海浪谱公式总结讲义

合集下载

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
g 2 S() 8.110 5 exp[0.74( ) ] U
3
g2
式中:U为海面上19.5 m高处的风速。下图为不同风速 下的P-M谱分布。
PM谱的一般特性: ①与Neumann谱相比,两者比 较接近。 ②风速相同,低风速时: Neumann谱的峰值<PM谱的峰 值,高风速时:Neumann谱的 峰值>PM谱的峰值。


频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
《海洋工程环境学》
第四章 海洋波浪
船舶工程学院 马山 副教授
5、海浪谱
前面我们讲解的都是确定性意义上的规则波理论。如线性 艾瑞波、椭圆余弦波、孤立波等。解释自然界波浪运动特征( 深水、浅水、非线性特征等)
自然界中的海浪随时间和空间随机性地发生变化。随机过 程的海浪远比采用一个确定函数描述的规则波复杂,属于非周 期性的不规则波,各种海浪要素都是随机变量。
t an cos(nt n )
n1

相位。
an 、 n 、 n 分别是第n个余弦组成波的振幅、圆频率和
下图表示某固定点5个简谐波叠加得到的合成海面波 动结果。
5.2 频谱
对任一组成波,其单位面积波能形式为:
En ga
1 2
n
2 n
对其任意圆频率间隔 内的波能求得总 能量后再除以圆频率间隔得到的表达式为:

海浪谱公式总结

海浪谱公式总结

exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
m0
S
d
0
0
A
5
exp
B
4
d
A 4B
因 W /3
4
m0
1/ 2
m0
2 W /3 16
所以:B
4A
2 W /3
由于P M谱中A 0.0081g 2
0.78,
B
4A
2 W /3
3.12
2
4
W /3
代入后得ITTC谱:
S
0.78
5
exp
3.12
2
4
W /3
式中:ζw/3为三一平均波高(不是波幅)。 金品质•高追求 我们让你更放心!
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on

海浪谱公式总结ppt课件

海浪谱公式总结ppt课件
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
S
式中:a=0.0081;
β=0.74;
ag2
5
exp
g
U
4
g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
S 1 4
j
4j
4
1
mj
4
j
j
H sj2
4 j1
exp
4j
4
1
mj
4
式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S f
0.257

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
0.076(
gF 0.22 ) 2 U10
为量纲为一的常数
F为风区长度,
U10为海面上10m高处风速;
为峰形参数,取


=0.07 =0.09

m m
第17届ITTC推荐如下的JONSWAP波浪谱。并引入 有义波高h1/3和特征周期T1两个参数,并考虑 T1=0.834T0得:


频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
2g S ( ) 6 exp( 2 2 ) U
式中:U为海面上7.5 m高处的风速。下图给出不同 风速下的Neumann谱分布。
2.4
2
海浪谱特征初步认识: 谱的能量集中在窄的频带内; 随着风速的增大,谱峰频率变小。
不同风速下的Neumann谱分布
② Pierson-Moscowitz谱(P-M谱):根据北大西洋 1955~1960年间的观测资料进行谱分析得到,并被第11届 ITTC(国际船模水池会议)(1966)列为标准单参数谱。
不同风速下的P-M谱分布
③单参数谱不能合理表征非充分发展海浪特征,第15届 ITTC(1978)给出的频谱形式为:
S ( )
173H123 T 5
2m0 T m1
4
exp(
691
4T
4

海浪方向谱估计方法

海浪方向谱估计方法

海浪方向谱估计方法海浪谱(功率谱和方向谱)是随机海浪的一个重要统计性质,它不仅包含着海浪的二阶信息,而且还直接给出海浪组成波能量相对于频率和方向的分布,这正是海洋工程和航海领域等特别关心的。

谱方法已经成为研究海浪及其有关问题的有力工具,如何确定海浪谱(功率谱和方向谱)也成为海浪研究的中心问题之一。

海浪方向谱是二维海浪谱,可以描述海浪能量相对于频率和方向的分布,以及海浪空间的一些统计特征。

尽管海浪方向谱的研究要比海浪频谱困难的多,但由于海洋研究诸多领域(海气相互作用、上层海洋动力学、海浪预报、海洋遥感、海洋工程等)的迫切学要,近30年来人们通过各种手段来努力获取它。

获取海浪方向谱信息主要又两种方式:直接测量方式和遥感方式。

1直接测量方式又叫现场测量方式,主要有定点测量方法和阵列法两种。

定点测量方法常见的有PUV传感器法和方向波浮筒法。

测试仪器包括垂荡/纵摇/横摇浮筒、位移浮筒、速度跟踪浮筒、流速压力传感器矩阵(Allender1989)等。

早期的PUV传感器包括电磁速度传感器和压力传感器,在使用中要特别注意平均水深的变化,要精确设定压力传感器和速度传感器的高度。

高度不同会对波浪谱的谱型带来一定的影响。

近年来,由于声学传感器可以进行远程测量,远离传感器本身的噪声,而且它的测速精度更高,因此正逐渐取代电磁传感器。

如SZS2-1坐底式声学波流测量仪,该仪器自水底向上垂直测量水体的流速度剖面和波浪高度、反演波浪方向谱及波浪特征值。

系统集流速剖面与波浪方向谱、能谱以及波浪特征参数测量于一体,可长期连续测量,实时地以图形方式显示流速剖面、各层流速、流向,二维、三维波向谱图和各种辅助传感器的数据。

数据以文件形式存储并可通过RS-232口实时送出,使用起来非常方便。

阵列法阵列测波仪可以较好地测量波浪信息,但安装困难,分析复杂。

国家海洋局的林明森完成了海浪方向谱的阵列式波浪仪系统的波浪特征值、方向谱的计算软件及数据无线传输的软件研制。

第四章 海浪观测

第四章 海浪观测

100
( 4 )频率直方图
以模比系数为纵坐标,平均频率为横坐标, 以模比系数为纵坐标,平均频率为横坐标,绘 制波高平均频率直方图(见图.1)。 )。图上各个 制波高平均频率直方图(见图 )。图上各个 矩形的面积正是各组的区间频率, 矩形的面积正是各组的区间频率,其面积之和 为1.0。当组距趋于无限小时,直方图趋于曲线, 。当组距趋于无限小时,直方图趋于曲线, 该曲线与纵轴包围的面积就是 1.0,此时横坐标 , 转化为频率密度,而曲线即频率密度曲线。 转化为频率密度,而曲线即频率密度曲线。该 曲线的特点是“中间大、两头小” 曲线的特点是“中间大、两头小”,即平均值 附近的波高出现机会最多。 附近的波高出现机会最多。
压力测波仪
美国Inter Ocean公司的S4ADW型系列产品
五、波浪玫瑰图
表示某海区各向各级波浪出现频率基多大小的图. 表示某海区各向各级波浪出现频率基多大小的图 绘制方法同风玫瑰图类似
波向 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW ╳ C ∑ 观测总 数
0.8~1.0 m m p /% 4 0.14 9 0.33 4 0.14 2 1 0.07 0.04
1.1~1.2 m m p /% 4 0.14 6 0.22 2 0.07
1.3~1.5 m m p /% 6 0.22
1
0.04
7 20 6
0.25 0.72 0.22
3 4
0.11 0.14
1 4 4
H /m 1.3 3.2 5.3 3.3 1.5 1.2 1.9 1.5 3.1 1.8 1.4 1.8 1.8 1.5 4.3 4.8 4.1 3.9 2.9 0.7

船舶控制原理:Chp4 海浪、海风及海流

船舶控制原理:Chp4 海浪、海风及海流
Page 55
注意: 具有各态历经性的随机过程必定是平稳随机过程, 但平稳随机过程不一定是各态历经的。在海浪、船舶运动中 所遇到的随机运动, 一般均能满足各态历经条件。
Page 56
✓超越概率
波浪幅值的超越概率
在分析研究海浪和船舶运动控制问题时,常要用到波 浪或船舶运动幅值随机变量A超过某一定值A1概率,称为 A>A1的超越概率。对于概率密度为雷利分布的情况,如 果以X代表幅值随机变量,x1为某一定幅值,则X>x1的超 越概率以P(X>x1)表示,并给出如下:
xcos+ysin
a cos(k1x k2y t)
20
➢水面下的波浪
波浪也存在于水下,根据流体力学的知识,波浪 随水深变化
ae-kz cos(k t)
波幅随水深呈指数率下降,上式表示的波面为次 波面,当水深较大时,该处的水的质点波动较水 表面处的小。
当z>λ/2,该处的水基本上没有波动了。
9
海浪海要浪要素素
海海浪浪是是海海水水运运动动形形式式之之一一,,它它的的产产生生是是外外力力、、重力与 重力与海水表面张力共同作用的结果。 海水表面张力共同作用的结果。
10
波峰:波浪剖面高于静水面的部份,其最高点称为波峰顶。
波谷:波浪剖面低于静水面的部份,其最低点称为波谷底。 波峰线:垂直波浪传播方向上各波峰顶的连线。 波向线:与波峰线正交的线,即波浪传播方向。 波高:相邻波峰顶和波谷底之间的垂直距离,通常以H表示,单 位以米(m)计。在我国台湾海峡曾记录到波高达15m的巨浪。 波长:两相邻波峰顶(或波谷底)之间的水平距离,通常以L表示, 单位以米(m)计。海浪的波长可达上百米,而潮波的波长则可达 数公里。 周期:波浪起伏一次所需的时间,或相邻两波峰顶通过空间固 定点所经历的时间间隔,通常以了表示,单位以秒(s)计。在我 国沿海波浪周期一般为4~8s,曾记录到周期为20s的长浪。 波陡:波高与波长之比,通常以δ表示,即δ=H/L。海洋上常 见的波陡范围在1/10~1/30之间。波陡的倒数称为波坦。 波速:波形移动的速度,通常以C表示,它等于波长除以周期, 即C=L/T,单位以米/秒(m/s)计。

海浪谱公式总结

海浪谱公式总结



m,βw为两个参数,改变m即可改变谱的宽窄形状,βw用于调整
谱面积,使之等于波浪总能量。
形状参数m和JONSWAP谱中的γ一样,其选用依靠工程师的经验 和判断。一般小的无因次风距gX/U2和大的γ或m值相关,而大的无因
次风距值gX/U2导致γ=1或m=5。在浅水,上述谱中采用m=3或4是合
适的。

3.12

2
W /3
4
S
0.78
5
3.12 exp 2 4 W /3

式中:ζw/3为三一平均波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
基于ITTC谱有: 1 A 3 B exp d 1 4 3/ 4 0 0 5 3B 4 3 式中:为函数, 1 0.91906 ,因此有: 4 m1 S d
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S , S D,
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
4 j 1 4 mj 4 2 H sj 4 j 1 mj 1 4 S exp 4 j 1 4 j j 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S
0.214H
2 s
exp


0.065

p p
2
0.26
1/ 2



式中:-0.26<ω-ωp<1.65, Hs为有效波高;ωp为谱峰频率。 此谱和北大西洋以及印度西海岸实测谱符合得很好。
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
S

C

4
1
6
exp
2g2
U 22

式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
6.JONSWAP谱
b.由波高和波浪周期表示的谱公式
S


319.34
2 W /3
Tp45

1948
Tp 4
3.3e
xp


0.159Tp
2 2
12


式中:Tp为谱峰周期,波谱峰值对应的周期。
7.Bretschneider谱
由于P M谱中A 0.0081g 2

0.78,
B

4A
2 W /3


3.12
2
4
W /3
代入后得ITTC谱:
S

0.78
5
exp



3.12
2
4
W /3

式中:ζw/3为三一平均波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
S 1 4
j

4
j 4
1
4 mj


j
j
H sj2
4 j1
exp


4j
4
1

mj
4




式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
基于ITTC谱有:
m1

S

d

0
0
A
5
exp

B
4
d


1 3
A B3/4
1
3 4
式中:为函数,1

3 4

0.91906,因此有:
m1 0.30638A / B3/ 4
T1 2m0 / m1 5.127 / B1/ 4或B 691/ T14
f
m
exp

m 4
Tp f
4
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S, SD,
%4.双参数海浪谱 h=2.8; w=0.3:0.01:4; B=3.12/(h^2)./(w.^4); T1=5.127./(B.^0.25); S4=173*h^2./(T1.^4)./(w.^5).*exp(-691./(T1.^4)./(w.^4)); plot(w,S4,'m-')
1.4
1.2
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
S

400.5
Hs T2
H1/ 3
2

1
5
exp1605
1
T H1/ 3
4




式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
8.斯科特谱
斯科特(Scott,1965)对于充分发展的海浪建议用下列谱公式:
布氏于1959年由无因次波高和无因次波长的联合分布函数导出二参数 谱,适用于成长阶段或者充分成长的风浪。后经日本光易恒(Mitsuyasu)改进 如下:
S f

0.257
Hs T2
H1/ 3
2

1 f5
TH1/ 3
exp

1.03
1 TH1/
3
4





1 f5
exp

0.44
1 T0.1
f
4




6.JONSWAP谱
该谱由“北海海浪联合计划”测量分析得到,在60年代末期提 出,适合像北海那样风程被限定是海域,有两种表示形式。
a.由风速和风程表示的谱公式
S


g 2 5
exp
1.25
p
4



e
xp


p 2 p 2

式中:α为无因次常数,可取α=0.0076(gx/U2)-0.22; x为风区长度(风程);U为平均风速; ωp为谱峰频率,可取 ωp=22(g/U)(gx/U2)-0.33 ; γ为谱峰提升因子,平均值为3.3; σ为峰形参数,当ω≤ωp时,可取 σ=0.07;当ω>ωp时,取σ=0.09.
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
D(ω,θ)的一般形式为: D , kn cosn
(|θ|≤π)
国际船舶结构协会会议(ISSC)建议用一下两种n值
n=2, k2=2/π; n=4, k4=8/3π;
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
2.5Leabharlann 33.54
注:ITTC谱中的三一平均波幅是按照 风速U=11.5kn,U=6.85(ζw/3 )0.5 计算得 出h=2.8。
S
式中:a=0.0081;

β=0.74;
ag2
5
exp




g
U
4


g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
含一个参数U,不足以表征复杂的海浪情况。
3. ITTC谱
国际拖曳水池会议(ITTC, 1972)对P-M谱进行了修改,得到ITTC谱。
基于P M谱有:
m0

S

d

0
0
A
5
exp
B
4
d


A 4B
因 W /3

4
m0
1/ 2
m0

2 W /3 16
所以:B

4A
2 W /3
A 4Bm0

B 2 W /3 4

173
2
W
T14
/3
代入后得到双参数海浪谱:
S

173
2
W
/3
T145
exp
691
T14 4

5.ISSC谱
国际船舶结构会议ISSC1964推荐下列谱公式,且常 称之为ISSC谱。
2
S
f


0.11
Hs T2
0.1
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S f

H T2 1m w 1/3 p
相关文档
最新文档