混沌通信实验

混沌通信实验
混沌通信实验

混沌通讯实验

实验一:非线性电阻的伏安特性实验

1.实验目的:测绘非线性电阻的伏安特性曲线

2.实验装置:混沌通信实验仪。

3.实验对象:非线性电阻模块。

4.实验原理框图:

图1 非线性电阻伏安特性原理框图

5.实验方法:

第一步:在混沌通信实验仪面板上插上跳线J01、J02,并将可调电压源处电位器旋钮逆时针旋转到头,在混沌单元1中插上非线性电阻NR1。

第二步:连接混沌通讯实验仪电源,打开机箱后侧的电源开关。面板上的电流表应有电流显示,电压表也应有显示值。

第三步:按顺时针方向慢慢旋转可调电压源上电位器,并观察混沌面板上的电压表上的读数,每隔0.2V记录面板上电压表和电流表上的读数,直到旋钮顺时针旋转到头。

第四步:以电压为横坐标、电流为纵坐标用第三步所记录的数据绘制非线性电阻的伏安特性曲线如图2所示。

第五步:找出曲线拐点,分别计算五个区间的等效电阻值

6.实验数据:

易知第一区间是(-13.41,-1.7)至(-10.4,4.9),等效电阻为456.1

第二区间是(-10.4,4.9)至(-1.6,1.2),等效电阻为2378.4

第三区间是(-1.6,1.2)至(1.6,-1.2),等效电阻为1333.3

第四区间是(1.6,-1.2)至(9.8,-4.6),等效电阻为2588.2

第五区间是(9.8,-4.6)至(13,1.7),等效电阻为523.8

实验二:混沌波形发生实验

1.实验目的:调节并观察非线性电路振荡周期分岔现象和混沌现象。

2.实验装置:混沌通信实验仪、数字示波器1台、电缆连接线2根。3.实验原理图:

4.实验方法:

第一步:拔除跳线J01、J02,在混沌通信实验仪面板的混沌单元1中插上电位器W1、电容C1、电容C2、非线性电阻NR1,并将电位器W1上的旋钮顺时针旋转到头。

第二步:用两根Q9线分别连接示波器的CH1和CH2端口到混沌通信实验仪面板上标号Q8和Q7处。打开机箱后侧的电源开关。

第三步:把示波器的时基档切换到X-Y。调节示波器通道CH1和CH2的电压档位使示波器显示屏上能显示整个波形,逆时针旋转电位器W1直到示波器上的混沌波形变为一个点,然后慢慢顺时针旋转电位器W1并观察示波器,示波器上应该逐次出现单周期分岔(见图4)、双周期分岔(见图5)、四周期分岔(见图6)、多周期分岔(见图7) 、单吸引子(见图8)、双吸引子(见图9)现象。

5.实验数据

单周期分岔双周期分岔

四周期分岔多周期分岔

单吸引子双吸引子

实验三混沌电路的同步实验

1.实验目的:调试并观察混沌同步波形

2.实验装置:混沌通信实验仪、双通道示波器1台、电缆连接线2根。

3.实验原理图:

图10 混沌同步原理框图

4.工作原理:

1),由于混沌单元2与混沌单元3的电路参数基本一致,它们自身的振荡周期也具有很大的相似性,只是因为它们的相位不一致,所以看起来都杂乱无章。看不出它们的相似性。2),如果能让它们的相位同步,将会发现它们的振荡周期非常相似。特别是将W2和W3作适当调整,会发现它们的振荡波形不仅周期非常相似,幅度也基本一致。整个波形具有相当大的等同性。

3),让它们相位同步的方法之一就是让其中一个单元接受另一个单元的影响,受影响大,则能较快同步。受影响小,则同步较慢,或不能同步。为此,在两个混沌单元之间加入了“信道一”。

4),“信道一”由一个射随器和一只电位器及一个信号观测口组成。

射随器的作用是单向隔离,它让前级(混沌单元2)的信号通过,再经W4后去影响后级(混沌单元3)的工作状态,而后级的信号却不能影响前级的工作状态。

混沌单元2信号经射随器后,其信号特性基本可认为没发生改变,等于原来混沌单元2的信号。即W4左方的信号为混沌单元2的信号。右方的为混沌单元3的信号。

电位器的作用:调整它的阻值可以改变混沌单元2对混沌单元3的影响程度。

5.实验方法:

第一步:插上面板上混沌单元2和混沌单元3的所有电路模块。按照实验二的方法将混沌单元2和混沌单元3分别调节到混沌状态,即双吸引子状态。电位器调到保持双吸引子状态的中点。

调试混沌单元2时示波器接到Q5、Q6座处。

调试混沌单元3时示波器接到Q3、Q4座处。

第二步:插上“信道一”和键控器,键控器上的开关置“1”。用电缆线连接面板上的Q3和Q5到示波器上的CH1和CH2,调节示波器CH1和CH2的电压档位到0.5V。

第三步:细心微调混沌单元2的W2和混沌单元3的W3直到示波器上显示的波形成为过中点约45度的细斜线。如图11:

这幅图形表达的含义是:如果两路波形完全相等,这条线将是一条45度的非常干净的直线。45度表示两路波形的幅度基本一致。线的长度表达了波形的振幅,线的粗细代表两路波形的幅度和相位在细节上的差异。所以这条线的优劣表达出了两路波形的同步程度。所以,应尽可能的将这条线调细,但同时必须保证混沌单元2和混沌单元3处于混沌状态。

第四步:用电缆线将示波器的CH1和CH2分别连接Q6和Q5,观察示波器上是否存在混沌波形,如不存在混沌波形,调节W2使混沌单元2处于混沌状态。再用同样的方法检查混沌单元3,确保混沌单元3也处于混沌状态,显示出双吸引子。

第五步:用电缆线连接面板上的Q3和Q5到示波器上的CH1和CH2,检查示波器上显示的波形为过中点约45度的细斜线。

将示波器的CH1和CH2分别接Q3和Q6,也应显示混沌状态的双吸引子。

第六步:在使W4尽可能大的情况下调节W2,W3,使示波器上显示的斜线尽可能最细。6.实验结果:

调节得的细斜线

实验四混沌键控实验

1.实验目的:用混沌电路方式传输键控信号

2.实验装置:混沌通信实验仪、双通道示波器1台、电缆连接线2根。

3.实验原理框图:

图12 混沌键控实验原理框图

键控器说明:键控器主要由三个部份组成:

?、控制信号部份:控制信号有三个来原。

A,手动按键产生的键控信号。低电平0V,高电平5V。

B,电路自身产生的方波信号,周期哟40mS。低电平0V,高电平5V。

C,外部输入的数字信号。要求最高频率小于100Hz,低电平0V,高电平5V。

2)、控制信号选择开关:开关拨到“1”时,选择手动按键产生的键控信号。按键不

按时输出低电平,按下时输出高电平。

开关拨到“2”时,选择电路自身产生的方波信号。

开关拨到“3”时,选择外部输入的数字信号。

3)、切换器:利用选择开关送来的信号来控制切换器的输出选通状态。当到来的控制信号为高电平时,选通混沌单元1,低电平选通混沌单元2。

4.实验方法:

第一步:在混沌通信实验仪的面板上插上混沌单元1、2和3的所有电路模块。按照实验二的方法分别将混沌单元1、2和3调节到混沌状态。

第二步:在面板上插上键控单元,信道一和信号处理单元。将键控器上的拨动开关拨到“1”,此时通过切换器的是来自混沌2的信号(未按按键)。

第三步:将示波器时基切换到“Y-T”,将CH1与“信道一”上的测试插座“TEST1”联接好,此时示波器上将显示“混沌单元二”的输出波形。调整W2及W5,使波形的峰-峰值为15V左右。

第四步:按住“键控器”上的兰色按键,此时示波器上将显示“混沌单元一”的输出波形。调整W1,使波形的峰-峰值也为15V左右。

第五步:松开按键,将拨动开关拨到“2”,此时该单元自动产生的控制信号为周期约40ms的方波信号。它将以方波的半周期为时间单位,周期性的分别把混沌单元1和混沌单元2的信号送过切换器。此时示波器上显示的波形为“混沌单元一”与“混沌单元二”的交替输出的波形。如图13。此波形的峰-峰值也应为15V左右。应看不出交替的痕迹,可微调W1和W2以及W5来满足此要求。调整时仔细观测波形,波形不能有太明显变化,否则

可能造成混沌状态丢失。需重调。

第六步:时基切换到“X-Y”,CH1换接Q3,CH2接Q5,示波器上将显示一条约45度的过中心的斜线,调整W3使此斜线为较准确的45度,且尽可能的细(如图14)。

第七步:CH2换接Q7,按住按住“键控器”上的兰色按键,也将出现一条斜线,调整W4使此斜线较粗。如图15

第八步:重复上述步骤“第六步”和“第七步”,使“第六步”的一条尽可能的细,“第七步”的一条尽可能的粗。把W4调整到两条斜线粗细比例最大的位置。

第九步:将示波器时基切换到“Y-T”,CH1接Q1,将开关掷“2”,示波器将显示解密波形(如图16)。可调整W4,使低电平尽可能的低。高电平尽可能的高。观察:将开关掷“1”,快速敲击按键,观测示波器波形。

第十步:控制信号为外部输入波形的情况下混沌加解密波形的观察:

将键控器上的拨动开关拨向“3”,此时的控制信号为外部接入信号。接入信号的位置为“Q9”,外接输入信号幅值需为0V到+5V,频率需小于100Hz。输出到示波器上的信号为:当外输入为高电平时为高杂波电平,当外输入为低电平时波形幅度约为0V。该信号周期与外部接入信号相同,但占空比有一小点变化。

第十一步:用示波器探头测量信道一上面的测试座“TEST1”的输出信号波形,该波型即键控加密波形,比较该波形与外部接入信号,解调输出信号,观察键控混沌的效果。

4.实验结果:

混沌加密技术综述

混沌加密技术综述 混沌理论是近年来发展较快的非线性科学的分支,因其非周期、连续宽频带、类噪声和长期不可预测等特点,适用于保密通信等领域。本文从混沌加密技术的原理、发展阶段和特点的问题对其较为的分析和总结。关键词:混沌的原理… 摘要:混沌理论是近年来发展较快的非线性科学的分支,因其非周期、连续宽频带、类噪声和长期不可预测等特点,适用于保密通信等领域。本文从混沌加密技术的原理、发展阶段和特点的问题对其较为的分析和总结。关键词:混沌的原理加密算法性能评估一、混沌的原理混沌是的非线性、非平衡的动力学过程,其特点为: (1)混沌系统的是许多有序的集合,而每个有序分量在条件下,都不起主导作用;(2)混沌看起来似为随机,但的;(3)混沌系统对初始条件极为敏感,两个相同的混沌系统,若使其稍异的初态就会迅速变成完全不同的状态。1963年,美国气象学家洛伦兹(Lrenz)混沌理论,气候从本质上是不可预测的,最微小的条件将会巨大的天气,这著名的“蝴蝶效应”。此后混沌在各个领域都了不同程度的运用。20 世纪80 年代开始,短短的二十几年里,混沌动力学了的应用和发展。二、混沌在加密算法中的应用混沌系统对初值的敏感性,很小的初值误差就能被系统放大,,系统的长期性是不可预测的;又混沌序列的统计特性,它可以产生随机数列,特性很适合于序列加密技术。信息论的奠基人美国数学家Shannn指出:若能以某种产生一随机序列,序列由密钥所,任何输入值微小对输出都大,则的序列就可以加密。混沌系统恰恰符合要求。混沌系统的特性使得它在数值分布上不符合概率统计学原理, 得稳定的概率分布特征;, 混沌数集是实数范围, 还可以推广到复数范围。, 从理论上讲, 混沌原理对数据加密,可以防范频率分析攻击、穷举攻击等攻击方法, 使得密码难于分析、破译。从1992年至今,混沌保密通信经历了四代。混沌掩盖和混沌键控属于代混沌保密通信技术,安全性能非常低,实用性大大折扣。混沌调制属于代混沌保密通信技术,代系统的安全性能比代高,仍然达满意的程度。混沌加密技术属于代混沌保密通信,该类方法将混沌和密码学的优点起来,非常高的安全性能。基于脉冲同步的混沌通信则属于代混沌保密通信。三、混沌加密算法的性能评估参考美国标准与技术协会(NIST)的评判规则LNIST 的评判规则大体分为三个:安全性、代价和算法特性。介绍了基于Lrenz系统的混沌加密算法,以此标准分析了其性能,并将其与当前通用加密算法。1.安全性分析,混沌系统对初始值和参数非常敏感,可以的密钥集合,完全加密的需要。对混沌系统生成的二进制序列检验,0和1的分布均匀,游程符合随机数要求,可以是随机序列。,混沌加密属于流密码,对分组加密的攻击方法是无效的。,对选择明文密文攻击方法,混沌的单向性和混沌信号的迭代,异或操作后密钥流的推断几乎不。2.代价分析算法的代价包括代价和空间代价。代价又分为和加密。通常,加密前的主要是用来生成子密钥,加密主要是在子密钥的控制下对明文数据变换。混沌加密属于流密码的范畴,它的非常短;加密时只对数据的各个位异或操作,其主要花费在密钥流的生成操作上,相流行的分组加密算法,其花费很少的。空间代价分为算法的静止空间和运行态空间。静止空间指算法变成程序后本身所占用的空间,为代码的长度。运行态空间指在加密过程中算法所需要的临时空间。混沌加密算法S-bx空间,临时变量也少,而且,它循环产生密钥流,循环过程中需要寄存的变量有限,,其运行时占用的空间很少,在空间代价上是优秀的。3.特性混沌加密算法的加密和解密过程是可以重用的,其所占用的空间大大缩小。它的软件和硬件特性都比,分别用++和Java语言了该算法,基于该算法的DSP也开发设计四、混沌加密算法的问题1.短周期响应现混沌序列的所生成序列的周期性伪随机性、性、互性等的估计是在统计分析上,或是实验测试给出的,这难以其每个序列的周期足够大,性足够高,使人放心地采用它来加密。例如,在自治状态下,输入信号为零时,加密器为有限周期响应。不同初始状态对应于不同周期,其周期长度很短,缺点在某种程度上降低了混沌加密系统的保密性。2.有限精度效应混沌序列的生成总是要用有限精度器件来的,从而混沌序列生成器可归结为有限自动机来描述。,混沌生成器能否超越已用有限自动机和布尔逻辑理论所给

混沌保密通信系统

光混沌保密通信系统仿真分析 全皓 摘要:本文介绍了混沌通信系统的相关理论知识,以及混沌同步系统的实现方法,并对驱动-响应式键波混沌同步系统进行了仿真。 关键词:混沌通信混沌同步保密通信 Optical chaotic secure communication system simulation QuanHao Abstract:This article describes the implementation of the relevant theoretical knowledge of the chaotic communication system, and synchronizing chaotic systems,and drive-in response to key wave chaos synchronization system simulation. Key words:Chaotic communication Chaos Synchronization Secure Communication 1 混沌保密通信介绍 (2) 1.1 混沌保密通信的基本思想 (2) 1.2 混沌保密通信发展及近况 (3) 1.3 混沌保密通信研究的意义 (5) 2激光混沌保密通信系统 (6) 2.1通信系统的定义 (6) 2.2混沌同步保密通信 (6)

2.2.1同步的定义 (6) 2.2.2 混沌同步的实现方法 (7) 驱动-响应同步法 (7) 主动-被动同步法 (9) 自适应同步法 (10) 变量反馈微扰同步法 (11) 2.2.3基于混沌系统收发端保持同步的通信技术 (12) 3驱动-响应式键波混沌同步系统仿真 (15) 4光混沌保密通信的前景 (17) 致谢 (18) 参考文献: (18) 1 混沌保密通信介绍 1.1 混沌保密通信的基本思想 采用混沌同步电路产生遮掩有用信息的加密信号。在接收端再产生同步混沌信号以恢复有用信息。与传统的通信系统一样,基于混沌的保密通信系统能否有效地、可靠地工作,很大程度上依赖于有无良好的同步系统。要实现保密通信,必须解决三个方面的问题:制造出鲁棒性强的同步信号;信号的调制和解调;信号的可靠传输。 绘制同步混沌保密通信系统的基本模型如下图1所示:

基于实际信道的超混沌保密通信方案

2011 年4月 JOURNAL OF CIRCUITS AND SYSTEMS April,2011 文章编号:1007-0249 (2011) 02-0019-04 基于实际信道的超混沌保密通信方案* 廖旎焕1,李秋菊2,高金峰3 (1. 华北水利水电学院电力学院,河南郑州 450010; 2. 华北水利水电学院电力学院,河南郑州 450010; 3. 郑州大学电气工程学院,河南郑州 450001) 摘要:针对宽频混沌调制信号在实际信道中传输时易失真的问题,提出一种基于实际信道的超混沌保密通信方案。该方案在接收端对混沌信号进行滤波并分解为两种信号:滤波信号和滤波后的补信号,滤波信号用来遮掩信息信号,滤波后的互补信号和调制信号求和后送入混沌发生器,保证混沌发生器不受滤波器的影响;接收端和发送端采用同样的结构,保证两个混沌发生器对称;而且滤波器的截止频率可以根据需要调节,以适应不同信道的需要。对该方案进行模拟仿真,并对仿真结果进行分析。 关键词:实际信道;保密通信;超混沌同步;滤波器 中图分类号:TN911 文献标识码:A 1 引言 随着各种混沌系统同步方案的提出,混沌同步在保密通信、扩频通信中的应用研究受到广泛的关注,并相继提出多种混沌通信方案,如混沌遮掩技术、混沌调制技术、混沌键控技术等[1~4]。目前所提出的各种混沌通信方案,大都是基于理想通信信道进行研究的,即假定混沌调制信号能通过信道无损耗地传输到接收端,然而实际信道都具有一定的带宽,宽频的混沌调制信号在实际信道中传输时会产生一定失真,比如幅度衰减、相位和非线性失真等。这种失真无疑对接收端和发送端的混沌系统的同步产生挑战。 文献[5]提出了一种双信道超混沌通信方法,该方法采用超混沌信号作为密钥,系统的保密性比较高,但使用双信道通信时信道的利用效率不高,而且该研究也是基于理想信道下进行的。文献[6]提出一种适用于实际信道的混沌保密通信方法,即信道平衡法。该方法在已知实际信道的数学模型的前提下,在接收端对接收到的调制信号进行信道平衡逆补偿,然后再与接收端的混沌进行同步。这种方法中发送端和接收端的混沌系统结构不对称,两个混沌系统同步的精确度下降,而且需要建立实际信道数学模型,增加了实现难度。本文在上述研究的基础上,对两种方法都进行改进,提出一种适用于实际信道的超混沌保密通信方案,该方案一方面采用超混沌信号作为遮掩信号提高系统的抗破译能力,另一方面对在信道中传输的调制信号进行处理使其不受实际信道的影响,同时还保证发送端和接收端两个混沌系统的完全对称性, 为两混沌系统快速准确同步提 供条件。而且滤波器的截止频 率可调,提高方法的通用性。 2 原理分析 混沌保密通信利用混沌信 号的类随机性来提高信息安 全,然而实际信道都具有一定 的带宽,而宽频的混沌调制信 * 收稿日期:2010-10-19 修订日期:2010-11-17 基金项目:国家自然科学基金(60970084)图1 基于实际信道超混沌保密通信系统的原理框图

混沌通信技术研究及其进展

混沌通信技术研究及其进展 马义德,袁 敏,刘 勍,张新国 兰州大学信息科学与工程学院,甘肃 兰州 (730000) email:ydma@https://www.360docs.net/doc/8a14661251.html, 摘要: 二十世纪九十年代以来国际和国内兴起了一种新的通信技术——混沌通信技术,目前该技术已逐渐进入实施应用阶段。本文针对混沌通信技术中的混沌掩盖、混沌键控、混沌参数调制和混沌扩频等四大类混沌通信的研究现状、特点进行了全面地分析,并指出了混沌通信技术的最新研究方案及进展,最后对混沌通信技术进一步迈向实用及其发展趋势做了展望。 关键词:混沌通信,混沌键控,混沌掩盖,混沌扩频,混沌参数调制,混沌同步 0 引言 混沌是一种普遍的自然现象,它是确定性系统中由于内禀随机性而产生的外在复杂表 现,是一种貌似随机的非随机运动。混沌由于其独特的对初值敏感性、类随机性、不可预测性使其应用于保密通信中,能有效地提高通信系统的安全性。1990年以来,混沌通信和混沌同步技术成为国际、国内通信领域的一个研究热点,它在保密通信中具有广阔的应用前景。 利用混沌进行保密通信就是利用混沌信号作为载波,将传输信号隐藏在混沌载波之中, 或者通过符号动力学分析给不同波形赋以不同的信息序列,在接收端利用混沌的属性或同步特性解调出所传输的信息。混沌保密通信系统所发送的是复杂的混沌信号,因而具有很好的保密性。 混沌通信技术可分为混沌模拟通信技术和混沌数字通信技术,主要划分为四类:(1)混 沌扩频;(2)混沌键控;(3)混沌参数调制;(4)混沌掩盖。前三类属于混沌数字通信,后一类属于混沌模拟通信。在这四类混沌通信体制中,CSK 等一大类混沌键控占有重要的地位,具有较大发展前景与应用价值。目前,如何围绕这四类混沌通信体制进行理论分析、仿真和实验研究已成为信息科学界关注的热点之一。 1 混沌掩盖技术 混沌掩盖通信是利用具有近似于高斯白噪声统计特性的混沌信号对有用的信息 进行混沌掩盖,形成混沌掩盖信号在信道中传送。在接收端则利用混沌同步信号 进行去掩盖,除去混沌信号,从而恢复出有用信息s 。这种通信方式的实现依赖于混沌系统同步的实现程度,要求传输信号的幅值一般都较小,不至于使混沌信号偏离原有的混沌轨)(t x )(t s )(t s x )(?t 1

混沌在保密通信中的应用

混沌在保密通信中的应用 The Application of Chaos In Secure Communication 【摘要】:通信的飞跃发展促使人们越来越追求信息的保密。混沌信号由于高度的初值敏感性、不可预测性和类似噪声的宽带功率谱密度等突出特征, 使得它具有天生的隐蔽性。本文就混沌掩盖、混沌参数调制、混沌扩频、混沌键控进行了初步介绍。 【关键字】:混沌保密通信混沌掩盖混沌参数调制混沌扩频混沌键控 1.引言 随着通信技术的发展,人们的生活方式日趋便利,从电报到电话,从电话到移动手机,从双绞线到同轴电缆,从电缆到光纤,从有线到无线,我们的通信世界实现着人们的种种通信需求。但是在通信方式越来越便利,种类也越来越多样的同时,人们一样追求通信的保密。这也就促进了密码技术的发展。然而, 现代计算机技术的发展, 也为破译密码提供了强大的武器。利用计算机网络, 非法访问银行数据库系统, 更改个人账户信息, 谋取经济利益; 盗取密码、篡改信息, 闯入政府或军事部门窃取机密等一系列高科技犯罪屡有报道。这与信息保密工作不力有一定关系, 也说明传统的保密技术还不够完善。 混沌保密通信新技术的兴起, 为信息保密开辟了一条崭新的道路。利用混沌信号的特征, 隐藏信息, 是密码学发展新方向之一, 也是混沌应用领域研究中的热点【1】。 2.混沌在通信领域的起源 混沌是确定性非线性电路或系统中物理量作无规则变化的现象。非线性电路是指至少含有一个不是独立电源的非线性元件的电路。确定性电路是指不存在随机现象的电路。一般地,混沌指确定性非线性系统中的无序现象,有些类似随机现象。混沌的一个特点是,变量的无规则变化对起始状态极其敏感,即:在某个起始条件下,变量作某种不规则变化;当起始条件稍为改变,稍长时间以后,变量的不规则变化和前一变化显著不同【2】。图1显示了在两个相差极小的起始条件下,洛伦兹方程中的一个状态变量随时间变化的曲线。 图 1 “混沌”作为科学词语一般认为是始于李天岩和约克(Yo rke) 的著名论文《周期3 蕴含混沌》【3】。在20世纪60年代,美国气象学家EN.Lorenz在研究大气时发现,当选取一定的参数时,一个由确定的三阶常微分方程组描述的大气对流模型变得不可预测了,这就是有趣的“蝴蝶效应”。在研究的过程中,Lorenz观察到了这个确定性系统的规则行为,同时也发现了同一系统出现的非周期无规则行为。通过长期反复地数值试验和理论思考,Lorenz揭示了该结果的真实意义,在耗散系统中首先发现了混沌运动。这为以后的混沌研究开辟了道路,并掀起了研究混沌的热潮【4】。1983 年,蔡少棠教授首次提出了蔡氏电路,它是迄今为止在

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告 篇一:非线性电路混沌实验报告 近代物理实验报告 指导教师:得分: 实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节 实验者:班级材料0705学号 XX67025 姓名童凌炜 同组者:班级材料0705学号 XX67007 姓名车宏龙 实验地点:综合楼 404 实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌 实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括: 1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结 1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系 1.3, 100kHz正弦波振荡波作为参考信号 2. 低频信号发生器 用以输出正弦波信号,提供给约结作为交流 信号 3. 数字示波器 用以测量结电压、超流、混沌特性和参考信号等各个

物理量的波形 实验目的: 1. 了解混沌的产生和特点 2. 掌握吸引子。倍周期和分岔等概念 3. 观察非线性电路的混沌现象 实验原理简述: 混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。混沌的最本质特征是对初始条件极为敏感。 1. 非线性 线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。除此之外,非线性关系还具有某些不同于线性关系的共性: 1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移 1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因 2. 倍周期,分岔,吸引子,混沌 借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。 虫口方程如下:xn?1???xn(1?xn)

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

混沌保密通信的研究

混沌保密通信的研究 [摘要]:文章简要讨论了基于混沌的保密通信的几种方法的特点及其发展状况,介绍了混沌保密通信的理论依据,对混沌保密通信走向实用化存在的关键问题进行了讨论。 [关键字]:混沌保密通信超混沌 混沌现象是非线性动力系统中一种确定的、类似随机的过程。由于混沌动力系统对初始条件的极端敏感性,而能产生大量的非周期、连续宽带频谱、似噪声且确定可再生的混沌信号,因而特别适用于保密通信领域。现在的混沌保密通信大致分为三大类:第一类是直接利用混沌进行保密通信;第二类是利用同步的混沌进行保密通信;第三类是混沌数字编码的异步通信。另外,由于混沌信号具有宽带、类噪声、难以预测的特点,并且对初始状态十分敏感,能产生性能良好的扩频序列,因而在混沌扩频通信领域中有着广阔的应用前景。 1、混沌保密通信的基本思想 要实现保密通信,必须解决以下三方面的问题。 (1)制造出鲁棒性强的同步信号;(2)信号的调制和解调;(3)信号的可靠传输。 同步混沌保密通信系统的基本模型如图所示:在发送端,驱动混沌电路产生2个混沌信号U和V,V用于加密明文信息M,得到密文C,混沌信号U可视作一个密钥,他和密文C一起被传送出去;在接收端,同步混沌电路利用接收到的驱动信号U,产生出混沌信号V’,再用信号V ’去解密收到的密文C,从而恢复消息M(见图)。

同步混沌保密通信系统的基本模型 2、混沌保密通信的理论依据 混沌保密通信作为保密通信的一个新的发展方向,向人们展示了诱人的应用前景。混沌信号的隐蔽性,不可预测性,高度复杂性,对初始条件的极端敏感性是混沌用于保密通信的重要的理论依据。 3、混沌保密通信的方法 按照目前国际国内水平,混沌保密通信分为模拟通信和数字通信。混沌模拟通信通常通过非线性电路系统来实现,对电路系统的设计制作精度要求较高,同步较难实现。混沌数字通信对电路元件要求不高,易于硬件实现,便于计算机处理,传输中信息损失少,通用性强,应用范围广,备受研究者的关注。由于混沌系统的内随机性、连续宽频谱和对初值的极端敏感等特点,使其特别适合用于保密通信,而混沌同步是混沌保密通信中的一个关键技术。目前各种混沌保密通信的方案可归结如下几种: 3.1混沌掩盖 混沌掩盖方案可传送模拟和数字信息,思想是以混沌同步为基础,把小的信号叠加在混沌信号上,利用混沌信号的伪随机特点,把信息信号隐藏在看似杂乱的混沌信号中,在接收端用一个同步的混沌信号解调出信号信息,以此达到保密。混沌掩盖直接把模拟信号发送出去,实现简单,但它严格依赖于发送端、接收端混沌系统的同步且信息信号的功率要远低于混沌掩盖信号的功率,否则,保密通信的安全性将大大降低。1993年,Cuomo和Oppenteim构造了基于Lorenze吸引子的混沌掩盖通信系统,完成了模拟电路实验。他们将两个响应子系统合成一个完整的响应系统,使其结构和驱动系统相同,在发送器混沌信号的驱动下,接收器能复制发送器的所有状态,达到两者的同步。1996年Mianovic V和Zaghlou M E在上述混沌掩盖方案的基础上提出了改进方案,Yu和Lookman 进一步完善了这一方案,对Lorenze系统的发送器引入合成信号的反馈,来实现接收器和发送器之间的更完满的同步,若发送器和接收器的初始状态不同,经过短暂的瞬态过程,就可以达到同步,模拟电路的实验研究表明,改进方案的信号恢复精度较高。考虑到高维混沌系统的保密性优于低维混沌系统,1996年,Lu Hongtao等提出了由单变量时延微分方程描述的无限维系统,该系统的动力学行为包括稳定平衡态、

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

(新)混沌通信中QCSK调制matlab代码

clear all; x=randsrc(20,1,[0:1]); %产生二进制随机码stairs(x); axis([0,20,-0.1,1.1]); title('二进制随机序列'); clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345; for k = 1:99; x(k+1) =4 * x(k) * (1 - x(k)); end plot(x); legend('混沌信号x'); grid on;%加网格

clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345; for k=1:99; x(k+1)=4*x(k)*(1-x(k)); end y=hilbert(x); figure(1) plot(imag(y)); legend('希尔伯特变换y'); grid on

clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345;%x的初植 for k=1:99; x(k+1)=4*x(k)*(1-x(k)); end y=hilbert(x);%x的希尔伯特变换figure(1) plot(imag(y)); grid on legend('加密后的信号ms');

clc clear close all % q=99; %k=[1:99]; %x(k)=sin(k*pi/q); x(1)=0.212345; for k=1:99; x(k+1)=4*x(k)*(1-x(k)); end y=hilbert(x);%希尔伯特变换 figure(1) plot(imag(y)); grid on legend('加密后的信号ms'); y2=AWGN(imag(y),0.8,1);%imag(y)为已调信号,0.8为信噪比,1为信号功率figure(2) plot(y2); grid on legend('加噪声后的调制信号y2');

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象 ,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于 1963年洛伦兹(E.Lorenz )研究天气预报时用到的三个动力学方程 ,后 来又从数学和实验上得到证实。无论是复杂系统 ,如气象系统、太阳系,还是简单系统,如钟 摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、 但实际是非周期有序运动,即混沌 现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同 步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授 1985年提 出的著名的蔡氏电路(Chua ' s Circuit )。就实验而言,可用示波器观察到电路混沌产生的全 过程,并能得 到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、 LC 振荡器和RC 移相器三部分;采用 物理实验方法研究 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波合成的相图(李萨 如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象; 测量非线性单元电路的电流一电压特性; 了解非 线性电路混沌现象的本质; 学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量 非线性器件伏安特性的方法。 【实验原理】 1. 非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件 R ,它是一个有源非线性负阻器件。 电感器L 和电容C 2组成一个损耗可以忽略的谐振回路; 可变电阻R V 和电容器C 串联将振荡 器产生的正弦信号移相输出。 本实验中所用的非线性元件 R 是一个三段分段线性元件。 图2 所示的是该电阻的伏安特性曲线, 从特性曲线显示中加在此非线性元件上电压与通过它的电 流极性是相反的。由于加在此元件上的电压增加时, 通过它的电流却减小, 因而将此元件称 为非线性负阻元件。 图1电路的非线性动力学方程为: C 2 dU C L 二 G (U C 1 -U C 21)I L (1) dt 1 21 C 1 du e ’ dt =G (U C 2 -Uq) _g Uq Ld L

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于1963年洛伦兹(E.Lorenz)研究天气预报时用到的三个动力学方程,后来又从数学和实验上得到证实。无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授1985年提出的著名的蔡氏电路(Chua ’s Circuit)。就实验而言,可用示波器观察到电路混沌产生的全过程,并能得到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性;了解非线性电路混沌现象的本质;学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121)(1 C C C C U g U U G dt dU C ?--?= L C C C i U U G dt dU C +-?=)(2112 2 (1) 2C L U dt di L -=

混沌加密的原理

混沌加密的原理 2007-09-27 06:12 基于对混沌加密技术的发展和应用的理解,下面我们将对其原理进行探究。 混沌加密基于混沌系统所具有的独特性质:对初值极端敏感性和具有高度的随机性。 混沌加密的原理与序列密码的原理相似,不同在于:一般的序列密码是利用移位寄存器为基础的电路来产生伪随机序列作为密钥序列,而混沌加密是利用混沌系统产生混沌序列作为密钥序列,利用该序列对明文加密,密文经信道传输,接收方用混沌同步的方法将明文信号提取出来实现解密。 混沌序列加密是指明文数据与“乱数流”叠加产生密文,称该“乱数流”为加密序列,它由一个密钥产生。序列加密的数学模型可作如下描述: 明文序列: =(…),GF(q) “乱数流”: = (,,…),GF(q) 由明文序列与“乱数流”可产生密文序列: = (,,…),GF(q) 其中=+,i=0,1,2,…… “乱数流”也是无穷序列,在密码学中通常采用随机序列或伪随机序列。混沌序列加密的主要特点是加密方式十分简单,它只要对两个序列进行叠加即可。混沌序列加密原理(如图1)

混沌序列加密原理 (1)信号加密 在信号的发射端选取适当的非线性动力学系统F(,),为系统变 量,为系统参量。在适当的参数条件下,使非线性动力系统处于混沌状态,然后信息流s(t)对非线性动力学系统输出的混沌信号y(t)进行调制,以产生密文数据流M(t),这一过程可以简单表示如下: M(t)=s(t)y(t) s(t)对y(t)的调制可以是加性掩盖、函数调制,也可以是乘性扩频方法。总之经过这一过程后,明文信息就被隐藏在混沌信号流中。在实际通讯中,可以根据需要,采用低维混沌系统,高维混沌系统,甚至可以是时空混沌系统来产生混沌信号流来对信息进行加密。由于混沌信号具有类随机性,特别是高维超混沌信号和时空混沌信号,具有更大的随机性,经过混沌加密的信号在公开信道中传输,即使被敌人截取,敌人也很难破解信息,即使可以破解,也需要相当长的时间。这样,由于保密通讯的时效性,也可以达到保密的目的。 (2)信号解密 信号解密是指把信息从密文中提取出来的过程。在混沌保密通讯中,信号的解密可以通过多种方式。第一种方式是直接利用混沌序列进行解密。在这种方式中,通信双方事先约定好调制和解调方法,并由发送一方事先把做成密钥的混沌信号流发送给对方,使接受方很容易地解密信号。第二种方式是利用系统的自身特性对混沌的密文信号进行解密。第三种方式,也是混沌保密通讯中通常采用的解密方式,即利用同步混沌来解调密文信号。 具体方案如下: 在接收端有一个和发射端的非线性动力系统F(,)同步的F′(′,

混沌通信实验报告范文

2020 混沌通信实验报告范文Contract Template

混沌通信实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:混沌通信实验仪实验操作步骤 实验一:非线性电阻的伏安特性实验 1.实验目的:测绘非线性电阻的伏安特性曲线 2.实验装置:混沌通信实验仪。 3.实验对象:非线性电阻模块。 4.实验原理框图: 图1非线性电阻伏安特性原理框图 5.实验方法: 第一步:在混沌通信实验仪面板上插上跳线J01、J02,并将可调电压源处电位器旋钮逆时针旋转到头,在混沌单元1中插上非线性电阻NR1。 第二步:连接混沌通讯实验仪电源,打开机箱后侧的电源开关。面板上的电流表应有电流显示,电压表也应有显示值。 第三步:按顺时针方向慢慢旋转可调电压源上电位器,并观

察混沌面板上的电压表上的读数,每隔0.2V记录面板上电压表和电流表上的读数,直到旋钮顺时针旋转到头。 第四步:以电压为横坐标、电流为纵坐标用第三步所记录的数据绘制非线性电阻的伏安特性曲线如图2所示。 图2非线性电阻伏安特性曲线图 第五步:找出曲线拐点,分别计算五个区间的等效电阻值。实验二:混沌波形发生实验 1.实验目的:调节并观察非线性电路振荡周期分岔现象和混沌现象。 2.实验装置:混沌通信实验仪、数字示波器1台、电缆连接线2根。 3.实验原理图: 图3混沌波形发生实验原理框图 4.实验方法: 第一步:拔除跳线J01、J02,在混沌通信实验仪面板的混沌单元1中插上电位器W1、电容C1、电容C2、非线性电阻NR1,并将电位器W1上的旋钮顺时针旋转到头。 第二步:用两根Q9线分别连接示波器的CH1和CH2端口到混沌通信实验仪面板上标号Q8和Q7处。打开机箱后侧的电源开关。 第三步:把示波器的时基档切换到X-Y。调节示波器通道CH1和CH2的电压档位使示波器显示屏上能显示整个波形,逆时针旋转电位器W1直到示波器上的混沌波形变为一个点,然后慢慢顺

混沌系统的电路实现与仿真分析

混沌系统的电路实现与仿真分析 1. 设计思路 混沌系统模块化设计方法的主要思路是,根据系统的无量纲状态方程,用模块化设计理念设计相应的混沌电路,其中主要的模块包括:反相器模块、积分器模块、反相加法比例运算模块和非线性函数产生模块。 2. 设计过程 第一步,对混沌系统采用Matlab 进行数值分析,观察状态变量的时序图、相图,观察系统状态变量的动态范围; 第二步,对变量进行比例压缩变换。我们通常取电源电压为±15V ,集成运放的动态范围为±13.5V ,如果系统状态变量的动态范围超过±13.5,则状态变量的动态范围超过了集成运放的线性范围,需要进行比例压缩变换,如没有超出,则不需要进行变换。 举例:变换的基本方法 ?????? ?=== w k z v k y u k x 32 1 代入原状态方程,然后重新定义u →x ,v →y ,w →z 得到的状态方程即为变量压缩后的状态方程。 第三步,作时间尺度变换。将状态方程中的t 变换为τ0t ,其中τ0为时间尺度变换因子,设τ0=1/R 0C 0,从而将时间变换因子与积分电路的积分时间常数联系起来。 第四步,作微分-积分变换。 第五步,考虑到模块电路中采用的是反相加法器,将积分方程作标准化处理。 第六步,根据标准积分方程,可得到相应的实现电路。 第七步,采用Pspice 仿真软件或Multisim 仿真软件对电路进行仿真分析。

3. 设计举例:Lorenz 系统的电路设计与仿真 Lorenz 系统的无量纲归一化状态方程为 bz xy z y xz cx y ay ax x --=--=+-= (1) 其中当a=10,b=8/3,c=28时,该系统可以展现出丰富的混沌行为。 MATLAB 仿真程序如下: function dx=lorenz(t,x) %?¨ò?oˉêy a=10; b=8/3;c=28; %?¨ò??μí32?êy %***************************************** dx=zeros(3,1); dx(1)=a*(x(2)-x(1)); dx(2)=c*x(1)-x(1).*x(3)-x(2); dx(3)=x(1).*x(2)-b*x(3); %*********************************?¨ò?×′ì?·?3ì clear; options=odeset('RelTol',1e-6,'AbsTol',[1e-6,1e-6,1e-6]); t0=[0 500]; x0=[1,0,0]; [t,x]=ode45('Lorenz',t0,x0,options); n=length(t); n1=round(n/2); figure(1); plot(t(n1:n),x(n1:n,1)); %×′ì?xμ?ê±Dòí? xlabel('t','fontsize',20,'fontname','times new roman','FontAngle','normal'); ylabel('x1','fontsize',20,'fontname','times new roman','FontAngle','normal'); figure(2); plot(x(n1:n,1),x(n1:n,3)); %x-z?àí? xlabel('x','fontsize',20,'fontname','times new roman','FontAngle','italic'); ylabel('Z','fontsize',20,'fontname','times new roman','FontAngle','italic'); figure(3); plot3(x(n1:n,1),x(n1:n,2),x(n1:n,3)); %x-y-z?àí? xlabel('x','fontsize',20,'fontname','times new roman','FontAngle','italic'); ylabel('y','fontsize',20,'fontname','times new roman','FontAngle','italic');

基于MATLAB的混沌序列图像加密算法的研究的开题报告

吉林农业大学 本科毕业设计开题报告

课题名称:基于MATLAB的混沌序列图像加密算法的研究 学院(系):信息技术学院 年级专业:2009级电子信息科学与技术2班 学生姓名:XX 指导教师:刘媛媛 完成日期:2013年2月27日 目录 一、设计目的及意义 (3) 二、研究现状 (3) 三、设计内容 (3) 四、开发环境 (3) 五、分析设计 (3) 1、设计要求 (3) 2、设计原理 (3) 3、涉及到的程序代码 (4) 4、主要思想 (6) 六、结果及分析 (6)

1、运行示例 (6) 2、结果评估 (8) 七、参考文献 (9) 八、研究工作进度 (10) 一、设计目的及意义 熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。使用必要的算法将信息进行加解密,实现信息的保护。 二、研究现状 随着Internet技术与多媒体技术的飞速发展,数字化信息可以以不同的形式在网络上方便、快捷地传输。多媒体通信逐渐成为人们之间信息交流的重要手段。人们通过网络交流各种信息,进行网上贸易等。因此,信息的安全与保密显得越来越重要。信息的安全与保密不仅与国家的政治、军事和外交等有重大的关系,而且与国家的经济、商务活动以及个人都有极大的关系。 随着信息化社会的到来,数字信息与网络已成为人们生活中的重要组成部分,他们给我们带来方便的同时,也给我们带来了隐患:敏感信息可能轻易地被窃取、篡改、非法复制和传播等。因此信息安全已成为人们关心的焦点,也是当今的研究热点和难点。 多媒体数据,尤其是图像,比传统的文字蕴涵更大的信息量,因而成为人类社会在信息利用方面的重要手段。因此针对多媒体信息安全保护技术的研究也显得尤为重要,多媒体信息安全是集数学、密码学、信息论、概率论、计算复杂度理论和计算机网络以及其它计算机应用技术于一体的多学科交叉的研究课题。 三、设计内容 使用混沌序列图像加密技术对图像进行处理使加密后的图像 四、开发环境 MATLAB? & Simulink? Release 2010a windows7环境

相关文档
最新文档