工业机器人轨迹规划
第七章工业机器人的轨迹规划

7
轨迹规划的目的是——将操作人员输入的 简单的任务描述变为详细的运动轨迹描述。
例如,对一般的工业机器人来说,操作员可能只 输入机械手末端的目标位置和方位,而规划的任务便 是要确定出达到目标的关节轨迹的形状、运动的时间 和速度等。这里所说的轨迹是指随时间变化的位置、 速度和加速度。
19
线性函数插值图
利用抛物线过渡的线性函 数插值图
20
7.3 直角坐标空间法
前面介绍的在关节空间内的规划,可以保证运动 轨迹经过给定的路径点。但是在直角坐标空间,路径 点之间的轨迹形状往往是十分复杂的,它取决于机械 手的运动学机构特性。在有些情况下,对机械手末端 的轨迹形状也有一定要求,如要求它在两点之间走一 条直线,或者沿着一个圆弧运动以绕过障碍物等。这 时便需要在直角坐标空间内规划机械手的运动轨迹.
在一些老龄化比较严重的国家,开发了各种各样 的机器人专门用于伺候老人,这些机器人有不少是采 用声控的方式.比如主人用声音命令机器人“给我倒 一杯开水”,我们先不考虑机器人是如何识别人的自 然语言,而是着重分析一下机器人在得到这样一个命 今后,如何来完成主人交给的任务。
4
首先,机器人应该把任务进行分解,把主人交代的任务 分解成为“取一个杯子”、“找到水壶”、“打开瓶塞”、 “把水倒人杯中”、“把水送给主人”等一系列子任务。这 一层次的规划称为任务规划(Task planning),它完成总体任务 的分解。
5
上述例子可以看出,机器人的规划是分层次的, 从高层的任务规划,动作规划到手部轨迹规划和关节 轨迹规划,最后才是底层的控制(见图)。在上述例子 中,我们没有讨论力的问题,实际上,对有些机器人 来说,力的大小也是要控制的,这时,除了手部或关 节的轨迹规划,还要进行手部和关节输出力的规划。
《6R工业机器人轨迹规划与控制研究》范文

《6R工业机器人轨迹规划与控制研究》篇一一、引言随着工业自动化和智能制造的快速发展,6R(六轴)工业机器人在生产线上扮演着越来越重要的角色。
其高效、精准的作业能力极大地提高了生产效率与产品质量。
为了实现这一目标,对6R工业机器人轨迹规划与控制技术的研究变得至关重要。
本文将就6R工业机器人的轨迹规划与控制进行深入研究,以期为工业机器人技术的发展与应用提供参考。
二、6R工业机器人概述6R工业机器人,即具备六个旋转关节的机器人,其运动方式灵活多变,能够适应各种复杂的工作环境。
在制造业中,6R机器人广泛应用于装配、焊接、喷涂、搬运等工序,极大地提高了生产效率与产品质量。
三、轨迹规划研究(一)轨迹规划的重要性轨迹规划是机器人控制的关键技术之一,它决定了机器人在执行任务时的运动轨迹,从而直接影响作业效率与产品质量。
在6R工业机器人中,合理的轨迹规划能提高机器人的工作效率、减少能量消耗,并降低不必要的机械磨损。
(二)轨迹规划方法目前,常用的轨迹规划方法包括插补法、优化算法和智能算法等。
插补法通过在关键点之间插入适当的中间点,使机器人的运动更加平滑;优化算法则通过优化轨迹参数,使机器人在满足约束条件下达到最优轨迹;智能算法则利用人工智能技术,如神经网络、遗传算法等,实现复杂环境下的自适应轨迹规划。
四、控制技术研究(一)控制系统的结构6R工业机器人的控制系统通常采用分层结构,包括上层规划层、中层控制层和底层驱动层。
上层规划层负责任务规划与决策,中层控制层负责运动控制与协调,底层驱动层则负责机器人的具体运动执行。
(二)控制策略控制策略是机器人控制技术的核心,它决定了机器人在执行任务时的稳定性和精度。
常见的控制策略包括PID控制、模糊控制、神经网络控制等。
PID控制具有简单、可靠的优点,广泛应用于机器人控制;模糊控制则适用于复杂环境下的自适应控制;神经网络控制则能够根据机器人的实际运行情况,自动调整控制参数,提高机器人的作业效率与精度。
第6章 工业机器人轨迹规划与编程

ABB RAPID程序编程
程序数据与分类
(7)转角区域数据zonedata zonedata用于规定如何结束一个位置,也就是在朝下一个位置移动之前,机器人必须如何 接近编程位置。
(8) 工具坐标数据tooldata 工具坐标数据Tooldata是用于描述安 装在机器人第六轴上的工具的TCP, 重量,重心等参数数据。
根据图中坐标位置关系,可以得到工具坐标系对应的计算公式。
其对应的矩阵为:
x'=(-sin30°,0,-cos30°)
y'=(0,1,0) z'=(cos30°,0,-sin30°)
sin 30 0 cos 30
0
1
0
cos 30 0 sin 30
通过计算,得到工具末端对应的四元素为
=(0.5,0,0.866,0)
◆任务级语言
任务级语言是智能化程度的机器人编程语言,它可根据使用者下达 的要求完成作业任务,并不需要解释机器人的每个动作,只需要给 定目标和相应的约束条件,机器人即可以根据环境信息自行学习、 计算,自动生成机器人轨迹。
ABB RAPID程序编程
RAPID模块格式
RAPID语言是ABB公司开发的专用机器人语言,适用于ABB工业机器人的编程,以 RobotStudio软件为编写平台。
ABB RAPID程序编程
四元数与轨迹规划
那么,可以得到一个旋转矩阵如下:
因此,四元素可以利用相对简洁的式子来表示
ABB RAPID程序编程
四元数与轨迹规划
例3:如图所示已知机器人基坐标系为
,第六轴末端,即法兰盘中心位置坐标系为
机器人工具末端坐标系为
,其中坐标轴 和坐标轴 之间的夹角为30°,求法兰盘
工业机器人运动轨迹规划与优化

工业机器人运动轨迹规划与优化随着科技的不断发展和工业化水平的提高,工业机器人在各个领域扮演着越来越重要的角色。
工业机器人的运动轨迹规划与优化是一个关键的问题,它直接影响到机器人的运行效率和工作质量。
本文将探讨工业机器人运动轨迹规划与优化的相关概念、方法和技术。
第一部分:概述工业机器人运动轨迹规划与优化是指在给定任务和环境条件下,确定机器人的最佳运动路径,并对路径进行优化,以达到最佳的运行效果和工作品质。
这个问题的复杂性主要体现在以下几个方面:首先,机器人必须在各种不同的工作环境和条件下进行运动,包括狭窄的空间、复杂的障碍物等;其次,机器人需要遵循约束条件,如机器人的自身结构、工作物体的形状等;最后,机器人需要充分考虑运动速度、加速度等因素,以确保运动的平稳性和稳定性。
第二部分:运动轨迹规划的方法在工业机器人运动轨迹规划中,常用的方法包括离线方法和在线方法。
离线方法是指在机器人开始工作之前,提前计算并存储好机器人的运动路径。
这种方法适用于固定的环境和任务,但不能适应环境和任务的变化。
在线方法是指机器人在实际工作过程中根据实时的环境和任务信息进行路径规划和优化。
这种方法具有较好的适应性和灵活性,但计算复杂度较高。
离线方法中常用的算法有A*算法、Dijkstra算法和遗传算法等。
A*算法是一种基于搜索的算法,可以在给定环境和任务条件下计算出最佳路径。
Dijkstra算法是一种基于图的算法,通过计算节点之间的最短路径来确定机器人的运动轨迹。
遗传算法是一种模仿自然选择的优化算法,通过遗传和突变的过程来搜索最优解。
在线方法中常用的算法有RRT算法、PRM算法和优化控制算法等。
RRT算法是一种快速概率采样算法,通过采样机器人运动空间中的随机点并进行树搜索来生成路径。
PRM算法是一种基于图的算法,通过预先构建一个机器人运动空间的图来寻找最佳路径。
优化控制算法是一种基于优化理论的方法,通过对机器人的运动进行优化,以达到最佳效果。
工业机器人的最优时间与最优能量轨迹规划

3、最优时间轨迹规划优化
目前的最优时间轨迹规划方法主要基于数学规划和人工智能算法,如遗传算法、 模拟退火算法等。然而,这些方法可能存在计算量大、优化时间长等缺点。为 改进现有方法,可从以下几个方面着手:
(1)利用机器学习技术:通过训练机器人大量的实际生产数据,学习并优化 机器人的运动模式,提高规划速度和准确性。
2、综合优化时间和能量轨迹规 划的方法
为了实现时间和能量的综合优化,可以采用以下方法:
(1)基于多目标优化算法:采用多目标优化算法(如遗传算法、粒子群算法 等),同时优化时间轨迹和能量轨迹。通过调整各目标函数的权重系数,可以 权衡时间和能源消耗的矛盾关系,得到综合最优解。
谢谢观看
(1)运动学和动力学建模:首先需要建立工业机器人的运动学和动力学模型, 以便准确模拟机器人的运动过程并预测其性能。
(2)路径规划:通过计算机辅助设计(CAD)技术,规划出机器人完成作业所 需的最佳路径,同时确保路径的安全性和可行性。
(3)速度规划:根据任务需求和机器人的运动性能,制定机器人沿最佳路径 移动的速度计划,以保证生产效率和产品质量。
(3)优化算法:采用适当的优化算法,如梯度下降法、遗传算法等,对规划 好的路径进行优化,以实现最小化能源消耗的目标。
3、最优能量轨迹规划优化
目前的最优能量轨迹规划方法主要基于实验研究和经验总结。为了进一步优化 现有方法,可从以下几个方面着手:
(1)建立全面的能量模型:除了电机功耗和负载功耗,还应考虑其他影响因 素,如摩擦力、风阻等,以更精确,实现自我优化和改 进。
(3)考虑动态环境:在规划过程中考虑生产环境的动态变化,如物料供应、 设备故障等因素,以提高规划的适应性。
最优能量轨迹规划
1、最优能量轨迹规划定义
工业机器人的轨迹规划与运动控制技术

工业机器人的轨迹规划与运动控制技术工业机器人的轨迹规划与运动控制技术是现代制造业中不可或缺的关键技术之一。
随着自动化程度的不断提高和人工智能技术的快速发展,工业机器人的应用范围越来越广泛,能够有效提高生产效率、降低劳动强度,并提高产品质量的稳定性。
本文将重点介绍工业机器人的轨迹规划和运动控制技术,并探讨其在制造业中的应用前景。
轨迹规划是工业机器人操作的重要步骤之一。
它涉及到确定机器人执行任务时的最佳运动路径,在保证安全性的前提下提高机器人的运动效率。
在轨迹规划中,主要考虑以下几个方面的问题:避障、路径平滑性、运动速度和加速度控制等。
首先,避障是轨迹规划中的重要问题。
工业机器人常常需要在有限的空间中执行任务,避免与周围环境中的障碍物发生碰撞是至关重要的。
为了实现避障,可以利用传感器技术来感知机器人周围的环境,如使用激光雷达、视觉传感器等。
通过实时获取周围环境的信息,机器人可以通过合理的规划路径来避免障碍物,以确保安全和顺利的任务执行。
其次,路径平滑性也是轨迹规划中需要考虑的因素之一。
机器人在执行任务时需要保持平稳的运动,以避免机械振动和冲击。
通过使用插补方法,可以将机器人的运动轨迹优化为平滑的曲线,从而提高机器人的运动质量。
常见的插补方法包括线性插补、圆弧插补和样条插补等,可以根据具体的任务需求选择合适的插补方法来实现路径平滑。
此外,运动速度和加速度控制也是轨迹规划中不可忽视的方面。
机器人的运动速度和加速度需要根据具体的任务需求来进行合理的控制。
过高的速度和加速度会导致机器人在执行任务时发生失控,而过低的速度和加速度则会影响机器人的生产效率。
因此,需要通过合理的控制方法,将机器人的运动速度和加速度控制在合适的范围内。
与轨迹规划相关的是运动控制技术。
运动控制技术包括位置控制、力控制和视觉控制等。
其中,位置控制是最常见的一种控制方式,通过对机器人关节进行控制,使其能够精确地达到给定的目标位置。
另一方面,力控制技术可以实现对机器人施加力的控制。
《6R工业机器人轨迹规划与控制研究》范文

《6R工业机器人轨迹规划与控制研究》篇一一、引言随着制造业的快速发展,工业机器人作为智能制造的重要设备,其在生产线上的应用日益广泛。
6R工业机器人以其灵活性和高效性在各种领域得到了广泛的应用。
其中,轨迹规划与控制技术作为机器人的核心研究内容,对于提高机器人的工作效率、运动精度和稳定性具有重要意义。
本文将重点研究6R工业机器人的轨迹规划与控制技术,探讨其相关理论、方法及实际应用。
二、6R工业机器人概述6R工业机器人是一种具有六个旋转关节的机器人,能够在三维空间内进行复杂的运动。
其运动学模型、动力学特性和控制策略是机器人研究的基础。
6R工业机器人具有高精度、高速度和高负载等特点,广泛应用于汽车制造、电子装配、食品包装等领域。
三、轨迹规划方法研究轨迹规划是6R工业机器人的重要研究内容,它决定了机器人的运动路径和速度。
本文将介绍几种常见的轨迹规划方法:1. 插补法:通过在关键点之间插入中间点,生成平滑的轨迹。
该方法简单易行,适用于对轨迹精度要求不高的场合。
2. 优化法:以机器人的运动学模型为基础,通过优化算法求解最优轨迹。
该方法可以提高机器人的运动精度和效率,但计算量较大。
3. 智能算法:如遗传算法、神经网络等,通过学习的方式获取最优轨迹。
该方法具有较高的自适应性和学习能力,但需要大量的训练数据。
四、控制策略研究控制策略是6R工业机器人的核心,它决定了机器人的运动稳定性和精度。
本文将介绍几种常见的控制策略:1. 经典控制策略:如PID控制、模糊控制等,通过设定阈值和规则来控制机器人的运动。
2. 现代控制策略:如自适应控制、鲁棒控制等,根据机器人的实际运动情况调整控制参数,提高机器人的适应性和稳定性。
3. 智能控制策略:如基于深度学习的控制策略,通过学习机器人的运动数据来优化控制策略,提高机器人的运动精度和效率。
五、实际应用与展望6R工业机器人的轨迹规划与控制在制造业中得到了广泛的应用。
通过合理的轨迹规划和控制策略,可以提高机器人的工作效率、运动精度和稳定性,从而降低生产成本、提高产品质量。
工业机器人的轨迹规划与控制

工业机器人的轨迹规划与控制工业机器人在现代制造业中扮演着重要角色,其轨迹规划与控制是实现高效生产的关键。
本文将介绍工业机器人轨迹规划与控制的基本原理和方法。
一、工业机器人轨迹规划的基本原理轨迹规划是指确定机器人在三维空间内运动的路径,使其能够准确到达目标位置,并避免碰撞障碍物。
轨迹规划的基本原理主要包括以下几个方面:1. 任务规划:确定工业机器人要完成的任务,包括目标位置、姿态和速度等参数。
根据任务的性质和要求,选择合适的轨迹规划方法。
2. 机器人建模:将工业机器人抽象成数学模型,包括机器人的几何结构、运动学和动力学模型。
通过建模可以精确描述机器人的运动特性。
3. 环境感知:通过传感器获取机器人周围环境的信息,包括障碍物的位置、形状和大小等。
环境感知是轨迹规划中重要的一步,可以避免机器人碰撞障碍物。
4. 路径生成:根据机器人的起始位置、目标位置和环境信息,生成机器人的运动路径。
常用的路径生成方法包括直线插补、圆弧插补和样条插补等。
5. 避障算法:根据环境感知的结果,结合路径生成的路径,进行避障算法的计算。
常用的避障算法包括最近邻规划法、虚拟力法和人工势场法等。
二、工业机器人轨迹控制的基本方法轨迹控制是指根据轨迹规划生成的运动路径,使机器人能够按照期望的轨迹进行运动。
工业机器人轨迹控制的基本方法主要包括以下几个方面:1. 运动控制器:根据机器人的动力学模型和期望的轨迹,设计适当的运动控制器。
常用的运动控制器包括PID控制器、模糊控制器和自适应控制器等。
2. 传感器反馈:通过传感器获取机器人当前的位置信息,并将其反馈给控制器进行实时调节。
传感器反馈可以提高轨迹控制的准确性和稳定性。
3. 动态补偿:考虑工业机器人在运动过程中的惯性和摩擦等因素,进行动态补偿,使轨迹控制更加精确和稳定。
4. 跟踪控制:根据实际轨迹和期望轨迹之间的差异,设计相应的跟踪控制策略,使机器人能够按照期望轨迹进行运动。
5. 跟随误差修正:根据传感器反馈的实际位置信息,对跟随误差进行修正和调整,使机器人能够更精确地按照期望轨迹进行运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于PTP控制:
通常只给出机械手末端的起点和终点,有时也给 出一些中间经过点,所有这些点统称为路径点。应 注意这里所说的“点” 不仅包括机械手末端的位置 ,而且包括方位,因此描述一个点通常需要6个量 。通常希望机械手末端的运动是光滑的,即它具有 连续的一阶导数,有时甚至要求具有连续的二阶导 数。不平滑的运动容易造成机构的磨损和破坏,甚 至可能激发机械手的振动。因此规划的任务便是要 根据给定的路径点规划出通过这些点的光滑的运动 轨迹。
为了实现每一个动作,需要对手部的运动轨迹进行必要的 规定,这是手部轨迹规划(Hand trajectory planning )。
为了使手部实现预定的运动,就要知道各关节的运动规律 ,这是关节轨迹规划(Joint trajectory planning)。
最后才是关节的运动控制(Motion control)。
对工业机器人来说,高层的任务规划和动作规划一 般是依赖人来完成的。而且一般的工业机器人也不具 备力的反馈,所以,工业机器人通常只具有轨迹规划 的和底层的控制功能。
6
给主人倒一杯水
取一个杯子 找到水壶
打开水壶
把水倒入杯中 把水送给主人
提起水壶到杯口上方 把水壶倾斜 把水壶竖直 把水壶放回原处
手部从A点移到B 点 关节从A点移到B点
11
对于CP控制:
机械手末端的运动轨迹是根据任务的需要给定的 ,但是它也必须按照一定的采样间隔,通过逆运动 学计算,将其变换到关节空间,然后在关节空间中 寻找光滑函数来拟合这些离散点.最后,还有在机 器人的计算机内部如何表示轨迹,以及如何实时地 生成轨迹的问题。
12
轨迹规划问题又可以分为关节空间的轨迹规划和 直角空间的轨迹规划。分层次的, 从高层的任务规划,动作规划到手部轨迹规划和关节 轨迹规划,最后才是底层的控制(见图)。在上述例子 中,我们没有讨论力的问题,实际上,对有些机器人 来说,力的大小也是要控制的,这时,除了手部或关 节的轨迹规划,还要进行手部和关节输出力的规划。
智能化程度越高,规划的层次越多,操作就越简单 。
要求的任务 人 机
接 口
规
期望的 运动和力
控
控制作用 机 器
实际的 运动和力
人
划
制
本
体
图 机器人的工作原理示意图
9
上图中,要求的任务由操作人员输入给机器人, 为了使机器人操作方便、使用简单,必须允许操作人 员给出尽量简单的描述。
上图中,期望的运动和力是进行机器人控制所必 需的输入量,它们是机械手末端在每一个时刻的位姿 和速度,对于绝大多数情况,还要求给出每一时刻期 望的关节位移和速度,有些控制方法还要求给出期望 的加速度等。
2
7.1 机器人规划的基本概念
所谓机器人的规划(P1anning),指的是
——机器人根据自身的任务,求得完成这一任 务的解决方案的过程。这里所说的任务,具有
广义的概念,既可以指机器人要完成的某一具 体任务,也可以是机器人的某个动作,比如手 部或关节的某个规定的运动等。
3
为说明机器人规划的概念,我们举下面的 例子:
然后再针对每一个子任务进行进一步的规划。以“把水倒 入杯中”这一子任务为例,可以进一步分解成为“把水壶提 到杯口上方”、“把水壶倾斜倒水入杯”、“把水壶竖直“ 、“把水壶放回原处”等一系列动作,这一层次的规划称为 动作规划(Motion P1anning),它把实现每一个子任务的过程分 解为一系列具体的动作。
13
下面具体介绍在关节空间内常用的两种规划方法 1) 三次多项式函数插值
考虑机械手末端在一定时间内从初始位置和方位移动到 目标位置和方位的问题。利用逆运动学计算,可以首先求 出一组起始和终了的关节位置.现在的问题是求出一组通 过起点和终点的光滑函数。满足这个条件的光滑函数可以 有许多条,如下图所示:
工业机器人系统组成
执行系统
工
业
驱动系统
机
器
人
控制系统
人工智能系统
手部
臂部
腕部
机身
行走机构 各种电、液、气装置
运动控制装置
位置检测装置
示教再现装置 触觉、听觉、嗅觉、视觉装置
语音识别装置
逻辑判断装置
学习装置
1
主要内容
7.1 机器人规划的基本概念 7.2 关节空间法 7.3 直角坐标空间法 7.4 轨迹的实时生成 7.5 路径的描述
图 智能机器人的规划层次
7
轨迹规划的目的是——将操作人员输入的 简单的任务描述变为详细的运动轨迹描述。
例如,对一般的工业机器人来说,操作员可能只 输入机械手末端的目标位置和方位,而规划的任务便 是要确定出达到目标的关节轨迹的形状、运动的时间 和速度等。这里所说的轨迹是指随时间变化的位置、 速度和加速度。
8
简言之,机器人的工作过程,就是通过规划,将要求的任 务变为期望的运动和力,由控制环节根据期望的运动和力的信 号,产生相应的控制作用,以使机器人输出实际的运动和力, 从而完成期望的任务。这一过程表述如下图所示。这里,机器 人实际运动的情况通常还要反馈给规划级和控制级,以便对规 划和控制的结果做出适当的修正。
14
显然,这些光滑函数必须满足以下条件:
q0 q0 q t f qf
7.2 关节空间法
关节空间法首先将在工具空间中期望的路径点,通 过逆运动学计算,得到期望的关节位置,然后在关节 空间内,给每个关节找到一个经过中间点到达目的终 点的光滑函数,同时使得每个关节到达中间点和终点 的时间相同,这样便可保证机械手工具能够到达期望 的直角坐标位置。这里只要求各个关节在路径点之间 的时间相同,而各个关节的光滑函数的确定则是互相 独立的。
在一些老龄化比较严重的国家,开发了各种各样 的机器人专门用于伺候老人,这些机器人有不少是采 用声控的方式.比如主人用声音命令机器人“给我倒 一杯开水”,我们先不考虑机器人是如何识别人的自 然语言,而是着重分析一下机器人在得到这样一个命 今后,如何来完成主人交给的任务。
4
首先,机器人应该把任务进行分解,把主人交代的任务 分解成为“取一个杯子”、“找到水壶”、“打开瓶塞”、 “把水倒人杯中”、“把水送给主人”等一系列子任务。这 一层次的规划称为任务规划(Task planning),它完成总体任务 的分解。