Hadoop分布式文件系统架构和设计

合集下载

列举说明hadoop的体系结构

列举说明hadoop的体系结构

Hadoop的体系结构1. 介绍Hadoop是一个开源的分布式计算框架,主要用于存储和处理大规模数据集。

它采用了一种适用于大规模集群的可扩展性设计,能够在廉价的硬件上运行并处理TB到PB级别的数据。

Hadoop的体系结构包括了多个模块和组件,下面将详细探讨每个模块的功能和相互关系。

2. Hadoop体系结构图Hadoop体系结构的主要组成部分如下所示:+------------------+| Hadoop |+------------------+/ | \/ | \+-----------+ +-----------+ +-----------+| HDFS | | MapReduce | | YARN |+-----------+ +-----------+ +-----------+| | || | |+---------+ +---------+ +---------+| Name | | Data | | Application || Node | | Node | | Master/Node |+---------+ +---------+ +---------+3. HDFS (Hadoop分布式文件系统)HDFS是Hadoop的分布式文件系统,它用于存储大规模数据集,并提供了高可靠性、高性能和高容错性。

HDFS的体系结构包括以下组件:3.1 NameNodeNameNode是HDFS的主节点,负责管理整个文件系统的命名空间和元数据。

它维护了文件和目录树的结构,并保存了文件的属性(如权限、所有者等)。

NameNode还负责将文件划分为数据块,并记录每个数据块所在的DataNode。

3.2 DataNodeDataNode是HDFS中的工作节点,负责实际存储数据。

它接收来自客户端或其他DataNode的数据写请求,并将数据块存储在本地磁盘上。

DataNode还负责提供数据读取服务,将数据块传输给客户端或其他DataNode。

Hadoop分布式文件系统(HDFS)详解

Hadoop分布式文件系统(HDFS)详解

Hadoop分布式⽂件系统(HDFS)详解HDFS简介:当数据集的⼤⼩超过⼀台独⽴物理计算机的存储能⼒时,就有必要对它进⾏分区 (partition)并存储到若⼲台单独的计算机上。

管理⽹络中跨多台计算机存储的⽂件系统成为分布式⽂件系统 (Distributed filesystem)。

该系统架构于⽹络之上,势必会引⼊⽹络编程的复杂性,因此分布式⽂件系统⽐普通磁盘⽂件系统更为复杂。

HDFS是基于流数据模式访问和处理超⼤⽂件的需求⽽开发的,它可以运⾏于廉价的商⽤服务器上。

总的来说,可以将 HDFS的主要特点概括为以下⼏点:(1 )处理超⼤⽂件这⾥的超⼤⽂件通常是指数百 MB、甚⾄数百TB ⼤⼩的⽂件。

⽬前在实际应⽤中, HDFS已经能⽤来存储管理PB(PeteBytes)级的数据了。

在 Yahoo!,Hadoop 集群也已经扩展到了 4000个节点。

(2 )流式地访问数据HDFS的设计建⽴在更多地响应“⼀次写⼊,多次读取”任务的基础之上。

这意味着⼀个数据集⼀旦由数据源⽣成,就会被复制分发到不同的存储节点中,然后响应各种各样的数据分析任务请求。

在多数情况下,分析任务都会涉及数据集中的⼤部分数据,也就是说,对HDFS 来说,请求读取整个数据集要⽐读取⼀条记录更加⾼效。

(3 )运⾏于廉价的商⽤机器集群上Hadoop设计对硬件需求⽐较低,只须运⾏在廉价的商⽤硬件集群上,⽽⽆须昂贵的⾼可⽤性机器上。

廉价的商⽤机也就意味着⼤型集群中出现节点故障情况的概率⾮常⾼。

这就要求在设计 HDFS时要充分考虑数据的可靠性、安全性及⾼可⽤性。

正是由于以上的种种考虑,我们会发现现在的 HDFS在处理⼀些特定问题时不但没有优势,⽽且有⼀定的局限性,主要表现在以下⼏个⽅⾯。

(1 )不适合低延迟数据访问如果要处理⼀些⽤户要求时间⽐较短的低延迟应⽤请求,则 HDFS不适合。

HDFS 是为了处理⼤型数据集分析任务的,主要是为达到⾼的数据吞吐量⽽设计的,这就可能要求以⾼延迟作为代价。

HDFS原理和体系结构

HDFS原理和体系结构

HDFS原理和体系结构HDFS (Hadoop Distributed File System) 是 Hadoop 生态系统中的一部分,是一个分布式文件系统。

其设计目标是能够运行在廉价的硬件上,并能够容错和高效地处理大规模数据集。

HDFS 是 Hadoop 的核心组件之一,为 Hadoop 提供了存储和处理大规模数据的能力。

HDFS 的体系结构由以下几个组件组成:NameNode、DataNode、Secondary NameNode。

NameNode 是 HDFS 的关键组件之一,负责维护整个文件系统的文件和目录结构,以及每个文件的块的位置信息。

所有的文件操作都需要通过NameNode 进行验证和授权。

NameNode 还负责调度和协调任务的执行,如数据块的复制和恢复。

由于 NameNode 的重要性,它通常是单点故障,因此 HDFS 提供了一个 Secondary NameNode(即 CheckpointNode)来定期备份 NameNode 的数据,以防 NameNode 失效。

DataNode 是 HDFS 的另一个关键组件,负责实际存储数据。

每个DataNode 负责存储集群中一些数据块的副本。

当客户端请求读取文件时,DataNode 会返回所请求的数据块。

当客户端请求写入文件时,DataNode会接收数据块,并将其存储在本地磁盘上。

DataNode 还会周期性地向NameNode 报告其存储块的状态。

HDFS 采用了主从架构。

NameNode 作为主节点,负责管理集群的元数据和文件系统的命名空间。

而 DataNode 作为从节点,负责存储实际的数据。

这种分布式架构允许 HDFS 在集群中的多个节点上存储大规模数据,并且支持高容错性。

每个数据块都会在集群的不同节点上进行多次复制,以提供容错和高可用性。

HDFS的原理主要包括以下几个方面:1.数据切片与分布式存储:HDFS将文件切片成多个数据块,并将数据块分布在不同的节点上进行存储。

hadoop项目结构及各部分具体内容

hadoop项目结构及各部分具体内容

hadoop项目结构及各部分具体内容Hadoop是一个开源的分布式计算框架,由Apache基金会管理。

它的核心是Hadoop分布式文件系统(HDFS)和MapReduce计算模型。

其项目结构包括以下几个部分:1. Hadoop Common:这是Hadoop项目的核心模块,包含文件系统、I/O操作、网络通信、安全性等基本功能的实现。

2. Hadoop HDFS:这是Hadoop的分布式文件系统,用于存储和管理大量数据。

它将数据分割成块,将这些块存储在不同的计算机上,以实现数据的可靠性和高可用性。

3. Hadoop YARN:这是Hadoop的资源管理器,用于管理集群中的资源,包括内存、CPU、磁盘等。

它可以将集群资源分配给运行在集群上的应用程序,从而提高资源利用率。

4. Hadoop MapReduce:这是Hadoop的计算模型,用于在分布式环境下执行大数据处理任务。

MapReduce将任务分成更小的子任务,然后在不同的计算机上并行执行这些子任务,最后将结果合并。

除了以上核心部分,Hadoop还包括一些其他功能模块:1. Hadoop Hive:这是一个基于Hadoop的数据仓库,提供了SQL 查询功能。

它可以将结构化数据映射到Hadoop HDFS上,从而实现大规模数据的查询和分析。

2. Hadoop Pig:这是一个基于Hadoop的数据流语言和平台,用于进行大规模数据处理和分析。

它支持多种数据源和处理方式,可以快速地进行数据的转换和操作。

3. Hadoop HBase:这是一个基于Hadoop的分布式数据库,用于存储大量的结构化数据。

它支持高可用性、可靠性和扩展性,并提供了快速查询和插入数据的功能。

总之,Hadoop是一个强大的大数据处理框架,它的各个部分提供了不同的功能和特性,可以轻松地处理大规模数据。

Hadoop分布式文件系统:架构和设计外文翻译

Hadoop分布式文件系统:架构和设计外文翻译

外文翻译原文来源The Hadoop Distributed File System: Architecture and Design 中文译文Hadoop分布式文件系统:架构和设计姓名 XXXX学号 ************2013年4月8 日英文原文The Hadoop Distributed File System: Architecture and DesignSource:/docs/r0.18.3/hdfs_design.html IntroductionThe Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant. HDFS is highly fault-tolerant and is designed to be deployed onlow-cost hardware. HDFS provides high throughput access to application data and is suitable for applications that have large data sets. HDFS relaxes a few POSIX requirements to enable streaming access to file system data. HDFS was originally built as infrastructure for the Apache Nutch web search engine project. HDFS is part of the Apache Hadoop Core project. The project URL is/core/.Assumptions and GoalsHardware FailureHardware failure is the norm rather than the exception. An HDFS instance may consist of hundreds or thousands of server machines, each storing part of the file system’s data. The fact that there are a huge number of components and that each component has a non-trivial probability of failure means that some component of HDFS is always non-functional. Therefore, detection of faults and quick, automatic recovery from them is a core architectural goal of HDFS.Streaming Data AccessApplications that run on HDFS need streaming access to their data sets. They are not general purpose applications that typically run on general purpose file systems. HDFS is designed more for batch processing rather than interactive use by users. The emphasis is on high throughput of data access rather than low latency of data access. POSIX imposes many hard requirements that are notneeded for applications that are targeted for HDFS. POSIX semantics in a few key areas has been traded to increase data throughput rates.Large Data SetsApplications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to terabytes in size. Thus, HDFS is tuned to support large files. It should provide high aggregate data bandwidth and scale to hundreds of nodes in a single cluster. It should support tens of millions of files in a single instance.Simple Coherency ModelHDFS applications need a write-once-read-many access model for files. A file once created, written, and closed need not be changed. This assumption simplifies data coherency issues and enables high throughput data access. AMap/Reduce application or a web crawler application fits perfectly with this model. There is a plan to support appending-writes to files in the future.“Moving Computation is Cheaper than Moving Data”A computation requested by an application is much more efficient if it is executed near the data it operates on. This is especially true when the size of the data set is huge. This minimizes network congestion and increases the overall throughput of the system. The assumption is that it is often better to migrate the computation closer to where the data is located rather than moving the data to where the application is running. HDFS provides interfaces for applications to move themselves closer to where the data is located.Portability Across Heterogeneous Hardware and Software PlatformsHDFS has been designed to be easily portable from one platform to another. This facilitates widespread adoption of HDFS as a platform of choice for a large set of applications.NameNode and DataNodesHDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode, a master server that manages the file system namespace and regulates access to files by clients. In addition, there are a number of DataNodes, usually one per node in the cluster, which manage storage attached to the nodes that they run on. HDFS exposes a file system namespace and allows user data to be stored in files. Internally, a file is split into one or more blocks and these blocksare stored in a set of DataNodes. The NameNode executes file system namespace operations like opening, closing, and renaming files and directories. It also determines the mapping of blocks to DataNodes. The DataNodes are responsible for serving read and write requests from the file system’s clients. The DataNodes also perform block creation, deletion, and replication upon instruction from the NameNode.The NameNode and DataNode are pieces of software designed to run on commodity machines. These machines typically run a GNU/Linux operating system (OS). HDFS is built using the Java language; any machine that supports Java can run the NameNode or the DataNode software. Usage of the highly portable Java language means that HDFS can be deployed on a wide range ofmachines. A typical deployment has a dedicated machine that runs only the NameNode software. Each of the other machines in the cluster runs one instance of the DataNode software. The architecture does not preclude running multiple DataNodes on the same machine but in a real deployment that is rarely the case.The existence of a single NameNode in a cluster greatly simplifies the architecture of the system. The NameNode is the arbitrator and repository for all HDFS metadata. The system is designed in such a way that user data never flows through the NameNode.The File System NamespaceHDFS supports a traditional hierarchical file organization. A user or an application can create directories and store files inside these directories. The file system namespace hierarchy is similar to most other existing file systems; one can create and remove files, move a file from one directory to another, or rename a file. HDFS does not yet implement user quotas or access permissions. HDFS does not support hard links or soft links. However, the HDFS architecture does not preclude implementing these features.The NameNode maintains the file system namespace. Any change to the file system namespace or its properties is recorded by the NameNode. An application can specify the number of replicas of a file that should be maintained by HDFS. The number of copies of a file is called the replication factor of that file. This information is stored by the NameNode.Data ReplicationHDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are replicated for fault tolerance. The block size and replication factor are configurable per file. An application can specify the number of replicas of a file. The replication factor can be specified at file creation time and can be changed later. Files in HDFS are write-once and have strictly one writer at any time.The NameNode makes all decisions regarding replication of blocks. It periodically receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster.Receipt of a Heartbeat implies that the DataNode is functioning properly. A Blockreport contains a list of all blocks on a DataNode.Replica Placement: The First Baby StepsThe placement of replicas is critical to HDFS reliability and performance. Optimizing replica placement distinguishes HDFS from most other distributed file systems. This is a feature that needs lots of tuning and experience. The purpose of a rack-aware replica placement policy is to improve data reliability, availability, and network bandwidth utilization. The current implementation for the replica placement policy is a first effort in this direction. The short-term goals of implementing this policy are to validate it on production systems, learn more about its behavior, and build a foundation to test and research more sophisticated policies.Large HDFS instances run on a cluster of computers that commonly spread across many racks. Communication between two nodes in different racks has to go through switches. In most cases, network bandwidth between machines in the same rack is greater than network bandwidth between machines in different racks.The NameNode determines the rack id each DataNode belongs to via the process outlined in Rack Awareness. A simple but non-optimal policy is to place replicas on unique racks. This prevents losing data when an entire rack fails and allows use of bandwidth from multiple racks when reading data. This policy evenly distributes replicas in the cluster which makes it easy to balance load on component failure. However, this policy increases the cost of writes because a write needs to transfer blocks to multiple racks.For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on one node in the local rack, another on a different node in the local rack, and the last on a different node in a different rack. This policy cuts the inter-rack write traffic which generally improves write performance. The chance of rack failure is far less than that of node failure; this policy does not impact data reliability and availability guarantees. However, it does reduce the aggregate network bandwidth used when reading data since a block is placed in only two unique racks rather than three. With this policy, the replicas of a file do not evenly distribute across the racks. One third of replicas are on one node, two thirds of replicas are on one rack, and the other third are evenly distributed across the remaining racks. This policy improves write performance without compromising data reliability or read performance.The current, default replica placement policy described here is a work in progress. Replica SelectionTo minimize global bandwidth consumption and read latency, HDFS tries to satisfy a read request from a replica that is closest to the reader. If there exists a replica on the same rack as the reader node, then that replica is preferred to satisfy the read request. If angg/ HDFS cluster spans multiple data centers, then a replica that is resident in the local data center is preferred over any remote replica.SafemodeOn startup, the NameNode enters a special state called Safemode. Replication of data blocks does not occur when the NameNode is in the Safemode state. The NameNode receives Heartbeat and Blockreport messages from the DataNodes. A Blockreport contains the list of data blocks that a DataNode is hosting. Each block has a specified minimum number of replicas. A block is considered safely replicated when the minimum number of replicas of that data block has checked in with the NameNode. After a configurable percentage of safely replicated data blocks checks in with the NameNode (plus an additional 30 seconds), the NameNode exits the Safemode state. It then determines the list of data blocks (if any) that still have fewer than the specified number of replicas. The NameNode then replicates these blocks to other DataNodes.The Persistence of File System MetadataThe HDFS namespace is stored by the NameNode. The NameNode uses a transaction log called the EditLog to persistently record every change that occurs to file system metadata. For example, creating a new file in HDFS causes the NameNode to insert a record into the EditLog indicating this. Similarly, changing the replication factor of a file causes a new record to be inserted into the EditLog. The NameNode uses a file in its local host OS file system to store the EditLog. The entire file system namespace, including the mapping of blocks to files and file system properties, is stored in a file called the FsImage. The FsImage is stored as a file in the NameNode’s local file system too.The NameNode keeps an image of the entire file system namespace and file Blockmap in memory. This key metadata item is designed to be compact, such that a NameNode with 4 GB of RAM is plenty to support a huge number of files and directories. When the NameNode starts up, it reads the FsImage and EditLog from disk, applies all the transactions from the EditLog to the in-memory representation of the FsImage, and flushes out this new version into a new FsImage on disk. It can then truncate the old EditLog because its transactions have been applied to the persistent FsImage. This process is called a checkpoint. In the current implementation, a checkpoint only occurs when the NameNode starts up. Work is in progress to support periodic checkpointing in the near future.The DataNode stores HDFS data in files in its local file system. The DataNode has no knowledge about HDFS files. It stores each block of HDFS data in a separatefile in its local file system. The DataNode does not create all files in the same directory. Instead, it uses a heuristic to determine the optimal number of files per directory and creates subdirectories appropriately. It is not optimal to create all local files in the same directory because the local file system might not be able to efficiently support a huge number of files in a single directory. When a DataNode starts up, it scans through its local file system, generates a list of all HDFS data blocks that correspond to each of these local files and sends this report to the NameNode: this is the Blockreport.The Communication ProtocolsAll HDFS communication protocols are layered on top of the TCP/IP protocol. A client establishes a connection to a configurable TCP port on the NameNode machine. It talks the ClientProtocol with the NameNode. The DataNodes talk to the NameNode using the DataNode Protocol. A Remote Procedure Call (RPC) abstraction wraps both the Client Protocol and the DataNode Protocol. By design, the NameNode never initiates any RPCs. Instead, it only responds to RPC requests issued by DataNodes or clients.RobustnessThe primary objective of HDFS is to store data reliably even in the presence of failures. The three common types of failures are NameNode failures, DataNode failures and network partitions.Data Disk Failure, Heartbeats and Re-ReplicationEach DataNode sends a Heartbeat message to the NameNode periodically. A network partition can cause a subset of DataNodes to lose connectivity with the NameNode. The NameNode detects this condition by the absence of a Heartbeat message. The NameNode marks DataNodes without recent Heartbeats as dead and does not forward any new IO requests to them. Any data that was registered to a dead DataNode is not available to HDFS any more. DataNode death may cause the replication factor of some blocks to fall below their specified value. The NameNode constantly tracks which blocks need to be replicated and initiates replication whenever necessary. The necessity for re-replication may arise due to many reasons: a DataNode may become unavailable, a replica may become corrupted, a hard disk on a DataNode may fail, or the replication factor of a file may be increased.Cluster RebalancingThe HDFS architecture is compatible with data rebalancing schemes. A scheme might automatically move data from one DataNode to another if the free space on a DataNode falls below a certain threshold. In the event of a sudden high demand for a particular file, a scheme might dynamically create additional replicas and rebalance other data in the cluster. These types of data rebalancing schemes are not yet implemented.Data IntegrityIt is possible that a block of data fetched from a DataNode arrives corrupted. This corruption can occur because of faults in a storage device, network faults, or buggy software. The HDFS client software implements checksum checking on the contents of HDFS files. When a client creates an HDFS file, it computes a checksum of each block of the file and stores these checksums in a separate hidden file in the same HDFS namespace. When a client retrieves file contents it verifies that the data it received from each DataNode matches the checksum stored in the associated checksum file. If not, then the client can opt to retrieve that block from another DataNode that has a replica of that block.Metadata Disk FailureThe FsImage and the EditLog are central data structures of HDFS. A corruption of these files can cause the HDFS instance to be non-functional. For this reason, the NameNode can be configured to support maintaining multiple copies of the FsImage and EditLog. Any update to either the FsImage or EditLog causes each of the FsImages and EditLogs to get updated synchronously. This synchronous updating of multiple copies of the FsImage and EditLog may degrade the rate of namespace transactions per second that a NameNode can support. However, this degradation is acceptable because even though HDFS applications are very data intensive in nature, they are not metadata intensive. When a NameNode restarts, it selects the latest consistent FsImage and EditLog to use.The NameNode machine is a single point of failure for an HDFS cluster. If the NameNode machine fails, manual intervention is necessary. Currently, automatic restart and failover of the NameNode software to another machine is not supported.SnapshotsSnapshots support storing a copy of data at a particular instant of time. One usage of the snapshot feature may be to roll back a corrupted HDFS instance to a previously known good point in time. HDFS does not currently support snapshots but will in a future release.Data OrganizationData BlocksHDFS is designed to support very large files. Applications that are compatible with HDFS are those that deal with large data sets. These applications write their data only once but they read it one or more times and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics on files. A typical block size used by HDFS is 64 MB. Thus, an HDFS file is chopped up into 64 MB chunks, and if possible, each chunk will reside on a different DataNode.StagingA client request to create a file does not reach the NameNode immediately. In fact, initially the HDFS client caches the file data into a temporary local file. Application writes are transparently redirected to this temporary local file. When the local file accumulates data worth over one HDFS block size, the client contacts the NameNode. The NameNode inserts the file name into the file system hierarchy and allocates a data block for it. The NameNode responds to the client request with the identity of the DataNode and the destination data block. Then the client flushes the block of data from the local temporary file to the specified DataNode. When a file is closed, the remaining un-flushed data in the temporary local file is transferred to the DataNode. The client then tells the NameNode that the file is closed. At this point, the NameNode commits the file creation operation into a persistent store. If the NameNode dies before the file is closed, the file is lost.The above approach has been adopted after careful consideration of target applications that run on HDFS. These applications need streaming writes to files. If a client writes to a remote file directly without any client side buffering, the network speed and the congestion in the network impacts throughput considerably. This approach is not without precedent. Earlier distributed file systems, e.g. AFS, have used client side caching to improve performance. APOSIX requirement has been relaxed to achieve higher performance of data uploads.Replication PipeliningWhen a client is writing data to an HDFS file, its data is first written to a local file as explained in the previous section. Suppose the HDFS file has a replication factor of three. When the local file accumulates a full block of user data, the client retrieves a list of DataNodes from the NameNode. This list contains the DataNodes that will host a replica of that block. The client then flushes the data block to the first DataNode. The first DataNode starts receiving the data in small portions (4 KB), writes each portion to its local repository and transfers that portion to the second DataNode in the list. The second DataNode, in turn starts receiving each portion of the data block, writes that portion to its repository and then flushes that portion to the third DataNode. Finally, the third DataNode writes the data to its local repository. Thus, a DataNode can be receiving data from the previous one in the pipeline and at the same time forwarding data to the next one in the pipeline. Thus, the data is pipelined from one DataNode to the next.AccessibilityHDFS can be accessed from applications in many different ways. Natively, HDFS provides a Java API for applications to use. A C language wrapper for this Java API is also available. In addition, an HTTP browser can also be used to browse the files of an HDFS instance. Work is in progress to expose HDFS through the WebDAV protocol.FS ShellHDFS allows user data to be organized in the form of files and directories. It provides a commandline interface called FS shell that lets a user interact with the data in HDFS. The syntax of this command set is similar to other shells (e.g. bash, csh) that users are already familiar with. Here are some sample action/command pairs:FS shell is targeted for applications that need a scripting language to interact with the stored data.DFSAdminThe DFSAdmin command set is used for administering an HDFS cluster. These are commands that are used only by an HDFS administrator. Here are some sample action/command pairs:Browser InterfaceA typical HDFS install configures a web server to expose the HDFS namespace through a configurable TCP port. This allows a user to navigate the HDFS namespace and view the contents of its files using a web browser.Space ReclamationFile Deletes and UndeletesWhen a file is deleted by a user or an application, it is not immediately removed from HDFS. Instead, HDFS first renames it to a file in the /trash directory. The file can be restored quickly as long as it remains in /trash. A file remains in/trash for a configurable amount of time. After the expiry of its life in /trash, the NameNode deletes the file from the HDFS namespace. The deletion of a file causes the blocks associated with the file to be freed. Note that there could be an appreciable time delay between the time a file is deleted by a user and the time of the corresponding increase in free space in HDFS.A user can Undelete a file after deleting it as long as it remains in the /trash directory. If a user wants to undelete a file that he/she has deleted, he/she can navigate the /trash directory and retrieve the file. The /trash directory contains only the latest copy of the file that was deleted. The /trash directory is just like any other directory with one special feature: HDFS applies specified policies to automatically delete files from this directory. The current default policy is to delete files from /trash that are more than 6 hours old. In the future, this policy will be configurable through a well defined interface.Decrease Replication FactorWhen the replication factor of a file is reduced, the NameNode selects excess replicas that can be deleted. The next Heartbeat transfers this information to the DataNode. The DataNode then removes the corresponding blocks and the corresponding free space appears in the cluster. Once again, there might be a time delay between the completion of the setReplication API call and the appearance of free space in the cluster.中文译本原文地址:/docs/r0.18.3/hdfs_design.html一、引言Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。

基于Hadoop的大数据处理与分析系统设计

基于Hadoop的大数据处理与分析系统设计

基于Hadoop的大数据处理与分析系统设计一、引言随着互联网的快速发展和智能化技术的不断进步,大数据已经成为当今信息时代的重要组成部分。

大数据处理与分析系统的设计和实现对于企业和组织来说至关重要。

本文将重点讨论基于Hadoop的大数据处理与分析系统设计,探讨其原理、架构和应用。

二、Hadoop简介Hadoop是一个开源的分布式计算平台,可以对大规模数据进行存储和处理。

它由Apache基金会开发,采用Java编程语言。

Hadoop主要包括Hadoop Distributed File System(HDFS)和MapReduce两个核心模块。

2.1 HDFSHDFS是Hadoop的文件系统,具有高容错性和高可靠性的特点。

它将大文件切分成多个块,并在集群中存储多个副本,以实现数据的备份和容错。

2.2 MapReduceMapReduce是Hadoop的计算框架,用于并行处理大规模数据集。

它包括两个阶段:Map阶段负责数据切分和映射操作,Reduce阶段负责汇总和归约操作。

三、大数据处理与分析系统设计基于Hadoop的大数据处理与分析系统设计需要考虑以下几个方面:3.1 数据采集数据采集是大数据处理的第一步,需要从各种数据源中收集数据并进行清洗和转换。

可以使用Flume、Kafka等工具实现数据的实时采集和传输。

3.2 数据存储在Hadoop平台上,可以使用HDFS作为数据存储介质,将原始数据以文件形式存储在分布式文件系统中,并通过副本机制确保数据的可靠性。

3.3 数据处理通过MapReduce等计算框架对存储在HDFS上的数据进行处理和计算,实现对大规模数据集的并行处理和分析。

3.4 数据挖掘与机器学习利用Hadoop平台上的机器学习库(如Mahout)进行数据挖掘和模型训练,从海量数据中挖掘出有价值的信息和规律。

3.5 可视化与报表设计可视化界面和报表系统,将处理和分析后的数据以直观形式展示给用户,帮助他们更好地理解数据背后的含义。

hadoop基本架构和工作原理

hadoop基本架构和工作原理

hadoop基本架构和工作原理Hadoop是一个分布式开源框架,用于处理海量数据。

它能够使用廉价的硬件来搭建集群,同时还提供了高度可靠性和容错性。

Hadoop基本架构包括Hadoop Common、Hadoop Distributed File System (HDFS)和Hadoop MapReduce三个部分,下面将详细介绍Hadoop的工作原理。

1. Hadoop CommonHadoop Common是整个Hadoop架构的基础部分,是一个共享库,它包含了大量的Java类和应用程序接口。

Hadoop集群的每一台机器上都要安装Hadoop Common,并保持相同版本。

2. HDFSHadoop Distributed File System(HDFS)是Hadoop的分布式文件存储部分。

它的目的是将大型数据集分成多个块,并且将这些块在集群中的多个节点间分布式存储。

HDFS可以实现高度可靠性,因为它将每个块在存储节点之间备份。

HDFS可以在不同的节点中进行数据备份,这确保了数据发生故障时,可以轻松恢复。

3. MapReduceHadoop MapReduce是一种编程模型,用于处理大型数据集。

它将处理任务分成两个主要阶段,即Map阶段和Reduce阶段。

在Map阶段,MapReduce将数据集分成小块,并将每个块分配给不同的节点进行处理。

在Reduce阶段,结果被聚合,以生成最终的输出结果。

总的来说,MapReduce作为Hadoop的核心组件,负责对数据集进行处理和计算。

它充当的角色是一个调度员,它会将不同的任务分发到集群中的不同节点上,并尽力保证每个任务都可以获得足够的计算资源。

Hadoop采用多种技术来提供MapReduce的分布式计算能力,其中包括TaskTracker、JobTracker和心跳机制等。

TaskTracker是每个集群节点的一个守护程序,负责处理MapReduce任务的具体实现。

高效可扩展的分布式文件系统架构设计

高效可扩展的分布式文件系统架构设计

高效可扩展的分布式文件系统架构设计分布式文件系统在大型企业中已经成为了固定的IT基础设施,随着数据量和用户数量的不断增加,如何设计高效可扩展的分布式文件系统架构已成为了一个热门话题。

一、分布式文件系统的概念及特点分布式文件系统是在多台计算机之间共享文件的一种系统。

在这种系统中,所有的数据和元数据都被存储在多个服务器中,这些服务器被协调起来,以提供一个单一的文件系统视图。

分布式文件系统具有以下特点:1.高可用性:分布式文件系统将文件和元数据存储在多个服务器上,以提高系统的可用性和可靠性。

2.可扩展性:由于数据和元数据可以被自由地放置在多个服务器上,所以分布式文件系统具有很好的可扩展性和灵活性。

3.性能:分布式文件系统的性能可以通过添加更多的服务器进行扩展,以提供更好的性能。

二、分布式文件系统架构设计原则在设计高效可扩展的分布式文件系统架构时,需要遵循以下原则:1.分离元数据和数据:将元数据存储在一个单独的服务器上,并将数据存储在多个服务器上以获得更好的性能和可扩展性。

2.数据存储层次结构:将数据分为多个块,并将它们存储在多个不同的服务器上,以减少单个服务器的压力和提高性能。

3.数据复制和备份:为了提供高可用性和可靠性,应该将数据复制到多个服务器上,并定期进行备份。

4.缓存:为了提高读取性能,应该使用缓存技术将热点数据缓存到内存中。

5.负载均衡:使用负载均衡技术确保服务器的负载均衡,以提供更好的性能和可扩展性。

6.安全性:对于敏感数据,应该加密数据和元数据,以确保安全。

三、高效可扩展的分布式文件系统实现高效可扩展的分布式文件系统实现需要充分利用分布式系统中的各种技术。

常见的分布式技术包括分布式文件系统、分布式数据库、分布式缓存等。

1.分布式文件系统:常见的分布式文件系统包括Hadoop HDFS、GlusterFS、Ceph等。

Hadoop HDFS是一个开源的分布式文件系统,由Apache基金会管理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hadoop分布式文件系统:架构和设计引言....................................... 错误!未指定书签。

一前提和设计目标.......................... 错误!未指定书签。

1 hadoop和云计算的关系................. 错误!未指定书签。

2 流式数据访问.......................... 错误!未指定书签。

3 大规模数据集.......................... 错误!未指定书签。

4 简单的一致性模型...................... 错误!未指定书签。

5 异构软硬件平台间的可移植性............ 错误!未指定书签。

6 硬件错误.............................. 错误!未指定书签。

二HDFS重要名词解释...................... 错误!未指定书签。

1 Namenode........................... 错误!未指定书签。

2 secondary Namenode................ 错误!未指定书签。

3 Datanode............................ 错误!未指定书签。

4 jobTracker........................... 错误!未指定书签。

5 TaskTracker.......................... 错误!未指定书签。

三HDFS数据存储........................... 错误!未指定书签。

1 HDFS数据存储特点..................... 错误!未指定书签。

2 心跳机制.............................. 错误!未指定书签。

3 副本存放.............................. 错误!未指定书签。

4 副本选择.............................. 错误!未指定书签。

5 安全模式.............................. 错误!未指定书签。

四HDFS数据健壮性......................... 错误!未指定书签。

1 磁盘数据错误,心跳检测和重新复制 ..... 错误!未指定书签。

2 集群均衡.............................. 错误!未指定书签。

3 数据完整性............................ 错误!未指定书签。

4 元数据磁盘错误........................ 错误!未指定书签。

5 快照.................................. 错误!未指定书签。

引言云计算(cloud computing),由位于网络上的一组服务器把其计算、存储、数据等资源以服务的形式提供给请求者以完成信息处理任务的方法和过程。

在此过程中被服务者只是提供需求并获取服务结果,对于需求被服务的过程并不知情。

同时服务者以最优利用的方式动态地把资源分配给众多的服务请求者,以求达到最大效益。

Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。

它和现有的分布式文件系统有很多共同点。

但同时,它和其他的分布式文件系统的区别也是很明显的。

HDFS是一个高度容错性的系统,适合部署在廉价的机器上。

HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。

一前提和设计目标1 hadoop和云计算的关系云计算由位于网络上的一组服务器把其计算、存储、数据等资源以服务的形式提供给请求者以完成信息处理任务的方法和过程。

针对海量文本数据处理,为实现快速文本处理响应,缩短海量数据为辅助决策提供服务的时间,基于Hadoop云计算平台,建立HDFS分布式文件系统存储海量文本数据集,通过文本词频利用MapReduce原理建立分布式索引,以分布式数据库HBase存储关键词索引,并提供实时检索,实现对海量文本数据的分布式并行处理.实验结果表明,Hadoop框架为大规模数据的分布式并行处理提供了很好的解决方案。

2 流式数据访问运行在HDFS上的应用和普通的应用不同,需要流式访问它们的数据集。

HDFS的设计中更多的考虑到了数据批处理,而不是用户交互处理。

比之数据访问的低延迟问题,更关键的在于数据访问的高吞吐量。

3 大规模数据集运行在HDFS上的应用具有很大的数据集。

HDFS上的一个典型文件大小一般都在G字节至T字节。

因此,HDFS被调节以支持大文件存储。

它应该能提供整体上高的数据传输带宽,能在一个集群里扩展到数百个节点。

一个单一的HDFS实例应该能支撑数以千万计的文件。

4 简单的一致性模型HDFS应用需要一个“一次写入多次读取”的文件访问模型。

一个文件经过创建、写入和关闭之后就不需要改变。

这一假设简化了数据一致性问题,并且使高吞吐量的数据访问成为可能。

Map/Reduce 应用或者网络爬虫应用都非常适合这个模型。

目前还有计划在将来扩充这个模型,使之支持文件的附加写操作。

5 异构软硬件平台间的可移植性HDFS在设计的时候就考虑到平台的可移植性。

这种特性方便了HDFS作为大规模数据应用平台的推广。

6 硬件错误硬件错误是常态而不是异常。

HDFS可能由成百上千的服务器所构成,每个服务器上存储着文件系统的部分数据。

我们面对的现实是构成系统的组件数目是巨大的,而且任一组件都有可能失效,这意味着总是有一部分HDFS的组件是不工作的。

因此错误检测和快速、自动的恢复是HDFS最核心的架构目标。

二HDFS重要名词解释HDFS采用master/slave架构。

一个HDFS集群是由一个Namenode和一定数目的Datanodes 组成。

Namenode是一个中心服务器,负责管理文件系统的名字空间(namespace)以及客户端对文件的访问。

集群中的Datanode一般是一个节点一个,负责管理它所在节点上的存储。

HDFS暴露了文件系统的名字空间,用户能够以文件的形式在上面存储数据。

从内部看,一个文件其实被分成一个或多个数据块,这些块存储在一组Datanode上。

Namenode执行文件系统的名字空间操作,比如打开、关闭、重命名文件或目录。

它也负责确定数据块到具体Datanode节点的映射。

Datanode负责处理文件系统客户端的读写请求。

在Namenode的统一调度下进行数据块的创建、删除和复制。

集群中单一Namenode的结构大大简化了系统的架构。

Namenode是所有HDFS元数据的仲裁者和管理者,这样,用户数据永远不会流过Namenode。

1 Namenode(1)HDFS的守护程序。

(2)记录文件时如何分割成数据块的,以及这些数据块被存数到那些借点上。

(3)对内存和I/O进行集中管理(4)namenode是单个节点,发生故障将使集群崩溃。

2 secondary Namenode(1)监控HDFS状态的辅助后台程序(2)secondary Namenode与namenode通讯,定期保存HDFS元数据快照。

(3)当namenode故障时候,secondary Namenode可以作为备用namenode使用。

3 DatanodeDatanode将HDFS数据以文件的形式存储在本地的文件系统中,它并不知道有关HDFS文件的信息。

它把每个HDFS数据块存储在本地文件系统的一个单独的文件中。

Datanode并不在同一个目录创建所有的文件,实际上,它用试探的方法来确定每个目录的最佳文件数目,并且在适当的时候创建子目录。

4 jobTracker(1)用于处理作业的后台程序(2)决定有哪些文件参与处理,然后切割task并分配节点(3)监控task,重启失败的task(4)每个集群只有唯一一个jobTracker,位于Master。

5 TaskTracker(1)位于slave节点上,与datanode结合(2)管理各自节点上的task(由jobTracker分配)(3)每个节点只有一个tasktracker,但一个tasktracker可以启动多个JVM,(4)与jobtracker交互三HDFS数据存储1 HDFS数据存储特点(1)HDFS被设计成能够在一个大集群中跨机器可靠地存储超大文件。

(2)它将每个文件存储成一系列的数据块,除了最后一个,所有的数据块都是同样大小的,数据块的大小是可以配置的。

(3)文件的所有数据块都会有副本。

每个副本系数都是可配置的。

(4)应用程序可以指定某个文件的副本数目。

(5)HDFS中的文件都是一次性写入的,并且严格要求在任何时候只能有一个写入者。

2 心跳机制Namenode全权管理数据块的复制,它周期性地从集群中的每个Datanode接收心跳信号和块状态报告(Blockreport)。

接收到心跳信号意味着该Datanode节点工作正常。

块状态报告包含了一个该Datanode上所有数据块的列表。

3 副本存放副本的存放是HDFS可靠性和性能的关键。

HDFS采用一种称为机架感知(rack-aware)的策略来改进数据的可靠性、可用性和网络带宽的利用率。

4 副本选择为了降低整体的带宽消耗和读取延时,HDFS会尽量让读取程序读取离它最近的副本。

如果在读取程序的同一个机架上有一个副本,那么就读取该副本。

如果一个HDFS集群跨越多个数据中心,那么客户端也将首先读本地数据中心的副本。

5 安全模式Namenode启动后会进入一个称为安全模式的特殊状态。

处于安全模式的Namenode是不会进行数据块的复制的。

Namenode从所有的Datanode接收心跳信号和块状态报告。

四HDFS数据健壮性HDFS的主要目标就是即使在出错的情况下也要保证数据存储的可靠性。

常见的三种出错情况是:Namenode出错, Datanode出错和网络割裂(network partitions)。

1 磁盘数据错误,心跳检测和重新复制每个Datanode节点周期性地向Namenode发送心跳信号。

网络割裂可能导致一部分Datanode 跟Namenode失去联系。

Namenode通过心跳信号的缺失来检测这一情况,并将这些近期不再发送心跳信号Datanode标记为宕机,不会再将新的IO请求发给它们。

任何存储在宕机Datanode上的数据将不再有效。

Datanode的宕机可能会引起一些数据块的副本系数低于指定值,Namenode不断地检测这些需要复制的数据块,一旦发现就启动复制操作。

在下列情况下,可能需要重新复制:某个Datanode节点失效,某个副本遭到损坏,Datanode上的硬盘错误,或者文件的副本系数增大。

相关文档
最新文档