旋转几何综合检测题(Word版 含答案)

旋转几何综合检测题(Word版 含答案)
旋转几何综合检测题(Word版 含答案)

旋转几何综合检测题(Word版含答案)

一、初三数学旋转易错题压轴题(难)

1.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,

AP=1

3

AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,

连接PC,且ABE为等边三角形.

(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.

(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.

(3)如图②,当点P在A的左侧时,若△PBC的面积为

93,求线段AC的长.

【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)

7 7

【解析】

【分析】

(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;

(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;

(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.

【详解】

解:(1)∵△ABE是等边三角形,

∴∠ABE=60°,AB=BE,

∵将线段BP绕点B顺时针旋转60°得到BC,

∴∠CBP=60°,BC=BP,

∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,

即∠ABP=∠EBC,

∴△ABP≌△EBC(SAS),

∴AP=EC;

故答案为:∠ABP=∠EBC,AP=EC;

(2)成立,理由如下,

∵△ABE是等边三角形,

∴∠ABE=60°,AB=BE,

∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,

∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,

∴△ABP≌△EBC(SAS),

∴AP=EC;

(3)过点C作CD⊥m于D,

∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,

∴3

2

93

∴PC=3,

设AP=CE=t,则AB=AE=3t,∴AC=2t,

∵m∥n,

∴∠CAD=∠AEB=60°,

∴AD=1

2

AC=t,CD33,

∵PD2+CD2=PC2,∴(2t)2+3t2=9,

∴t=37

7

(负值舍去),

∴AC=2t 67

【点睛】

本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得

解.

2.如图1,在Rt ABC △中,90A ∠=?,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.

(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;

(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,

CE ,判断PMN 的形状,并说明理由;

(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出

PMN 面积的最大值.

【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492

【解析】 【分析】

(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;

(2)由旋转可推出BAD CAE ??≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;

(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可. 【详解】

(1)PM PN =,PM PN ⊥;

已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得

12PM EC =

,1

2

PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠ 在Rt ABC ?中,90A ∠=?,AB AC =,AD AE = 可得BD EC =,90DCE ADC ∠+∠=? 即得PM PN =,PM PN ⊥ 故答案为:PM PN =;PM PN ⊥.

(2)等腰直角三角形,理由如下: 由旋转可得BAD CAE ∠=∠, 又AB AC =,AD AE = ∴BAD CAE ??≌

∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点 ∴PM 是DCE ?的中位线 ∴1

2

PM CE =

,且//PM CE , 同理可证1

2

PN BD =

,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠, ∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,

DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,

90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=?,

即PMN ?为等腰直角三角形.

(3)把ADE ?绕点A 旋转的如图的位置,

此时1()72PN AD AB =

+=,1

()72

PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ?面积最大值为149

7722

??=. 【点睛】

本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.

3.已知抛物线y=ax 2+bx-3a-5经过点A(2,5) (1)求出a 和b 之间的数量关系.

(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7) ①求出此时抛物线的解析式;

②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.

【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1,),

F 1(,,

G 2,F 2,) 【解析】 【分析】

(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;

(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;

②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出

1t =,2t =,分两类讨论,分别求出G 、F 坐标。

【详解】

解:(1)把A (2,5)代入y=ax 2+bx-3a-5得4a+2b-3a-5=5 ∴a+2b=10

∴a 和b 之间的数量关系是a+2b=10 (2)①设直线AD 的解析式为y=kx+c ∵直线AD 与y 轴交于(0,-7),A (2,5)

∴2k c 5{c -7+==解得k 6

{c -7

==即直线AD 的解析式为y=6x-7 联立抛物线y=ax 2+bx-3a-5与直线AD :y=6x-7 得2

y ax +bx-3a-5

{y 6x-7

==

消去y 得ax 2+(b-6)x-3a+2=0 ∵抛物线与直线AD 有两个交点 ∴由韦达定理可得:x A +x D =b-6-a =2a 2a +,x A x D =-3a 2

a

+ ∵A (2,5)∴x A =2即x D =2a -22a +∵x D =b -2a =a-104a

2a -22a +=a-104a 解得a=2∴b=10-a

2

= 4

∴此时抛物线的解析式为y= 2x 2+4x-11

②如图所示:作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ) ∵A (2,5),∴AI=2,BJ=5-t

∵AB 绕点B 顺时针旋转90°,得到线段BH ∴AB=BH ,∠ABH=90°,∠AIB=∠BJH=90° ∵∠IAB+∠IBA=90°,∠ABH+∠IBA+∠JBH=180° ∴∠IBA+∠JBH=90°即∠IAB=∠JBH ∴△AJB ≌△BJH 即AI=BJ=2,BI=IH=5-t ∴H (5-t ,t-2)

∵D (-1,-13)∴y B -y D =t+13 同理可得:C (t+13,t-1) 设DH 的解析式为y=k 1x+b 1

∴1111-k b -13{5-t k b t-2

+=+=()解得11t 11k 6-t {t 11b -13-t-6

+=

+=

即直线AD 的解析式为t 1111

y x-13-66

t t t ++=--

∵D 、H 、C 三点共线 ∴把C (t+13,t-1)代入AD t 1111y x-13-66t t t ++=--得:t 1111

t-1t 13-13-66t t t ++=+--()

整理得2t 2+31t+82=0解得131305t +=,231-305

t =

由图可知:①当131305

t -

4

+=如图1所示:

此时H(51305

4

+

39305

-

4

+

),C(

305-21

-

4

35305

-

4

+

∵点G为DH中点,点F为BC中点

∴G1(47305

8

+

91305

-

8

+

),F1(

305-21

-

8

33305

-

4

+

由图可知:当

231-305

t-

4

=如图2所示:

此时H(51-305

39-305

-),C(

30521

+

35-305

-)

∵点G为DH中点,点F为BC中点

∴G2(47-305

8

91-305

-

8

),F2(

30521

8

+

33-305

-

4

)(14分)

∴综上所述:G1(47305

8

+

91305

-

8

+

),F1(

305-21

-

8

33305

-

4

+

G2(47-305

91-305

-),F2(

30521

+

33-305

-)。

【点睛】

本题为含参数的二次函数问题,综合性强,难度较大,解题关键在于根据旋转性质,用含参数式子分别表示点的坐标,函数关系式,结合韦达定理,分类讨论求解。

4.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等

证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.

(3)如图3,连接GB、GE.

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

5.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形O E′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为

2 2

2 +

315

α=.

【解析】

【分析】

(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;

(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,

α=150°;

②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=

2

2

+2,此时

α=315°.

【详解】

(1)如图1,延长ED交AG于点H,

∵点O是正方形ABCD两对角线的交点,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

90

OA OD

AOG DOE

OG OE

=

?

?

∠=∠=?

?

?=

?

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;

(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=

1

2

OG=

1

2

OG′,

∴在Rt△OAG′中,sin∠AG′O=

OA

OG'

=

1

2

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°°,

即α=30°;

(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,

同理可求∠BOG′=30°,

∴α=180°?30°=150°.

综上所述,当∠OAG′=90°时,α=30°或150°.

②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,

∵正方形ABCD的边长为1,

∴OA=OD=OC=OB=

2

2

∵OG=2OD,

∴2,∴OF′=2,

∴AF′=AO+OF′=

2

2

+2,

∵∠COE′=45°,

∴此时α=315°.

【点睛】

本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.

6.(1)发现

如图,点A为线段BC外一动点,且BC a=,AB b=.

填空:当点A位于____________时,线段AC的长取得最大值,且最大值为_________.(用含a,b的式子表示)

(2)应用

点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.

(3)拓展

如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段

AB 外一动点,且2PA =,PM PB =,90BPM ∠=?,求线段AM 长的最大值及此时点P 的坐标.

【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22) 【解析】 【分析】

(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出

△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;

(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论. 【详解】

解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,

∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b ,

故答案为CB的延长线上,a+b;

(2)①CD=BE,

理由:∵△ABD与△ACE是等边三角形,

∴AD=AB,AC=AE,∠BAD=∠CAE=60°,

∴∠BAD+∠BAC=∠CAE+∠BAC,

即∠CAD=∠EAB,

在△CAD与△EAB中,

AD AB

CAD EAB

AC AE

?

?

∠∠

?

?

?

∴△CAD≌△EAB,

∴CD=BE;

②∵线段BE长的最大值=线段CD的最大值,

由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;

(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,

则△APN是等腰直角三角形,

∴PN=PA=2,BN=AM,

∵A的坐标为(2,0),点B的坐标为(5,0),

∴OA=2,OB=5,

∴AB=3,

∴线段AM长的最大值=线段BN长的最大值,

∴当N在线段BA的延长线时,线段BN取得最大值,

最大值=AB+AN,

∵22,

∴最大值为2+3;

如图2,过P作PE⊥x轴于E,

∵△APN是等腰直角三角形,

∴PE=AE=2,

∴OE=BO-AB-AE=5-3-2=2-2,

∴P(2-2,2).

【点睛】

考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.

7.(操作发现)

(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接

AF,EF.

①求∠EAF的度数;

②DE与EF相等吗?请说明理由;

(类比探究)

(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:

①∠EAF的度数;

②线段AE,ED,DB之间的数量关系.

【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2

【解析】

试题分析:(1)①由等边三角形的性质得出AC =BC ,∠BAC =∠B =60°,求出

∠ACF =∠BCD ,证明△ACF ≌△BCD ,得出∠CAF =∠B =60°,求出∠EAF =∠BAC +∠CAF =120°; ②证出∠DCE =∠FCE ,由SAS 证明△DCE ≌△FCE ,得出DE =EF 即可;

(2)①由等腰直角三角形的性质得出AC =BC ,∠BAC =∠B =45°,证出∠ACF =∠BCD ,由SAS 证明△ACF ≌△BCD ,得出∠CAF =∠B =45°,AF =DB ,求出∠EAF =∠BAC +∠CAF =90°; ②证出∠DCE =∠FCE ,由SAS 证明△DCE ≌△FCE ,得出DE =EF ;在Rt △AEF 中,由勾股定理得出AE 2+AF 2=EF 2,即可得出结论.

试题解析:解:(1)①∵△ABC 是等边三角形,

∴AC =BC ,∠BAC =∠B =60°.∵∠DCF =60°,∴∠ACF =∠BCD . 在△ACF 和△BCD 中,

∵AC =BC ,∠ACF =∠BCD ,CF =CD ,∴△ACF ≌△BCD (SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°; ②DE =EF .理由如下:

∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°﹣30°=30°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF ; (2)①∵△ABC 是等腰直角三角形,

∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°.∵∠DCF =90°,∴∠ACF =∠BCD .在△ACF 和△BCD 中,

∵AC =BC ,∠ACF =∠BCD ,CF =CD ,∴△ACF ≌△BCD (SAS ),∴∠CAF =∠B =45°,AF =DB ,∴∠EAF =∠BAC +∠CAF =90°; ②AE 2+DB 2=DE 2,理由如下:

∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°﹣45°=45°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF .在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.

8.已知ABC ?是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .

(1).如图,猜想ADE ?是_______三角形;(直接写出结果) (2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论; (3).①当BD=___________时,30DEC ∠=;(直接写出结果)

②点D 在运动过程中,DEC ?的周长是否存在最小值?若存在.请直接写出DEC ?周长的最小值;若不存在,请说明理由.

【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8

时,30DEC ∠=

;②最小值为4+ 【解析】 【分析】

(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ???,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ???得到CE BD =,根据垂线段最短解答. 【详解】

解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,

ADE ∴?是等边三角形, 故答案为等边三角形; (2)AC CD CE +=,

证明:由旋转的性质可知,60,DAE AD AE ∠==,

ABC ?是等边三角形

60AB AC BC BAC ∴∠?==,=, 60BAC DAE ∴∠∠?==,

BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=, 在ABD ?和ACE ?中, AB AC BAD CAE AD AE =??

∠=∠??=?

, ABD ACE SAS ∴??≌()

BD CE ∴=,

CE BD CB CD CA CD ∴++===;

(3)①BD 为2或8时,30DEC ∠=, 当点D 在线段BC 上时,

3060DEC AED ∠?∠?=,=,

90AEC ∴∠?=, ABD ACE ??≌,

9060ADB AEC B ∴∠∠?∠?==,又=,

30BAD ∴∠?=,

1

22

BD AB ∴==,

当点D 在线段BC 的延长线上时,3060DEC AED ∠?∠?=,=, 30AEC ∴∠?=, ABD ACE ??≌,

3060ADB AEC B ∴∠∠?∠?==,又=,

90BAD ∴∠?=,

28BD AB ∴==,

BD ∴为2或8时,30DEC ∠?=;

②点D 在运动过程中,DEC ?的周长存在最小值,最小值为423+,

理由如下:

ABD ACE ??≌,

CE BD ∴=,

则DEC ?的周长DE CE DC BD CD DE BC DE +++++===, 当CE 最小时,DEC ?的周长最小, ADE ?为等边三角形, DE AD ∴=,

AD 的最小值为23,

DEC ∴?的周长的最小值为423+.

【点睛】

本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.

9.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 的坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连接CH 、CG . (1)求证:△CBG ≌△CDG ;

(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;

(3)连接BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.

【答案】(1)证明见解析;(2)45°;HG= HO+BG ;(3)(2,0). 【解析】

试题分析:(1)求证全等,观察两个三角形,发现都有直角,而CG 为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证. (2)根据(1)中三角形全等可以得到对应边、角相等,即BG=DG ,∠DCG=∠BCG .同第一问的思路容易发现△CDH ≌△COH ,也有对应边、角相等,即OH=DH ,

∠OCH=∠DCH .于是∠GCH 为四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG .

(3)四边形AEBD 若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有

G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6﹣x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.

(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,

∴CD=CB,∠CDG=∠CBG=90°.

在Rt△CDG和Rt△CBG中,

∴△CDG≌△CBG(HL);

(2)解:∵△CDG≌△CBG,

∴∠DCG=∠BCG,DG=BG.

在Rt△CHO和Rt△CHD中,

∵,

∴△CHO≌△CHD(HL),

∴∠OCH=∠DCH,OH=DH,

∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,

∴HG=HD+DG=HO+BG;

(3)解:四边形AEBD可为矩形.

如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.

∵DG=BG,

∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,

∴当G点为AB中点时,四边形AEBD为矩形.

∵四边形DAEB为矩形,

∴AG=EG=BG=DG.

∵AB=6,

∴AG=BG=3.

设H点的坐标为(x,0),则HO=x

∵OH=DH,BG=DG,

∴HD=x,DG=3.

在Rt△HGA中,

∵HG=x+3,GA=3,HA=6﹣x,

∴(x+3)2=32+(6﹣x)2,解得x=2.

∴H点的坐标为(2,0).

考点:几何变换综合题.

10.(问题提出)

如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF

试证明:AB=DB+AF

(类比探究)

(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由

(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.

【解析】

【分析】

(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.

【详解】

(1)证明:DE=CE=CF,△BCE

由旋转60°得△ACF,

∴∠ECF=60°,BE=AF,CE=CF,

∴△CEF是等边三角形,

∴EF=CE,

∴DE=EF,∠CAF=∠BAC=60°,

∴∠EAF=∠BAC+∠CAF=120°,

∵∠DBE=120°,

相关主题
相关文档
最新文档