的为3,其他情况默认为1 量化结果可得下表: 笔试成绩 听课次数 其它情况 思维敏捷 机试成绩 知识面 9.6 1 1 4 3 4 9.3 3 2 4 3 3 9.2 2 1 2 1 2 8.2 2 2 3 3 4 8.2 2 1 3 2 3 8.2 3 1 4 3 1 8 3 1 2 3 3 7.9 2 3 4 3 4 7.8 2 2 4 2 2 7.7 3 2 4 3 3 7.6 3 1 2 4 3 7.4 1 1 4 2 4 7.8 1 1 3 4 1 7.6 3 1 4 3 4 6.6 3 1 2 3 3 根据问题的条件和模型的假设, 对每个人各项条件的量化指标能够充分反映出每个人的综合实力。
由此构造方案层j p 对准则层i c 的比较矩阵:()()NN k ijk d D ⨯=,其中()()()k jk i k ijT T d = ()6,,2,1;,,2,1, ==k N j i显然,所有k D 均为一致阵,由一致阵的性质可知,k D 的最大特征值()N k =max λ,0=k CR ,其任一列向量都是的()m ax k λ的特征向量。
将其归一化可得j p 对i c 的权重向量,记作()T i w w w w w w w 654321=即为P 层对C 层的权重, 且一致性比率指标为0=k CR 。
由利用公式:w w w i ⨯='求得每个队员的组合权重,见下表。
队员 S1 S2 S3 S4 S5 S6 S7 S8 权重 0.0737 0.0768 0.0483 0.0709 0.0591 0.0668 0.064 0.076 队员 S9 S10 S11 S12 S13 S14 S15 权重 0.06150.07290.07010.06130.06510.07290.0606对15名队员按权重进行排序: 队员 S2 S8 S1 S10 S14 S4 S11 S6 权重 0.0768 0.076 0.0737 0.0729 0.0729 0.0709 0.0701 0.0668 队员 S13 S7 S9 S12 S15 S5 S3 权重 0.06510.0640.06150.06130.06060.05910.0483由表中数据可以选出9名综合实力较强的选手结果是:1413111086421,,,,,,,,s s s s s s s s s将选出的9个人利用0-1规划将之进行合理分为三组:我们主要选取笔试机试及思维敏捷与知识面作为参考进行分组,考虑到各项目的重要程度,我们将思维敏捷与知识面和在一起取平均值作为一个参考项目。
建立目标函数:939291838281737271636261535251434241333231232221131211436.7248.75.246.75.337.7439.75.232.85.332.85.333.9436.9max w w w w w w w w w w w w w w w w w w w w w w w w w w w ++++++++++++++++++++++++++=约束条件:⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧=++++++++=++++++++=++++++++=++=++=++=++=++=++=++=++=++111111111111938373635343332313928272625242322212918171615141312111939291838281737271636261535251434241333231232221131211w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w 利用LINGO 工具进行求解可得出最优解:数学好编程好知识面和思维1s 2s 6s4s 8s 14s10s 11s 13s每组包括各项能力好的各一人,共有27种组合,又考虑到各队不有同专业的同学,则根据条件等实际情况将9个人分为三组其中合理的一种分组如下:1s 、10s 、4s ;2s 、11s 、14s ;6s 、13s 、8s问题三:有的指导老师在对学生机试的时候发现一个计算机编程高手,然后直接录用,不再考察其它情况,这种做法是否可取。