初中数学2017年中考十大经典题型-----圆的综合中考真题

合集下载

2017中考数学圆综合题

2017中考数学圆综合题

2017年初三圆综合题1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.2如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接CO 并延长CO 交于⊙O 于点D ,连接AD . (1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.3. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。

(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.4.(已知四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点(不与点A 、B 重合),连接PA 、PB 、PC 、PD .(1)如图①,当PA 的长度等于 ▲ 时,∠PAB =60°; 当PA 的长度等于 ▲ 时,△PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如图所示的直角坐标系(点A 即为原点O ),把△PAD 、△PAB 、△PBC 的面积分别记为S 1、S 2、S 3.坐标为(a ,b ),试求2 S 1 S 3-S 22的最大值,并求出此时a ,b 的值.6.(11金华)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 的长; (3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 .AB ⌒上一7.(芜湖市)如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧点,过点M 点作⊙O 的切线MP 交OA 的延长线于P 点,MD与OA 交于N 点.(1)求证:PM =PN ;(2)若BD =4,PA = 32 AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 的长.8.(黄冈市)(6分)如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB·AE , 求证:DE 是⊙O 的切线.是AE 的9.(义乌市)如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M中点,OM 交AC 于点D ,60BOE ∠=°,1cos 2C =,BC =(1)求A ∠的度数;(2)求证:BC 是⊙O 的切线; (3)求MD 的长度.10. (兰州市2017)(本题满分10分)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O的切线; (2)求证:BC=21AB ;(3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN·MC 的值. 11.(本题满分14分)如图(1),两半径为r 的等圆1O 和2O 相交于M N ,两点,且2O 过点1O .过M 点作直线AB 垂直于MN ,分别交1O 和2O 于A B ,两点,连结NA NB ,. (1)猜想点2O 与1O 有什么位置关系,并给出证明; (2)猜想NAB △的形状,并给出证明;(3)如图(2),若过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么(2)中的结论是否成立,若成立请给出证明.12.如图12,已知:边长为1的圆内接正方形ABCD 中,P 为边CD 的中点,直线AP 交圆于E 点. (1)求弦DE 的长.(2)若Q 是线段BC 上一动点,当BQ 长为何值时,三角形ADP 与以Q C P ,,为顶点的三角形相似.13..(本小题满分10分)如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F ,(1)判断△DCE 的形状;(2)设⊙O 的半径为1,且OF =213-,求证△DCE ≌△OCB .15、 ⊙O 的半径OD 经过弦AB (不是直径)的中点C ,过AB 的延长线上一点P 作⊙O 的切线PE ,E为切点,PE ∥OD ;延长直径AG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K .(1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ; (3)若EF =2,FO =1,求KE 的长. 14(2017湖北襄樊24题)如图,直线AB 经过O 上的点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是O 的切线;(2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明; (3)若1tan 2CED ∠=,O 的半径为3,求OA 的长16、如图,直角坐标系中,已知两点O(0,0) A(2,0),点B 在第一象限且△OAB 为正三角形,△OAB 的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交X 轴于点D .(1)求B C ,两点的坐标;(2)求直线CD 的函数解析式; (3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF △的最大面积?17、如图,在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根.(1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.18、如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M ,且ME =,:2:5MD CO =. (1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.。

2017年中考数学试卷汇编——圆(带答案)

2017年中考数学试卷汇编——圆(带答案)

2017年中考数学试卷汇编——圆(带答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学试卷汇编——圆(带答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学试卷汇编——圆(带答案)(word版可编辑修改)的全部内容。

圆的有关性质一、选择题1.(2016·山东省滨州市·3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD 分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.【解答】解:①、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,∴∠AOC≠∠AEC,③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,故选D【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.2.(2016·山东省德州市·3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?"( )A.3步B.5步C.6步D.8步【考点】三角形的内切圆与内心.【专题】圆的有关概念及性质.【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选C【点评】此题考查了三角形的内切圆与内心,Rt△ABC,三边长为a,b,c(斜边),其内切圆半径r=.(2016·山东省济宁市·3分)如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是( )3.A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中, =,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.4. (2016·云南省昆明市·4分)如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O 于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是( )A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π【考点】弧长的计算;切线的性质.【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据垂径定理判断C;利用弧长公式计算出的长判断D.【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,∴AB⊥EF,又AB⊥CD,∴EF∥CD,A正确;∵AB⊥弦CD,∴=,∴∠COB=2∠A=60°,又OC=OD,∴△COB是等边三角形,B正确;∵AB⊥弦CD,∴CG=DG,C正确;的长为: =π,D错误,故选:D.5。

2017中考数学圆的综合题试题(可编辑修改word版)

2017中考数学圆的综合题试题(可编辑修改word版)

圆的综合题1.如图,AB 是⊙O 的弦,AB=4,过圆心O 的直线垂直AB 于点D,交⊙O 于点C 和1点E,连接A C、B C、O B,c o s∠A C B=,延长O E到点F,使E F=2O E.3(1)求证:∠B O E=∠A C B;(2)求⊙O 的半径;(3)求证:BF 是⊙O 的切线.2.如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC、BC,分别与⊙O 相交于点D、点E,且 AD D E ,过点D作D F⊥B C于点F,连接B D、D E、A E.(1)求证:DF 是⊙O 的切线;(2)试判断△D E C的形状,并说明理由;(3)若⊙O的半径为5,A C=12,求 s i n∠E A B的值.3.(2016 长沙 9 分)如图,四边形ABCD 内接于⊙O,对角线AC 为⊙O 的直径,过点C作A C的垂线交A D的延长线于点E,点F为C E的中点,连接D B,D C,D F.(1)求∠C D E的度数;(2)求证:DF 是⊙O 的切线;(3)若A C=25D E,求t a n∠A B D的值.4.(2016德州10分)如图,⊙O是△A B C的外接圆,A E平分∠B A C交⊙O于点E,交B C 于点D,过点E作直线l∥B C.(1)判断直线l 与⊙O 的位置关系,并说明理由;(2)若∠A B C的平分线B F交A D于点F,求证:B E=E F;(3)在(2)的条件下,若DE=4,DF=3,求AF 的长.5.(2015永州)如图,已知△A B C内接于⊙O,且A B=A C,直径A D交B C于点E,F是O E上的一点,使C F∥B D.(1)求证:BE=CE;(2)试判断四边形BFCD 的形状,并说明理由;(3)若BC=8,AD=10,求CD 的长.6(2017原创)如图,A B切⊙O于点B,A D交⊙O于点C和点D,点E为D C 的中点,连接O E交C D于点F,连接B E交C D于点G.(1)求证:AB=AG;(2)(2)若D G=D E,求证:G B2=G C·G A;3(3)在(2)的条件下,若t a n D=,E G=,求⊙O 的半径.4107.(2015达州)在△A B C的外接圆⊙O中,△A B C的外角平分线C D交⊙O于点D,F为 A D 上一点,且 AF B C ,连接D F,并延长D F交B A的延长线于点E. (1)判断DB 与DA 的数量关系,并说明理由;(2)求证:△B C D≌△A F D;(3)若∠A C M=120°,⊙O的半径为5,D C=6,求D E的长.8.如图,A B为⊙O的直径,P是B A延长线上一点,P C切⊙O于点C,C G是⊙O的弦,C G⊥A B,垂足为点D.(1)求证:△A C D∽△A B C;(2)求证:∠P C A=∠A B C;3(3)过点A作A E∥P C交⊙O于点E,交C G于点F,连接B E,若 s i n P=,C F=5,5求BE 的长.9、(2016大庆9分)如图,在R t△A B C中,∠C=90°,以B C为直径的⊙O交斜边A B 于点M,若H 是AC 的中点,连接MH。

(完整版)2017中考数学圆的综合题试题

(完整版)2017中考数学圆的综合题试题

圆的综合题1. 如图,AB 是⊙O 的弦,AB =4,过圆心O 的直线垂直AB 于点D ,交⊙O 于点C 和点E ,连接AC 、BC 、OB ,cos ∠ACB =13,延长OE 到点F ,使EF =2OE .(1)求证:∠BOE =∠ACB ; (2)求⊙O 的半径;(3)求证:BF 是⊙O 的切线.2. 如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC 、 BC ,分别与⊙O 相交于点D 、点E ,且»»AD DE ,过点D 作DF ⊥BC 于点F ,连接BD 、DE 、AE . (1)求证:DF 是⊙O 的切线;(2)试判断△DEC 的形状,并说明理由;(3)若⊙O 的半径为5,AC =12,求sin ∠EAB 的值.3. (2016长沙9分)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.4. (2016德州10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC 于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.5. (2015永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.6 (2017原创)如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 和点D ,点E 为»DC的中点,连接OE 交CD 于点F ,连接BE 交CD 于点G .(1) 求证:AB =AG ;(2) (2)若DG =DE ,求证:GB 2=GC ·GA ;(3)在(2)的条件下,若tan D =34,EG =10,求⊙O 的半径.7.(2015达州)在△ABC 的外接圆⊙O 中,△ABC 的外角平分线CD 交⊙O 于点D ,F 为»AD 上一点,且»»AF BC ,连接DF ,并延长DF 交BA 的延长线于点E. (1)判断DB 与DA 的数量关系,并说明理由;(2)求证:△BCD ≌△AFD ;(3)若∠ACM =120°,⊙O 的半径为5,DC =6,求DE 的长.8. 如图,AB 为⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CG 是⊙O 的弦,CG ⊥AB ,垂足为点D .(1)求证:△ACD ∽△ABC ;(2)求证:∠PCA =∠ABC ;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CG 于点F ,连接BE ,若sin P =35,CF =5,求BE 的长.9、(2016大庆9分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交斜边AB于点M,若H是AC的中点,连接MH。

2017武汉中考 第21题 圆综合

2017武汉中考 第21题 圆综合

2017届中考复习专题—圆综合例1如图,⊙O 的弦AB 、CD 相交于点P ,弦CA 、BD 的延长线交于S ,︒=∠m APD 2,︒+︒=∠15m PAC .(1)求∠S 的度数;(2)连AD 、BC ,若3=ADBC ,求m 的值.例2. (本题8分)RT △ABC 中,∠ACB =90°, AO 是△ABC 的角平分线,以O 为圆心,OC 为半径作⊙O.(1) 求证:AB 为⊙O 的切线; (2) 已知AO 的延长线交⊙O 于点E,延长AO 交⊙O 于D,若tan ∠D =12,AC=4,求⊙O 的半径C B例3.在△P AE 中,∠P AE =90°,点O 在边AE 上,以OA 为半径的⊙O 交AE 于B ,OP 平分∠APE(1) 求证:PE 是⊙O 的切线(2) 设⊙O 与PE 相切于点C ,若43 EC EB ,连接PB ,求tan ∠APB 的值例4.如图,BC 为⊙O 的直径,AB 为⊙O 的弦,D 为弧BC 的中点,CE ⊥AD 于E ,AD 交BC于点F ,tanB =21 (1) 求证:DE =2AE(2) 求sin ∠BFD 的值5.如图,AC 为⊙O 的直径,DAB 为⊙O 的割线,E 为⊙O 上一点,弧BE =弧CE ,DE ⊥AB 于D ,交AO 的延长线于F(1) 求证:DF 为⊙O 的切线(2) 若AD =45,CF =3,求tan ∠CAE 的值6如图,△ABC 内接于⊙O ,D 为直径AC 延长线上一点,若∠DCB =∠ABD(1) 求证:DB 为⊙O 的切线(2) 已知AC =7,CD =9,求AB 的长7.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.8如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB、DC、DF(1) 求证:DF是⊙O的切线2DE,求tan∠ABD的值(2) 若AC=59. 如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PD//AC 交AB 于E ,且∠BPD=∠ADC.(1)求证:直线BP 为⊙O 的切线.(2)若点E 为PD 的中点,AC=2,BE=1,求tan ∠BAD 的值10.(本题8分)如图,在△ABC 中,以AC 为直径作⊙O 交BC 于点D ,交AB 于点G ,且D 是BC 中点,DE ⊥AB ,垂足为E ,交AC 的延长线于点F(1) 求证:直线EF 是⊙O 的切线(2) 若CF =23,cos ∠CAB =53,求tan ∠CBA11.如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且弧DA=弧DC,连接AC、AD,延长AD交BM于点E(1) 求证:△ACD是等边三角形(2) 连接OE,若DE=2,求OE的长。

2017年中考数学真题汇编:圆(带答案)

2017年中考数学真题汇编:圆(带答案)

2017年浙江中考真题分类汇编(数学):专题11 圆一、单选题1、(2017·金华)如图,在半径为13的圆形铁片上切下一块高为8的弓形铁片,则弓形弦的长为()A、10B、16C、24D、262、(2017•宁波)如图,在△中,∠A=90°,=.以的中点O为圆心的圆分别与、相切于D、E两点,则的长为()A、B、C、D、3、(2017·丽水)如图,点C是以为直径的半圆O的三等分点,2,则图中阴影部分的面积是()A、B、C、D、4、(2017·衢州)运用图形变化的方法研究下列问题:如图,是⊙O的直径,,是⊙O的弦,且∥∥,10,6,8。

则图中阴影部分的面积是()A、B、C、D、二、填空题5、(2017•杭州)如图,切⊙O于点A,是⊙O的直径.若∠40°,则∠.6、(2017•湖州)如图,已知在中,.以为直径作半圆,交于点.若,则的度数是度.7、(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条,的夹角为120°,长为30,则弧的长为(结果保留)8、(2017•绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边,分别与⊙O交于点D,E.则∠的度数为.9、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形(阴影部分)粘贴胶皮,则胶皮面积为.10、(2017•湖州)如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是.11、(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作⊙A的切线,切点为Q,则切线长的最小值是三、解答题12、(2017•湖州)如图,为的直角边上一点,以为半径的与斜边相切于点,交于点.已知,.(1)求的长;(2)求图中阴影部分的面积.13、(2017·台州)如图,已知等腰直角△,点P是斜边上一点(不与B,C重合),是△的外接圆⊙O的直径(1)求证:△是等腰直角三角形;(2)若⊙O的直径为2,求的值14、(2017·衢州)如图,为半圆O的直径,C为延长线上一点,切半圆O 于点D。

2017年中考总复习—关于圆的经典题型汇总(含答案)

(1)求证:EF 是⊙0 的切线.
30、如图,AB 是⊙0 的直径,C 是⊙0 上的一点,直线 MN 经过点 C,过点 A 作直线
MN 的垂线,垂足为点 D,且∠BAC=∠DAC.
(1)猜想直线 MN 与⊙0 的位置关系,并 说明理由;
(2)如果⊙0 的半径为 5,sin∠ADE= ,求 BF 的长.
(1)求证:PA 是⊙O 的切线;
39、如图,点 D 是等边△ABC 中 BC 边的延长线上一点,且 AC=CD,以 AB 为直径
作⊙O,分别交边 AC、BC 于点 E、点 F
(1)求证:AD 是⊙O 的切线;
(2)连接 OC,交⊙O 于点 G,若
(2)若 = ,且 OC=4,求 PA 的长和 tanD 的值.
(3) 若 AC= DE,求 tan∠ABD 的值.
21、如图,在平面直角坐标系 xOy 中,以点 O 为圆心的
圆分别交 x 轴的正半轴于点 M,交 y 轴的正半轴于点 N.劣
弧 的长为 π,直线 y=﹣ x+4 与 x 轴、y 轴分别交于 点 A、B.
(1)求证:直线 AB 与⊙O 相切;
(2)求图中所示的阴影部分的面积(结果用 π 表示)
(2)已知 FA•FD=12,若 AB 是△ABC 外 接圆的直径,FA=2,求 CD 的长.
8、如图, AB 为⊙O 的直径,
C 是⊙O 上一点,过点 C 的直 线交 AB 的延长线于点 D, AE⊥DC,垂足为 E,F 是 AE 与⊙O 的交点,AC 平分∠BAE. (1)求证 :DE 是 ⊙O 的切线; (2)若 AE=6,∠D=30°,求图 中阴影部分的面积.
1、如图,在△ABC 中,E 是 AC 边上的一点,且 AE=A B,

2017年中考真题圆综合大题(可编辑修改word版)

2017 年圆综合大题8.(2011 年苏州市•第26 题8 分)如图,已知AB 是⊙O 的弦,OB=2,∠B=30°,C 是弦AB 上的任意一点(不与点A、B 重合),连接CO 并延长CO 交于⊙O 于点D,连接AD.(1)弦长AB 等于▲(结果保留根号);(2)当∠D=20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A、C、D 为顶点的三角形与以B、C、O 为顶点的三角形相似?请写出解答过程.9.(2012 年苏州市第27 题满分8 分)如图,已知半径为2 的⊙O 与直线l 相切于点A,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C,PC 与⊙O 交于点D,连接PA、PB,设PC 的长为x(2<x<4).5(1)当x=2时,求弦PA、PB 的长度;(2)当x 为何值时PD·CD 的值最大?最大值是多少?10.(2013 年苏州第27 题8 分)如图,Rt△ABC 中,∠ACB=90°,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E,连接DE 并延长DE 交BC 的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB= ,求⊙O 的半径.11.(2014•苏州第27 题8 分)如图,已知⊙O 上依次有A、B、C、D 四个点,=,连接AB、AD、BD,弦AB 不经过圆心O,延长AB 到E,使BE=AB,连接EC,F 是EC 的中点,连接BF.(1)若⊙O 的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G 是BD 的中点,探索:在⊙O 上是否存在点P(不同于点B),使得PG=PF?并说明PB 与AE 的位置关系.江南汇教育网12.(2015 年苏州第26 题满分10 分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A、B、D 三点,过点B 作BE∥AD,交⊙O 于点E,连接E D.(1)求证:ED∥AC;(2)若BD=2CD,设△EBD 的面积为S ,△ADC 的面积为S ,且S 2-16S + 4 = 0 ,1 2 1 2求△ABC 的面积.13.(2016 年苏州第26 题10 分)如图,AB 是⊙ O 的直径,D 、E 为⊙ O 上位于AB 异侧的两点,连接BD 并延长至点 C ,使得CD = BD ,连接AC 交⊙ O 于点 F ,连接AE 、DE 、DF .(1 )证明:∠ E =∠ C ;(2 )若∠ E = 55 °,求∠ BDF 的度数;(3 )设DE 交AB 于点G ,若DF =4,cos B= ,E 是的中点,求EG •E D 的值.14.(2017 年苏州市第27 题10 分)如图,已知△ABC 内接于⊙O,AB 是直径,点D 在⊙O 上,OD∥BC,过点D 作DE⊥AB,垂足为E,连接CD 交OE 边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE 的面积为S1,四边形BCOD的面积为S2,若= ,求sinA 的值.FADEG 模拟训练:1.(2017 年常熟市•本题满分 10 分)如图 1 , DE 是⊙ O 的直径,点 A 、C 是直径 DE 上方半圆上的两点,且 AO ⊥ CO .连接 AE , CD 相交于点 F .点 B 是直径 DE 下方半圆上的任意一点,连接 AB 交CD 于点G ,连接CB 交 AE 于点 H .(1) 求∠ABC 的度数;(2) 证明:∆CFH ∆CBG ;(3) 若弧 DB 为半圆的三分之一,把∠AOC 绕着点O 旋转,使点C 、O 、 B 在一直线上时,如图 2.①证明 FH : BG = 1: 2 ;②若⊙ O 的半径为 4,直接写出 FH 的长.2.(2018 年蔡老师预测•第 26 题 10 分)如图,在 Rt △ABC 中,∠A =90°,点 D 、E 分别在 AC 、BC 上,且 CD ·BC =AC ·CE ,以 E 为圆心,DE 长为半径作圆,⊙E 经过点 B , 与 AB 、BC 分别交于点 F 、G .(1)求证:AC 是⊙E 的切线;(2)若 AF =4,CG =5,①求⊙E 的半径;②若 Rt △ABC 的内切圆圆心为 I ,则 IE =.BC(第 26 题)3.( 2017 年张家港•26 题 10 分)如图,已知⊙ O 是V ABC 的外接圆, AD 是⊙ O 的直径, 且 BD = BC .延长 AD 到 E ,使得∠EBD = ∠CAB .(1) 如图 1,若 BD = 2,AC = 6 . 55 ①求证: BE 是⊙ O 的切线;②求 DE 的长;(2) 如图 2,连结CD ,交 AB 于点 F ,若 BD = 2,CF = 3 ,求⊙ O 的半径.4.(2017 年工业园区区•26 题 10 分) 如图,在△ABC 中,CD ⊥AB ,垂足为点 D .以 AB 为直径的半⊙O 分别与 AC 、CD 相交于点 E 、F ,连接 AF 、EF .(1) 求证:∠AFE=∠ACD ;(2) 若 CE=4,CB=4,tan ∠CAB= ,求 FD 的长.5.(2017 年吴江区••26 题 10 分) 如图,在∆ABC 中, ∠C = 90︒, D 、 F 是 AB 边上的两点,以 DF 为直径的⊙ O 与 BC 相交于点 E , 连接 EF , 过 F 作 FG ⊥ BC 于点 G , 其中∠OFE =1∠A .2(1)求证: BC 是⊙ O 的切线;(2) 若sin B = 3,⊙ O 的半径为 r ,求∆EHG 的面积5(用含 r 的代数式表示).EDCO6.(2017 年高新区•26 题10 分) 如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC:BC=1:2,点D 为»AB 的中点,BE⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(3)连接OE 交BC 于点F,若AB=A B,求OE 的长度.7.(2017 年吴中区•26 题10 分) 如图,AB 是⊙O 的直径,BC 是弦,过点O 作OE ⊥BC 于H 交⊙O 于E ,在OE 的延长线上取一点D ,使∠ODB =∠AEC ,AE 与BC 交于F 。

2017中考数学全国试题汇编------圆(含详细解析)


2AE 2CD
BE 2
CD
当 D 在 C 右侧时,过 E 作 EI AB 于 I
在 Rt IBE 中, BE 2EI 2 2 AE 2
2AE 2CD
BE 2
CD 考点:圆的相关知识的综合运用 2(5 2017 贵州六盘水).如图,MN 是 ⊙O 的直径,MN = 4 ,点 A 在⊙O 上,∠ AMN = 30°, B 为 AN 的中点, P 是直径 MN 上一动点 . (1)利用尺规作图,确定当 PA + PB 最小时 P 点的位置 (不写作法,但要保留作图痕 迹 ). (2)求 PA + PB 的最小值 .
2
∴∠ CND=∠ NCD, 6 分 ∵MC=MN, ∴∠ MCN=∠MNC. ∵∠ MNC+∠CND=90°, ∴∠ MCN+∠NCD=90°, 7 分 即 MC⊥CD.
y
A C
M
N
D
O
BA x
∴直线 CD是⊙ M 的切线. 8 分
25( 2017 广东广州) .如 Nhomakorabea 14,AB 是 O 的直径, AC BC, AB 2 ,连接 AC .
∴AN=4,1 分 ∵∠ ABN=30°,∠ ANB=90°, ∴AB=2AN=8,2 分 ∴由勾股定理可知: NB= 4 3 ,
∴B( 4 3 , 2) 3 分
(2)连接 MC,NC4 分 ∵AN 是⊙ M 的直径, ∴∠ ACN=90°, ∴∠ NCB=90°, 5 分 在 Rt△ NCB中, D 为 NB 的中点, ∴CD= 1 NB=ND,
20(2017 湖北黄冈).已知:如图, MN 为⊙ O 的直径, ME 是⊙O 的弦, MD
垂直于过点 E 的直线 DE,垂足为点 D,且 ME 平分∠ DMN. 求证:( 1) DE是⊙ O 的切线; ( 2) ME2=MD?MN.

2017年中考数学压轴题专题复习——圆的综合

2017中考专题复习——圆题型一、勾股定理在圆中的应用1、(2012成都)如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ;(2)若=KD ·GE ,试判断AC 与EF 的位置关系,并说明理由;(3) 在(2)的条件下,若sinE=,AK=FG 的长. 2、(2014•孝感)如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:AC 平分∠DAB ; (2)求证:△PCF 是等腰三角形; (3)若tan ∠ABC=,BE=7,求线段PC 的长.3、(2015•黄陂区校级模拟)如图,点P 在y 轴的正半轴上,⊙P 交x 轴于B 、C 两点,以AC 为直角边作等腰Rt △ACD ,BD 分别交y 轴和⊙P 于E 、F 两点,交连接AC 、FC . (1)求证:∠ACF=∠ADB ;(2)若点A 到BD 的距离为m ,BF+CF=n ,求线段CD 的长; (3)当⊙P 的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.4、(2013•成都模拟)已知:如图,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM >MC .连接DE ,DE=.(1)求证:AM•MB=EM•MC ; (2)求sin ∠EOB 的值;(3)若P 是直径AB 延长线上的点,且BP=12,求证:直线PE 是⊙O 的切线.5、(2012•杭州)如图,AE 切⊙O 于点E ,AT 交⊙O 于点M ,N ,线段OE 交AT 于点C ,OB ⊥AT 于点B ,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB 的度数;2KG 35(2)求⊙O 的半径R ;(3)点F 在⊙O 上(是劣弧),且EF=5,把△OBC 经过平移、旋转和相似变换后,使它的两个顶点分别与点E ,F 重合.在EF 的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O 上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC 的周长之比.6、(2011•潍坊)如图,AB 是半径O 的直径,AB=2.射线AM 、BN 为半圆O 的切线.在AM 上取一点D ,连接BD 交半圆于点C ,连接AC .过O 点作BC 的垂线OE ,垂足为点E ,与BN 相交于点F .过D 点作半圆O 的切线DP ,切点为P ,与BN 相交于点Q . (1)求证:△ABC ∽△OFB ;(2)当△ABD 与△BFO 的面枳相等时,求BQ 的长;(3)求证:当D 在AM 上移动时(A 点除外),点Q 始终是线段BF 的中点. 专题二、三角函数在圆中的应用1、(2014成都)如图,在⊙O 的内接△ABC 中,∠ACB=90°,AC=2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E.设P 是⌒AC 上异于A,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G.(1)求证:△PAC ∽△PDF ;(2)若AB=5,⌒AP =⌒BP ,求PD 的长;(3)在点P 运动过程中,设x BGAG=,y AFD =∠tan ,求y 与x 之间的函数关系式.(不要求写出x 的取值范围)tan AE AFD FE∠=, 2、(2012•襄阳)如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF . (1)求证:直线PA 为⊙O 的切线;(2)试探究线段EF 、OD 、OP 之间的等量关系,并加以证明; (3)若BC=6,tan ∠F=,求cos ∠ACB 的值和线段PE 的长.3、(2014•武侯区校级自主招生)如图,⊙O 与直线PC 相切于点C ,直径AB ∥PC ,PA 交⊙O 于D ,BP 交⊙O 于E ,DE 交PC 于F .(1)求证:PF 2=EF•FD ;(2)当tan ∠APB=,tan ∠ABE=,AP=时,求PF 的长;(3)在(2)条件下,连接BD ,判断△ADB 是什么三角形?并证明你的结论.4、(2014•盘锦)如图,△ABC 中,∠C=90°,点G 是线段AC 上的一动点(点G 不与A 、C 重合),以AG 为直径的⊙O 交AB 于点D ,直线EF 垂直平分BD ,垂足为F ,EF 交BC 于点E ,连结DE . (1)求证:DE 是⊙O 的切线; (2)若cosA=,AB=8,AG=2,求BE 的长;(3)若cosA=,AB=8,直接写出线段BE 的取值范围.专题三、相似三角形与圆的综合应用 1、(2010)已知:如图,ABC ∆内接于O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q .(1)求证:P 是ACQ ∆的外心;(2)若3tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2()FP PQ FP FG +=.2、(2014•镇江)如图,⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB . (1)求证:EA 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:以A 、B 、C 为顶点的三角形与△AEF 相似; (3)已知AF=4,CF=2.在(2)条件下,求AE 的长.3、(2013•桂林)如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 于D ,过点D 作DE ⊥AD 交AB 于E ,以AE 为直径作⊙O . (1)求证:点D 在⊙O 上; (2)求证:BC 是⊙O 的切线;(3)若AC=6,BC=8,求△BDE 的面积.4、(2012•泰州)如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA=5.OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C .(1)试判断线段AB 与AC 的数量关系,并说明理由;(2)若PC=2,求⊙O 的半径和线段PB 的长;(3)若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,求⊙O 的半径r 的取值范围.5、(2012•德阳)如图,已知点C 是以AB 为直径的⊙O 上一点,CH ⊥AB 于点H ,过点B 作⊙O 的切线交直线AC 于点D ,点E 为CH 的中点,连接AE 并延长交BD 于点F ,直线CF 交AB 的延长线于G . (1)求证:AE•FD=AF•EC ; (2)求证:FC=FB ;(3)若FB=FE=2,求⊙O 的半径r 的长.6、如图,在Rt △ABC 中,∠B=90°,它的内切圆分别与三角形的三边切于点D,E,F ,连接AD 与内切圆相交于点P ,连接PC,PE,PF,FD,ED ,且PC ⊥PF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考经典题型-----圆综合1.(2016·山东省济宁市·3分)如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°2. (2016·云南省昆明市·4分)如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π3. (2016·浙江省湖州市·3分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°4.(2016海南3分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°5. (2016·山东潍坊·3分)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.26.(2016·四川泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.7.(2016·四川南充)如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.8.(2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm9. (2016·四川广安·3分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π10.(2016·山东烟台)如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.11. (2016·云南)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.12. (2016·青海西宁·10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.方法指导一、垂径定理的应用二、与圆有关的多解题几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解.三、巧证切线,切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点.判断直线是否是圆的切线,主要有两条途径:1.圆心到直线的距离等于半径当题中没有明确直线与圆是否相交时,可先过圆心作直线的垂线,然后证明圆心到直线的距离等于半径.2.证明直线经过圆的半径的外端,并且垂直于这条半径当已知直线与圆有交点时,连结交点和圆心(即半径),然后证明这条半径与直线垂直即可.四、点击圆锥的侧面展开图圆锥的侧面展开图是中考中的热点内容:解决此类问题的关键是明确圆锥的侧面展开图中各元素与圆锥各元素之间的关系:圆锥的侧面展开图是扇形,而扇形的半径是圆锥的母线,弧长是圆锥的底面周长.五、例谈三角形内切圆问题三角形的内切圆是与三角形都相切的圆,它的圆心是三角形三条角平分线的交点,它到三角形三边的距离相等,它与顶点的连线平分内角.应用内心的性质,结合切线的性质、切线长的性质可以解决很多问题。

六、阴影部分面积的求值技巧求阴影部分面积,通常是根据图形的特点,将其分解、转化为规则图形求解.但在转化过程中又有许多方法.本文精选几个题,介绍几种常用方法.1.直接法,当已知图形为熟知的基本图形时,先求出适合该图形的面积计算公式中某些线段、角的大小,然后直接代入公式进行计算.2.和差法,当图形比较复杂时,我们可以把阴影部分的面积转化为若干个熟悉的图形的面积的和或差来计算.3.割补法,把不规则的图形割补成规则图形,然后求面积.七、圆中辅助线大集合圆是初中重点内容,是中考必考内容.关于圆的大部分题目,常需作辅助线来求解.现对圆中辅助线的作法归纳总结如下:1、有关弦的问题,常做其弦心距,构造直角三角形2、有关直径问题,常做直径所对的圆周角3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系【题型剖析】【类型1】:圆的基本性质的综合应用【例题解析】:(2016海南4分)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= 5.5 .【考点】圆周角定理;垂径定理.,∠C=90°,又有DE⊥AC,得【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AB和DE是⊙O的直径,∴OA=OB=OD=4,∠C=90°,又∵DE⊥AC,∴OP∥BC,∴△AOP∽△ABC,∴,即,∴OP=1.5.∴DP=OP+OP=5.5,故答案为: 5.5.【点评】本题主要考查了圆周角定理,平行线的判定,相似三角形的判定和性质,熟练掌握圆周角定理是解决问题的关键.【变式练习】(2016·陕西·3分)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.3B.4C.5D.6【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB?cos∠OBC=4×=2,∴BC=4.故选:B.【类型2】:与圆的位置关系的问题的综合应用【例题解析】:(2016·陕西)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O 的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC?BG.【变式练习】12.(2016·福建龙岩·10分)如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.(1)求证:CD是⊙O的切线;(2)若AD=1,OA=2,求AC的值.【考点】切线的判定.【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,由等腰三角形的性质得出∠B=∠BCO,证出∠OCD=∠OCA+∠BCO=∠ACB=90°,即可得出结论;(2)证明△ACB∽△ADC,得出AC2=AD?AB,即可得出结果.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠ACB=90°,∵OB=OC,∴∠B=∠BCO,又∵∠ACD=∠B,∴∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=∠ACB=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∵AD⊥CD,∴∠ADC=∠ACB=90°,又∵∠ACD=∠B,∴△ACB∽△ADC,∴AC2=AD?AB=1×4=4,∴AC=2.【类型3】:与圆有关的多边形的综合应用【例题解析】:(2016河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= 2 ;②连接OD,OE,当∠A的度数为60°时,四边形ODME是菱形.【考点】菱形的判定.【分析】(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.(2)①由DE∥AB,得=即可解决问题.②当∠A=60°时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.【解答】(1)证明:∵∠ABC=90°,AM=MC,,∴BM=AM=MC∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵AD=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.【点评】本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型.【变式练习】(2016·云南省昆明市)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)【考点】切线的判定;平行四边形的性质;扇形面积的计算.【分析】(1)欲证明CF是⊙O的切线,只要证明∠CDO=90°,只要证明△COD≌△COA即可.(2)根据条件首先证明△OBD是等边三角形,∠FDB=∠EDC=∠ECD=30°,推出由此根据S阴=2?S△AOC﹣S扇形OAD即可解决问题.DE=EC=BO=BD=OA【解答】(1)证明:如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CAO=∠CDO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠DBO=60°,∵∠DBO=∠F+∠FDB,∴∠FDB=∠EDC=30°,∵EC∥OB,∴∠E=180°﹣∠OBD=120°,∴∠ECD=180°﹣∠E﹣∠EDC=30°,∴EC=ED=BO=DB,∵EB=4,∴OB=OD═OA=2,在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OA?tan60°=2,∴S阴=2?S△AOC﹣S扇形OAD=2××2×2﹣=2﹣.【类型4】:与圆有关的计算【例题解析】:(2016·黑龙江哈尔滨·10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【考点】圆的综合题.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.【变式练习】(2016·贵州安顺·12分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.,(1分)理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.,(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC?tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC?tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=,(9分)【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.【达标检测】1.(2016·浙江省绍兴市·4分)如图,BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°2.(2016·山东省德州市·3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步3.(2016·湖北黄石·3分)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.114. (2016·吉林·3分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为80 度(写出一个即可).5.(2016·黑龙江龙东·3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN 的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.6.(2016·湖北黄石·8分)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.7. (2016·山东潍坊)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.8.(2016·湖北黄石·12分)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1,l2于M,N两点.(1)求双曲线C及直线l2的解析式;(2)求证:PF2﹣PF1=MN=4;(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为AB=.)【参考答案】【课前小练答案】1.(2016·山东省济宁市·3分)如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()。

相关文档
最新文档