特高压专题 中国电网从超高压到特高压的发展 (1)
电力系统电压等级

电力系统电压等级的发展过程及发展趋势输电电压一般分为高压、超高压和特高压 高压(HV HV--High Voltage ):35kV ~200 kV超高压(EHV EHV--Extra High Voltage ):330 kV ~750 kV 特高压(UHV UHV--Ultra High Voltage ):1 000 kV 及以上配电网电压一般为35kV 以下低压(LV LV--Low Voltage ):0.4 kV 及以下 中压(MV MV--Medium Voltage ):3 kV ~35 kV对于直流输电高压直流(HVDC HVDC--High Voltage Direct Current ):330 kV ~750 kV 特高压直流(UHVDC UHVDC--Ultra High Voltage Direct Current ):1 000 kV 及以上中国国家标准中国国家标准《《额定电压额定电压》》(GB I56GB I56--1980)规定的电压等级为:3,6,10,35,63,110,220,330,500,750 kV (待定)。
根据相邻级差不宜太小的原则,可以认为上述电压等级中的35kV 、63kV 和110kV 不宜在同一个地区性电网中并存;330kV 和500 kV 、500 kV 和750 kV 不宜在同一输电系统中并存。
中国电力系统中除西北地区采用330/(220)/110/(35)/10 kV 和东北地区采用500/220/63/10 kV ,其他地区都采用500 /220/110 /(35)/10 kV 系列。
其他国家的情况如下:美国、日本、加拿大、前苏联多采用500/220(275,230)/110 kV 系列,美国、加拿大、前苏联也有750(765)/330(345)/110(154)kV 系列;西欧和北欧国家采用400(380)/220/110(138)系列。
我国高压发展史

中国高压输电发展历程1952年,用自主技术建设了110kV输电线路,逐渐形成京津唐110kV输电网。
(美国1908年有110KV线路)1954年,建成丰满至李石寨220kV输电线路,随后继续建设辽宁电厂至李石寨,阜新电厂至青堆子等220kV线路,迅速形成东北电网220kV骨干网架。
(美国1923年有230KV线路)。
1972年建成330kV刘家峡—关中输电线路,全长534km,随后逐渐形成西北电网330kV骨干网架。
(美国1954年有345KV线路;苏联1952年330KV线路;瑞典1952年380KV线路.)1981年建成500kV姚孟—武昌输电线路,全长595km。
为适应葛洲坝水电厂送出工程的需要,1983年又建成葛洲坝-武昌和葛洲坝-双河两回500kV线路,开始形成华中电网500kV骨干网架。
启动了跨省、超高压电网建设的进程。
(苏联1956年有400kV电压输电线路)1989年建成±500kV葛洲坝-上海高压直流输电线,实现了华中-华东两大区的直流联网,拉开了跨大区联网的序幕。
2005年9月,中国在西北地区(青海官厅--兰州东)建成了一条750kV输电线路,长度为140.7 km。
(加拿大1965年有735KV线路,美国1969年有765kV线路;苏联1967年有750kV线路。
2008年7月,晋东南~南阳~荆门1000kV交流输电线路投入运行,全程650多km。
(苏联1985年有1150kV线路)中国高压输电大事记20世纪80年代初,我国第一项500千伏超高压输变电工程(平武工程)的建设,启动了跨省、超高压电网建设的进程。
80年代末投运的±500千伏葛沪直流输电工程,拉开了跨大区联网的序幕。
1993年8月天广一回交流输电线路投运,1998年12月天广二回投运,2002年6月天广三回投运。
2000年12月,天生桥至广州±500千伏直流输电工程单极送电,2001年6月双极投运。
电压等级划分

输电线路施工- 电子课件
1.2 国内、外电力系统电压等级划分
电压 Voltage 高压HV high voltage 高压直流HVDC、高压交流HVAC 超高压EHV Extra-high voltage 特高压FHV Ultra-high voltage
输电线路施工- 电子课件
外国输电线路建设历程
输电线路施工- 电子课件
中国工业及能源产业分布
——中国电网发展的依据
输电线路施工- 电子课件
西电东送 北电南济
——中国能源分配战略 中国大部分能源资源分布在西部地区,而东部沿海地区经济发达,电力负 荷增长迅速。开发西部的水电和火电基地,实行“西电东送”是国家的一项长 期战略。“西电东送”分北、中和南三条通道。
1989年,中国第一条±500千伏直流输电线路(葛洲坝-上海,1080公里 )建成投入运行,实现华中电力系统与华东电力系统互联,形成中国第一 个跨大区的联合电力系统。
2002年底,国家电网公司拥有500kV线路28035km,330kV线路9612km。 500kV变电容量10070万kVA,330 kV变电容量1755万kVA。500KV超高压输 电线路已成为电网骨干网架,直流输电得到了更多应用.
特高压输电技术概况

2004-12-14
武汉高压研究所
WUHAN HIGH VOLTAGE RESEARCH INSTITUTE
14 P14
特高压输电的优点
减少工程投资 1000kV交流输电方案的单位输送容量综合造价约为 1000kV交流输电方案的单位输送容量综合造价约为 交流输电方案的单位输送容量综合造价 500kV输电方案的四分之三。 500kV输电方案的四分之三。 输电方案的四分之三 ±800kV直流输电方案的单位输送容量综合造价也 800kV直流输电方案的单位输送容量综合造价也 直流输电方案的单位输送容量综合造价 约为±500kV直流输电方案的四分之三。 约为±500kV直流输电方案的四分之三。 直流输电方案的四分之三
2004-12-14
武汉高压研究所
WUHAN HIGH VOLTAGE RESEARCH INSTITUTE
6 P6
电网的发展历程
中国, 1949年新中国成立后,按电网发展统一电压等级,逐渐形成 经济合理的电压等级系列: 1952年,用自主技术建设了110kV输电线路,逐渐形成京津唐110kV输 电网。 1954年,建成丰满至李石寨220kV输电线路,随后继续建设辽宁电厂至 李石寨,阜新电厂至青堆子等220kV线路,迅速形成东北电网220kV骨 干网架。 1972年建成330kV刘家峡—关中输电线路,全长534km,随后逐渐形成 西北电网330kV骨干网架。 1981年建成500kV姚孟—武昌输电线路,全长595km。为适应葛洲坝
2004-12-14
武汉高压研究所
WUHAN HIGH VOLTAGE RESEARCH INSTITUTE
5 P5
电网的发展历程
中国,1949年前,电力工业发展缓慢,输电电压按具体工程 决定,电压等级繁多: 1908年建成22kV石龙坝水电站至昆明线路, 1921年建成33kV石景山电厂至北京城的线路。 1933年建成抚顺电厂的44kV出线。 1934年建成66kV延边至老头沟线路。 1935年建成抚顺电厂至鞍山的154kV线路。 1943年建成110kV镜泊湖水电厂至延边线路。
特高压发展历程以及前景

特高压发展历程以及前景我国特高压发展历程摘要:我国已经进入了大电网、大机组、高电压、高自动化的发展时期。
随着经济的快速发展,电力需求也在快速增长,特高压输电逐渐进入到我国电力的建设当中。
因为特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。
本文在对电力系统以及电网的基本概念全面的了解的基础上,通过查阅资料确定我国引入特高压的必要性以及特高压输电线路的发展现状和未来趋势。
关键字:特高压电网发展历程1.电网简介发电厂、输电网、配电网和用电设备连接起来组成一个整体,称之为电力系统。
电力系统中输送和分配电能的部分称为电力网,电网是电能传输的载体,它包括升、降压变压器和各种电压等级的输电线路。
电网是电能传输的载体,在发电厂发出电能后,如何将电能高效地传送给用户,就成为电网的主要功能。
对我国目前绝大多数电网来说,高压电网指的是110kV和220kV 电网;超高压电网指的是330kV,500kV和750kV电网。
特高压输电指的是正在开发的1000 kV交流电压和±800kV直流电压输电工程和技术。
特高压电网指的是以1000kV 输电网为骨干网架,超高压输电网和高压输电网以及特高压直流输电高压直流输电和配电网构成的分层、分区、结构清晰的现代化大电网。
2.国内国际特高压发展概况特高压电网形成和发展的基本条件是用电负荷的持续增长,以及大容量、特大容量电厂的建设和发展,其突出特点是大容量、远距离输电。
目前,我国发展特高压指的是在现有500千伏交流和±500千伏之上采用更高一级电压等级输电技术,包括百万伏级交流特高压和±800千伏级直流特高压两部分,简称国家特高压骨干电网1。
1《走进特高压》中国电力出版社古清生国际上特高压交流输电技术只在俄罗斯、日本、意大利有少量1000千伏交流线路,且都降压运行,直流输电已建成投运的最大等级工程是巴西伊泰普输电工程,包括两回±600千伏电压等级,360万千瓦额定输送功率的直流线路。
超高压输电和特高压输电【可编辑】

超高压输电和特高压输电超高压输电开放分类:电子工程超高压输电是指使用超高电压等级输送电能。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高。
超高压输电- 正文使用超高电压等级输送电能。
超高电压是指330千伏至765千伏的电压等级,即330(345)千伏、400(380)千伏、500(550)千伏、765(750)千伏等各种电压等级。
超高压输电是发电容量和用电负荷增长、输电距离延长的必然要求。
超高压输电是电力工业发展水平的重要标志之一。
随着电能利用的广泛发展,许多国家都在兴建大容量水电站、火电厂、核电站以及电站群,而动力资源又往往远离负荷中心,只有采用超高压输电才能有效而经济地实现输电任务。
超高压输电可以增大输送容量和传输距离,降低单位功率电力传输的工程造价,减少线路损耗,节省线路走廊占地面积,具有显著的综合经济效益和社会效益。
另外,大电力系统之间的互联也需要超高压输电来完成。
超高压输电的使用范围大致如表所列。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高(图1~4)。
超高压输电超高压输电超高压输电超高压输电超高压输电1952年瑞典首先建成了380千伏超高压输电线路,由哈什普龙厄到哈尔斯贝里,全长620公里,输送功率45万千瓦。
1956年,苏联从古比雪夫到莫斯科的400千伏线路投入运行,全长1000公里,并于1959年升压至500千伏,首次使用500千伏输电。
1965年加拿大首先建成735千伏的输电线路。
1969年美国又实现765千伏的超高压输电。
在直流输电方面,苏联于1965年建成±400千伏的超高压直流输电线路,此后美国、加拿大等国又建成±500千伏直流输电线路。
超高压输电和特高压输电

超高压输电和特高压输电超高压输电开放分类:电子工程超高压输电是指使用超高电压等级输送电能。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高。
超高压输电- 正文使用超高电压等级输送电能。
超高电压是指330千伏至765千伏的电压等级,即330(345)千伏、400(380)千伏、500(550)千伏、765(750)千伏等各种电压等级。
超高压输电是发电容量和用电负荷增长、输电距离延长的必然要求。
超高压输电是电力工业发展水平的重要标志之一。
随着电能利用的广泛发展,许多国家都在兴建大容量水电站、火电厂、核电站以及电站群,而动力资源又往往远离负荷中心,只有采用超高压输电才能有效而经济地实现输电任务。
超高压输电可以增大输送容量和传输距离,降低单位功率电力传输的工程造价,减少线路损耗,节省线路走廊占地面积,具有显著的综合经济效益和社会效益。
另外,大电力系统之间的互联也需要超高压输电来完成。
超高压输电的使用范围大致如表所列。
若以220千伏输电指标为100%,超高压输电每公里的相对投资、每千瓦时电输送百公里的相对成本以及金属材料消耗量等,均有大幅度降低,线路走廊利用率则有明显提高(图1~4)。
超高压输电超高压输电超高压输电超高压输电超高压输电1952年瑞典首先建成了380千伏超高压输电线路,由哈什普龙厄到哈尔斯贝里,全长620公里,输送功率45万千瓦。
1956年,苏联从古比雪夫到莫斯科的400千伏线路投入运行,全长1000公里,并于1959年升压至500千伏,首次使用500千伏输电。
1965年加拿大首先建成735千伏的输电线路。
1969年美国又实现765千伏的超高压输电。
在直流输电方面,苏联于1965年建成±400千伏的超高压直流输电线路,此后美国、加拿大等国又建成±500千伏直流输电线路。
特高压输电发展动因及研发历程、特高压输电技术特点、特高压交直流混合电网特征

加上苏联地域辽阔、电网覆盖面积大,且能源与负荷分布不均衡,对特高压输电提出了要求,苏联从1980年开始着手建设连接西伯利亚、哈萨克斯坦和乌拉尔联合电网的1150kv特高压交流输电工程,将东部地区的电能送往乌拉尔和欧洲部分的负荷中心,工程于1985年正式按额定电压带负荷运行,后因技术上有缺陷降压运行。
中国能源资源的总体分布规律是西多东少,北多南少,能源资源与负荷中心分布不均衡的特征明显,中国正处于经济快速增长的关键时期,电力需求将持续较快增长,需求重心也将长期位于东中部地区,而煤炭资源开发正逐步西移,北移,水能资源的开发正向西南地区转移,风能、太阳能等新能源资源也主要分布在西部、北部地区,未来能源流规模和距离将进一步增大,面临大规模、远距离、高效率电力输送的挑战。
大型能源基地与东中部负荷中心之间的距离达到1000-3000km,超出传统超高压输电线路的经济输送距离。
电力生产和消费地区不均衡的情况将更为突出,电力输送压力日益加剧,迫切要求实现经济高效的大规模送出和大范围消纳。
地区经常性出现大范围雾霾天气,尤其pm2.5严重超标,特别是京津冀、长三角、华中等地区污染极为严重,部分地区雾霾天数超过全年的50%,保护生态环境已成为全社会关注的热点和焦点。
生态环境保护与能源生产和消费方式密切相关,发电和其他行业大量煤炭燃烧,是二氧化硫、氮氧化物和烟尘等大气污染的重要来源。
为保障国民经济的可持续发展和居民生活质量的稳步提升,加快转变能源和电力发展方式,统筹考虑东西部环境承载能力,在全国范围内优化配置环境资源已成为建设生态文明和美丽中国的现实而紧迫需要。
从中长期来看,中国能源消费仍将以煤炭为主,煤电在全国电源结构中仍将保持较高比例。
发展特高压输电,推动清洁能源发展里煤电布局优化,在全国范围内优化配置能源、环境等资源,可以带来多方面的环境效益。
(1)发展特高压电网可以推动国家清洁能源开发目标实现及清洁能源的高效利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 发展特高压的必要性 二. 特高压输电的优点 三. 特高压输电的缺点 四. 我国特高压的现状与发展展望
一、发展特高压的必要性
输电电网:虚线框内所示,包括输电设备和变电设备组成。
交流系统
高 压(H V):1KV~220KV, 包括:10KV,20kV,35KV,110KV,220KV 超高压(EHV):330~1000KV, 包括:330KV,500KV,750KV 特高压(UHV):1000KV及以上
次发生在美国,2次在欧洲。 这些严重的大电网瓦解事故说明采用交流互联的大电网存在着安
全稳定、事故连锁反应及大面积停电等难以解决的问题。特别是
在特高压线路出现初期,不能形成主网架,线路负载能力较低, 电源的集中送出带来了较大的稳定性问题。下级电网不能解环运 行,导致不能有效降低受端电网短路电流,这些都威胁着电网的 安全运行。
单回1000kV特高压输电线路的自然功率接近500万千瓦, 约为500kV输电线路的五倍左右。±800kV直流特高压输电能力 可达到640万千瓦,是±500kV高压直流的2.1倍,是±620kV高 压直流的1.7倍.
二、特高压输电的优点
单回线路的输送能力二、特高压输的优点2. 缩短电气距离 提高稳定极限 在输送相同功率的情况下,1000kV特高压输电线路的最
远送电距离约为500kV线路的4倍。
采用±800kV直流输电技术使超远距离的送电成为可能, 经济输电距离可以达到2500km及以上。
二、特高压输电的优点
3. 降低线路损耗 输电线路损耗可按下式估算:
S2 Ploss R U2 其中: S表示线路输送容量 U表示线路电压 R表示线路串联电阻
可见在导线总截面、输送容量均相同,即R、S值相等情况下
三、特高压输电的缺点
1. 系统的稳定性和可靠性问题不易解决 2. 特高压输电线主保护原理的缺陷 3. 特高压输电对环境的影响
强电场对人的生理和心理影响 电晕放电的影响
4. 带电作业和经验技术
三、特高压输电的缺点
1. 系统的稳定性和可靠性问题不易解决
自1965-1984年世界上共发生了6次交流大电网瓦解事故,其中4
二、特高压输电的优点
1、提高输送容量 2、缩短电气距离 提高稳定极限
3、降低线路损耗
4、减少工程投资 5、提高单位走廊输电能力 节省走廊面积 6、改善电网结构 降低短路电流 7、加强联网能力
二、特高压输电的优点
1、提高输送容量 交流线路的自然功率是表征其送电能力的一项指标,其 计算公式如下:
U2 C 2 P U Zc L 式中: U为线电压, Zc为阻抗, L为 C分别为单位长度导线电 感和电容
二、特高压输电的优点
140 120 100 80 60 40 20 0
1000kV双回1000kV单回500kV双回 500kV单回 ±800kV ±500kV ±620kV
单位走廊送电能力(MW/m)
二、特高压输电的优点
6. 改善电网结构,降低短路电流 1)通过特高压实现长距离送电,可以减少在负荷中心地 区装设机组的需求,从而降低短路电流幅值。长距离输 入1000万千瓦电力,相当于减少本地装机17台60万千 瓦机组。每台60万千瓦机组对其附近区域500千伏系统 的短路电流约增加1.8kA,如果这些机组均装设在负荷 中心地区,对当地电网的短路电流水平有较大的影响。 2) 通过特高压电网,实现分层分区布局,可以优化包括 超高压在内的系统结构,从根本上解决短路电流超标问题。
二、特高压输电的优点
5. 提高单位走廊输电能力 交流特高压:
同塔双回和猫头塔单回线路的走廊宽度分别为75米和81 米,单位走廊输送能力分别为13.3万千瓦/米和6.2万 千瓦/米,约为同类型500kV线路的三倍。
直流特高压: ±800kV、640万千瓦直流输电方案的线路走廊约76 米,单位走廊宽度输送容量为8.4万千瓦/米,是 ±500kV、300万千瓦方案的1.29倍,±620kV、 380万千瓦方案的1.37倍。
1000kV交流线路的电阻损耗是500kV交流线路的四分之一。 ±800kV直流线路的电阻损耗是±500kV直流线路的39%,是
±620kV直流线路的60%。
二、特高压输电的优点
4. 减少工程投资 1000kV交流输电方案的单位输送容量综合造价约为 500kV输电方案的四分之三。 ±800kV直流输电方案的单位输送容量综合造价也约为 ±500kV直流输电方案的四分之三。
发电能源与用电负荷地理分布不均衡
网损和短路电流水平 在电压等级不变的情况下,远距离输电意味着线路 电能耗损的增加。当输送的功率给定时,提高输电电压 等级,将减少输电线通过的电流,从而减少有功和电能 损耗,提高远距离输送大功率的能力。
生态环境
输电线路和变电站的生态环境影响主要表现在土地 的利用、电晕所引起的通信干扰、可听噪声,工频电、 磁场对生态的相互作用等方面。 在地区电力负荷密度小、输电线路和变电站数量少 的年代,生态环境不会成为问题。当输电线和变电站随 用电增加而数目增多时,环境问题可能成为影响输电网 发展的突出问题。
直流系统
超高压(EHV): ±500KV ±660KV 特高压(UHV):±800KV
用电负荷增长是促进超高压电网向特高压电网发展的最主要因素,
还有如下因素: 燃料、运输成本和发电能源的可用性
发电机和发电厂规模经济性与电厂厂址
不断增长的用电需求促进发电技术,包括火力、水力和核电发电技术向 造价低、效率高的大型、特大型发电机组发展。 从超高压和特高压各电压等级的输电能力可看出,大型和特大型机组及 相应的大容量电厂的建设更增加了特高压输电的需求。
二、特高压输电的优点
7. 加强联网能力
1) 通过交流特高压同步联网,可以大幅度缩短电网间的
电气距离,提高稳定水平,发挥大同步电网的各项综合 效益。 2) 通过直流特高压异步联网,满足长距离、大容量送电 的要求,沿线不需要提供电源支撑。
3) 通过特高压联网,增强网络功率交换能力,可以在更
大范围内优化能源资源配置方式。