机器人的轨迹规划

合集下载

机器人轨迹规划

机器人轨迹规划
结合。
优点是能够充分利用各种方法 的优势,提高轨迹规划的性能

缺点是需要考虑不同方法之间 的协调和融合问题,增加了实
现的难度。
03
机器人轨迹规划的应用场景
工业制造
自动化生产线
在工业制造中,机器人轨迹规划 可用于自动化生产线上,执行物 料搬运、装配、检测等任务,提 高生产效率和质量。
智能仓储管理
通过机器人轨迹规划,可以实现 智能仓储管理,包括货物的自动 分拣、搬运和堆垛,优化仓储空 间利用。
控制精度
提高轨迹控制的精度,减小执行 误差,提高作业质量。
鲁棒性
在不确定性和干扰下,保证轨迹 规划与控制的稳定性和可靠性。
05
机器人轨迹规划的案例分析
案例一:工业机器人的轨迹规划
总结词
精确、高效、安全
详细描述
工业机器人轨迹规划的目标是在保证精确度的前提下,实现高效、安全的生产。通过对机器人的运动 轨迹进行优化,可以提高生产效率,降低能耗,并确保机器人在工作过程中不会发生碰撞或超出预定 范围。
机器人轨迹规划
汇报人: 202X-12-23
目 录
• 机器人轨迹规划概述 • 机器人轨迹规划算法 • 机器人轨迹规划的应用场景 • 机器人轨迹规划的未来发展 • 机器人轨迹规划的案例分析
01
机器人轨迹规划概述
定义与目标
定义
机器人轨迹规划是指根据给定的起点 和终点,通过计算机器人关节角度的 变化,使其能够以最优的方式从起点 移动到终点的过程。
避免碰撞
通过对机器人运动路径的精确规划, 可以确保机器人在工作环境中安全地 避开障碍物,避免与周围物体发生碰 撞。
机器人轨迹规划的挑战
01
环境不确定性

机器人运动控制中的轨迹规划与优化技术研究

机器人运动控制中的轨迹规划与优化技术研究

机器人运动控制中的轨迹规划与优化技术研究摘要:机器人的运动控制中的轨迹规划与优化技术对于机器人在各种应用领域的性能和效率至关重要。

本文主要介绍了机器人运动控制中轨迹规划的基本概念、常用方法及其优化技术,并分析了轨迹规划与优化技术在实际应用中的挑战和发展趋势。

1. 引言机器人的运动控制是机器人技术领域中的关键技术之一,它决定了机器人在工业自动化、服务机器人、医疗机器人等领域的性能和效率。

轨迹规划与优化技术作为机器人运动控制的重要组成部分,在指导机器人运动路径和轨迹的选择上起到至关重要的作用。

本文将介绍机器人运动控制中的轨迹规划和优化技术的研究现状和发展趋势。

2. 轨迹规划的基本概念与方法2.1 轨迹规划的基本概念轨迹规划是指确定机器人自身和末端执行器的路径,使其能够在特定的环境和约束条件下实现目标运动。

主要包括全局轨迹规划和局部轨迹规划两个方面。

全局轨迹规划是根据机器人的起始位置和目标位置,寻找一条完整的路径,以实现从起始位置到目标位置的连续运动。

局部轨迹规划则是在机器人运动过程中,根据机器人的实时感知信息,根据机器人自身的动力学特性和操作要求,动态地规划调整机器人的运动轨迹。

2.2 轨迹规划的方法常用的轨迹规划方法包括几何方法、采样方法、搜索方法等。

几何方法是通过定义机器人的几何形状和约束条件,计算机器人的最优路径。

采样方法是通过采样机器人的状态空间,选取一个合适的采样点构造路径。

搜索方法是利用搜索算法,在状态空间中搜索最优路径。

这些方法各有优缺点,应根据具体应用场景的需求进行选择。

3. 轨迹优化的技术方法3.1 轨迹平滑轨迹平滑的目标是使机器人的路径更加平滑,减少轨迹的变化率和曲率,从而提高机器人的稳定性和精度。

常用的轨迹平滑方法包括贝塞尔曲线、B样条曲线等,可以将离散的路径点插值为连续的平滑曲线。

3.2 动态轨迹规划动态轨迹规划是指根据机器人的实时感知信息和环境变化,动态地规划机器人的运动路径。

机器人轨迹规划与运动控制方法研究

机器人轨迹规划与运动控制方法研究

机器人轨迹规划与运动控制方法研究机器人技术正以前所未有的速度发展,为人们的生产和生活带来了巨大的便利。

机器人在工业、医疗、农业等领域的应用已经十分广泛,而机器人的轨迹规划与运动控制方法作为机器人技术中的重要一环,也越来越受到人们的关注和重视。

本文将探讨机器人轨迹规划和运动控制的方法以及相关的研究进展。

一、机器人轨迹规划机器人轨迹规划是指确定机器人在特定环境中运动的路径和速度的过程,其目标是通过合理的规划使得机器人能够快速、稳定地完成指定的任务。

在机器人轨迹规划中,需要考虑到机器人的动力学模型、环境约束以及任务要求等因素。

1.1 基于几何形状的轨迹规划方法基于几何形状的轨迹规划方法主要是通过对环境的几何形状进行建模,计算机器人在该环境中的运动轨迹。

这种方法通常使用离散化的方式表示环境,然后根据运动的要求,搜索其中一条或多条最优路径。

1.2 基于优化的轨迹规划方法基于优化的轨迹规划方法是通过建立优化模型,寻找最优的机器人轨迹。

这种方法可以考虑到机器人的动力学特性和系统约束,使得机器人能够在不同的运动要求下选择最优的运动轨迹。

二、机器人运动控制机器人运动控制是指对机器人进行控制,使其按照规划好的轨迹进行运动。

在机器人运动控制中,需要实现对机器人的位置、速度和力矩等参数的控制,保证机器人能够准确地按照预定的轨迹运动。

2.1 传统的PID控制方法传统的PID控制方法是一种经典的控制方法,通过比较机器人当前的状态与设定值之间的差异,计算控制量来实现对机器人的控制。

这种方法简单易行,但在某些复杂的任务中,效果可能不佳,需要进一步优化。

2.2 基于模型预测的控制方法基于模型预测的控制方法是一种先进的控制方法,它通过对机器人的动力学模型进行建模和优化,实现对机器人的控制。

这种方法可以实现对机器人的多种参数同时控制,提高机器人的运动精度和响应速度。

三、研究进展与应用展望目前,机器人轨迹规划与运动控制的研究已经取得了一系列的重要成果。

机器人轨迹规划

机器人轨迹规划

机器人轨迹规划机器人轨迹规划是指根据机器人的任务要求和环境条件,制定机器人运动的轨迹以达到预定的目标。

机器人轨迹规划是机器人技术中的一个重要研究领域,其目的是使机器人能够安全、高效地在给定的环境中移动。

机器人轨迹规划通常涉及到如下几个方面的问题:1. 环境感知与建模:机器人需要通过感知技术获取环境中的信息,并将其建模成可理解的形式。

这些模型可以包括地图、障碍物位置、目标位置等。

2. 路径规划:基于环境模型,机器人需要确定一条避开障碍物、同时能够到达目标位置的最佳路径。

路径规划问题可以分为全局路径规划和局部路径规划两个层次。

全局路径规划是在整个环境中搜索最佳路径,而局部路径规划是在当前位置的附近搜索最佳路径。

3. 运动规划:确定机器人在路径上的具体运动方式,包括速度、加速度、姿态等。

机器人的运动规划要考虑到机械结构的限制、动力学约束以及安全性等因素。

4. 避障规划:当机器人在移动过程中遇到障碍物时,需要能够进行避障规划,避免碰撞。

避障规划可以基于感知信息进行实时调整,使机器人能够安全地绕过障碍物。

这些问题可以使用不同的算法和方法来解决,常用的算法包括A*算法、Dijkstra算法、蚁群算法等。

此外,机器人轨迹规划还需要结合机器人的动力学和控制系统,使机器人能够按照规划的轨迹进行运动。

机器人轨迹规划的应用范围非常广泛,包括工业自动化、无人驾驶、机器人导航等领域。

例如,在工业自动化中,机器人可以根据轨迹规划进行物料搬运,实现生产线的自动化。

在无人驾驶领域,机器人车辆可以通过轨迹规划来规划行驶路线,保证安全、高效地到达目的地。

在机器人导航中,机器人可以根据轨迹规划进行地图绘制、自主导航等任务。

总之,机器人轨迹规划是机器人技术中的重要问题,通过合理的路径规划和运动规划,可以使机器人能够安全、高效地移动,完成各种任务。

随着机器人技术的发展,轨迹规划算法和方法也在不断进步,为机器人的运动能力提供了更好的支持。

机器人运动轨迹规划

机器人运动轨迹规划

机器人运动轨迹规划随着科技的不断发展,机器人已经成为了现代工业和日常生活中的重要角色。

而机器人的运动轨迹规划则是机器人能够高效执行任务的关键。

在这篇文章中,我们将探讨机器人运动轨迹规划的原理、挑战以及应用。

第一部分:机器人运动轨迹规划的基础原理机器人的运动轨迹规划是指利用算法和规则来确定机器人在工作空间内的行动路径。

它需要考虑机器人的动力学特性、环境条件以及任务需求。

运动轨迹规划主要分为离线规划和在线规划。

在离线规划中,机器人事先计算出完整的轨迹,并在执行过程中按照预定的轨迹行动。

这种规划方式适用于对工作环境已经事先了解的情况,例如工业生产线上的自动化机器人。

离线规划的优点是能够保证轨迹的精准性,但对环境的变化相对敏感。

而在线规划则是机器人根据当下的环境信息实时地计算出合适的轨迹。

这种规划方式适用于未知环境或需要适应环境变化的情况,例如自主导航机器人。

在线规划的优点是能够灵活应对环境的变化,但对实时性要求较高。

第二部分:机器人运动轨迹规划的挑战机器人运动轨迹规划面临着一些挑战,其中包括路径规划、避障和动力学约束等问题。

路径规划是机器人运动轨迹规划的基本问题之一。

它涉及到如何选择机器人在工作空间中的最佳路径,以达到任务要求并减少能耗。

路径规划算法可以基于图搜索、最短路径算法或优化算法进行设计。

避障是机器人运动轨迹规划中必须考虑的问题。

机器人需要能够感知并避免与障碍物的碰撞,以确保安全执行任务。

避障算法可以基于传感器信息和障碍物模型来确定机器人的安全路径。

动力学约束是指机器人在运动过程中需要满足的物理约束条件。

例如,机械臂在操作时需要避免碰撞或超过其运动范围。

动力学约束的考虑需要在规划过程中对机器人的动力学特性进行建模,并在轨迹规划中进行优化。

第三部分:机器人运动轨迹规划的应用机器人运动轨迹规划在许多领域中都具有广泛的应用。

在工业领域,机器人可以根据离线规划的路径自动执行复杂的生产任务,提高生产效率和质量。

第五章机器人轨迹规划

第五章机器人轨迹规划
(2)为了保证每个路径点上的加速度连续,由控制系统按照 此要求自动地选择路径点的速度。
(3)在直角坐标空间或关节空间中采用某种适当的启发式方 法,由控制系统自动地选择路径点的速度;
对于方法(2),为了保证路径点处的加速度连续,可以设法 用两条三次曲线在路径点处按照一定的规则联系起来,拼凑成所 要求的轨迹。其约束条件是:联接处不仅速度连续,而且加速度 也要连续。
1.轨迹规划的一般性问题
这里所谓的轨迹是指操作臂在运动过程中的位移、速度和加 速度。
常见的机器人作业有两种:
•点位作业(PTP=point-to-point motion) •连续路径作业(continuous-path motion),或者称为轮廓运动
(contour motion)。
操作臂最常用的轨迹规划方法有两种: 第一种是要求对于选定的轨迹结点(插值点)上的位姿、速 度和加速度给出一组显式约束(例如连续性和光滑程度等),轨 迹规划器从一类函数(例如n次多项式)选取参数化轨迹,对结 点进行插值,并满足约束条件。 第二种方法要求给出运动路径的解析式。
如果对于运动轨迹的要求更为严格,约束条件增多,那么 三次多项式就不能满足需要,必须用更高阶的多项式对运动轨 迹的路径段进行插值。例如,对某段路径的起点和终点都规定 了关节的位置、速度和加速度(有六个未知的系数),则要用 一个五次多项式进行插值。
(t) a0 a1t a2t 2 a3t 3 a4t 4 a5t 5
3
0
0
t0 t1
t2 t
同理可以求得此时的三次多项式系数:
此时的 •

速度约 (0) 0
束条件 变为:


(t f ) f
由上式确定的三次多项式描述了起始点和终止点具有任意给定位 置和速度的运动轨迹。剩下的问题就是如何确定路径点上的关节 速度,有以下三种方法:

机器人基础原理 第9章 轨迹规划与控制

机器人基础原理 第9章 轨迹规划与控制

位置连续、速度平滑
0 0
t f
f

0 0

t f 0
2024/2/17
(t) a0 a1t a2t 2 a3t3

(t
••
)
a1
2a2t
3a3t
2
(t) 2a2 6a3t
a0 0
a1 0
a2
3
t
2 f
f
0
a3
2
t
3 f
f
0
2
过路径点的三次多项式插值
(b) 含有多个解
带抛物线过渡的线性插值
2024/2/17
令 t=2th,由上面两式可得 :
••
••
tb2 ttb f 0 0
7
用抛物线过渡的线性插值
当给定关节加速度时,相 应的tb计算表达式为:
t tb 2
••2
••
t2 4 f 0
••
2
由度上值式必可须知选,得为足保够证 大,tb有即解,过渡域加速
速度约束条件变为:


0 0


t f f
求得三次多项式的系数:
a0 0

a1 1
3
a2
t
2 f
f
0
2

0
1

f
tf
tf
a3
2
t
3 f
f
0
1
••
( 0
f
)
tf
此时,经过路径点时的速度不再等于零。
当经过的路径点增加时,则可获得一段所需的曲线路径。 (上一段路径的终点作为下一段路径的起点,依次首尾相连)

机器人的轨迹规划

机器人的轨迹规划
我们在阐述机器人自动规划问题时,机器人一般配备有传 感器和一组能在某个易于理解的现场中完成的基本动作。这 些动作可把该现场从一种状态或布局变换为另一种状态或布 局。例如, “积木世界” 。
3
目标状态
机器人能得到的一个解答是由下面的算符序列组成的:
机器人规划是机器人学的一个重要研究领域,也是人工智能 与机器人学一个令人感兴趣的结合点。
机器人轨迹规划属于机器人低层规划,基本上不涉及人工
智能问题,而是在机械手运动学和动力学的基础上,讨论机
器人运动的规划及其方法。所谓轨迹,就是指机器人在运动
过程中的位移、速度和加速度。
轨迹规划问题通常是将轨迹规划器看成“黑箱”,接受表示
路径约束的输入变量,输出为起点和终点之间按时间排列的操
作机中间形态(位姿, 速度和加速度)序列。
在关节轨迹的典型约束条件之下,我们所要研究的是选择 一种 n 次(或小于 n 次)的多项式函数,使得在各结点(初始点, 提升点,下放点和终止点)上满足对位置、速度和加速度的要 求,并使关节位置、速度和加速度在整个时间间隔 [ t0, tf ] 中 保持连续。
15
➢ 规划关节插值轨迹的约束条件:
1. 位置(给定)
9
在关节变量空间的规划有三个优点: (1) 直接用运动时的受控变量规划轨迹; (2) 轨迹规划可接近实时地进行; (3) 关节轨迹易于规划。
伴随的缺点是难于确定运动中各杆件和手的位置,但是,为 了避开轨迹上的障碍.常常又要求知道一些杆件和手位置。
由于面向笛卡尔空间的方法有前述钟种缺点,使得面向关节 空间的方法被广泛采用。它把笛卡尔结点变换为相应的关节坐 标,并用低次多项式内插这些关节结点。这种方法的优点是计 算较快,而且易于处理操作机的动力学约束。但当取样点落在 拟合的光滑多项式曲线上时,面向关节空间的方法沿笛卡尔路 径的准确性会有损失。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若给定附加的中间条件(例如位置),则对每个中间条件需要 增加一系数。通常,可以给定两个中间位置,一个靠近初始位 置;另一个靠近终止位置。这样做,除了可以较好地控制运动 外,还能保证操作机末端以适当的方向离开起点和接近终点。
因此,对于连接初始位置和终止位置的每个关节变量,一 个七次多项式就足够了,或者用两段四次轨迹加一段三次轨迹 (4—3—4),也可以用两段三次轨迹加一段五次轨迹(3— 5—3),或五段三次轨迹(3—3—3—3—3)。
规划内容可能没有次序,但是一般来说,规划具有某个规划 目标的蕴含排序。例如,早晨起床后的安排。
缺乏规划可能导致不是最佳的问题求解,甚至得不到问题的 求解。
1
许多规划所包的步骤是含糊的,而且需要进一步说明(子 规划)。大多数规划具有很大的子规划结构,规划中的每个 目标可以由达到此目标的比较详细的子规划所代替。因此, 最终得到的规划是某个问题求解算符的线性或分部排序,但 是由算符来实现的目标常常具有分层结构。
7
在第一种方法中,约束的给定和操作机轨迹规划在关节坐标 系中进行。由于对操作机手部没有约束,使用者难于跟踪操作 机手部运行的路径。因此,操作机手部可能在没有事先警告的 情况下与障碍物相碰。
在第二种方法中,路径约束在笛卡尔坐标中给定,而关节驱 动器是在关节坐标中受控制的。因此,为了求得一条逼近给定 路径的轨迹,必须用函数近似把笛卡尔坐标中的路径约束变换 为关节坐标中的路径约束,再确定满足关节坐标路径约束的参 数化轨迹。
❖ 轨迹规划既可在关节变量空间中进行,也可在笛卡尔空间进 行。对于关节变量空间的规划,要规划关节变量的时间函数及 其前二阶时间导数,以便描述操作机的预定运动。在笛卡尔空 间规划中,要规划操作机手部位置、速度和加速度的时间函数, 而相应的关节位置、速度和加速度可根据手部信息导出。
8
在笛卡尔空间进行轨迹规划的特点: ➢ 面向笛卡尔空间方法的优点是概念直观,而且沿预定直线路 径可达到相当的准确性。可是由于现代还没有可用笛卡尔坐标 测量操作机手部位置的传感器,所有可用的控制算法都是建立 在关节坐标基础上的。因此,笛卡尔空间路径规划就需要在笛 卡尔坐标和关节之间进行实时变换,这是一个计算量很大的任 务,常常导致较长的控制间隔。 ➢ 由笛卡尔坐标向关节坐标的变换是病态的,因而它不是一一 对应的映射。 ➢ 如果在轨迹规划阶段要考虑操作机的动力学特性,就要以笛 卡尔坐标给定路径约束,同时以关节坐标给定物理约束(例如, 每个关节电机的力和力矩、速度和加速度权限)。这就会使最 后的优化问题具有在两个不同坐标系中的混合约束。
3、对于手臂运动提升点的要求同样也适用于终止位置运动的 下放点(即必须先运动到支承表面外法线方向上的某点,再慢 慢下移至终止点)。这样,可获得和控制正确的接近方向。
4、对手臂的每一次运动,都设定上述四个点:初始点,提升 点,下放点和终止点。
13
5、位置约束 (a) 初始点:给定速度和加速度(一般为零); (b) 提升点:中间点运动的连续; (c) 下放点:同提升点; (d) 终止点:给定速度和加速度(一般为零)。
我们在阐述机器人自动规划问题时,机器人一般配备有传 感器和一组能在某个易于理解的现场中完成的基本动作。这 些动作可把该现场从一种状态或布局变换为另一种状态或布 局。例如, “积木世界” 。
3
目标状态
机器人能得到的一个解答是由下面的算符序列组成的:
机器人规划是机器人学的一个重要研究领域,也是人工智能 与机器人学一个令人感兴趣的结合点。
把某些比较复杂的问题分解为一些比较小的问题的想法使 我们应用规划方法求解问题在实际上成为可能。
有两条能够实现这种分解的重要途径:第一条是当从一个 问题状态移动到下一个状态时,无需计算整个新的状态,而 只要考虑状态中可能变化了的那些部分。第二条是把单一的 困难问题分割为几个有希望的、较为容易解决的子问题,这 种分解能够使困难问题的求解变得容易些。
12. 位置(给定)
终止位置
13. 速度(给定,通常为零)
14. 加速度(给定,通常为零)
16
一种方法是为每个关节规定一个七次多项式函数
式中,未知系数 aj 可由已知的位置和连续条件确定。但用这种 高次多项式内插给定的结点也许不能令人满意,因为它的极值 难求,而且容易产生额外的运动。
另一种办法是将整个关节空间轨迹分割成几段,在每段轨迹 中用不同的低次多项式来插值。有几种分割轨迹的方法,每种 方法的特性各不相同。
由约束条件数所对应的多项式系数的个数确定多项式的次数
12
为了控制操作机,在规划运动轨迹之前,需要给定机器人 在初始点和终止点的手臂形态。在规划机器人关节插值运动 轨迹时,需要注意下述几点: 1、抓住一个物体时,手的运动方向应该指向离开物体支承表 面的方向。否则,手可能与支承面相碰。
2、若沿支承面的法线方向从初始点向外给定一个离开位置 (提升点),并要求手(即手部坐标系的原点)经过此位置,这种 离开运动就是允许的。如果还给定由初始点运动到离开位置 的时间,我们就可以控制提起物体运动的速度。
由初始点运动到终止
路径约束
点,所经过的由中间
形态序列构成的空间 路径设定
曲线称为路径。这些
轨迹规划器
形态序列即是曲线上
的“点”。
动力学约束
6
规划操作机的轨迹有两种常用的方法: ➢ 第一种方法:要求使用者在沿轨迹选定的位置点上(称为结 节或插值点)显式地给定广义坐标位置、速度和加速度的一组 约束(例如,连续性和光滑程度等)。然后,轨迹规划器从插值 和满足插值点约束的函数中选定参数化轨迹。显然,在这种 方法中,约束的给定和操作机轨迹规划是在关节坐标系中进 行的。 ➢ 第二种方法:使用者以解析函数显式地给定操作机必经之 路径,例如,笛卡尔坐标中的直线路径。然后,轨迹规划器 在关节坐标或笛卡几坐标中确定一条与给定路径近似的轨迹。 在这种方法中,路径约束是在笛卡尔坐标中给定的。
➢ (3—3—3—3—3) 轨迹 对五段轨迹都使用三次多项式样条函数。
注意,上述讨论对每个关节轨迹都是有效的,即每个关节 轨迹可分割成三段或五段。
7.3.1 4—3—4 关节轨迹的计算
对于N个关节, 在每段轨迹规划中就要确定 N 条关节轨迹,
引用归一化时间变量 t 0,1 是方便的,它使我们能用同样的方
四个限制。第一,必须便于用迭代方式计算轨迹设定点;第二,
必须求出并明确给定中间位置;第三,必须保证关节变量及其
前二阶时间导数的连续性,使得规划的关节轨迹是光滑的;最
后,必须减少额外的运动 (例如,“游移” )。
11
p +1个点
若某关节(例如关节 i )的关节轨迹使用 p 个多项式,则要满 足初始和终止条件(关节位置、速度和加速度),并保证这些变 量在多项式衔接处的连续性,因而需要确定 3( p十1)个系数。
机器人轨迹规划属于机器人低层规划,基本上不涉及人工
智能问题,而是在机械手运动学和动力学的基础上,讨论机
器人运动的规划及其方法。所谓轨迹,就是指机器人在运动
过程中的位移、速度和加速度。
轨迹规划问题通常是将轨迹规划器看成“黑箱”,接受表示
路径约束的输入变量,输出为起点和终点之间按时间排列的操
作机中间形态(位姿, 速度和加速度)序列。
2
机器人规划分为高层规划和低层规划。自动规划在机器人 规划中称为高层规划。在无特别说明时,机器人规划都是指 自动规划。自动规划是一种重要的问题求解技术,它从某个 特定的问题状态出发,寻求一系列行为动作,并建立一个操 作序列,直到求得目标状态为止。与一般问题求解相比,自 动规划更注重于问题的求解过程,而不是求解结果。
14
6、除上述约束外,所有关节轨迹的极值不能超出每个关节 变量的物理和几何极限。
7、时间的考虑
(a) 轨迹的初始段和终止段:时间由手接近和离开支承表面 的速率决定;也是由关节电机特性决定的某个常数。
(b) 轨迹的中间点或中间段:时间由各关节的最大速度和加 速度决定,将使用这些时间中的一个最长时间(即用最低速 关节确定的最长时间来归一化)。
初始位置
2.速度(给定,通常为零)
3. 加速度(给定,通常为零)
4. 提升点位置(给定)
5.提升点位置(与前一段轨迹连续)
6.) 8. 下放点位置(给定)
9.下放点位置(与前一段轨迹连续)
10. 速度(与前一段轨迹连续)
11. 加速度(与前一段轨迹连续)
9
在关节变量空间的规划有三个优点: (1) 直接用运动时的受控变量规划轨迹; (2) 轨迹规划可接近实时地进行; (3) 关节轨迹易于规划。
伴随的缺点是难于确定运动中各杆件和手的位置,但是,为 了避开轨迹上的障碍.常常又要求知道一些杆件和手位置。
由于面向笛卡尔空间的方法有前述钟种缺点,使得面向关节 空间的方法被广泛采用。它把笛卡尔结点变换为相应的关节坐 标,并用低次多项式内插这些关节结点。这种方法的优点是计 算较快,而且易于处理操作机的动力学约束。但当取样点落在 拟合的光滑多项式曲线上时,面向关节空间的方法沿笛卡尔路 径的准确性会有损失。
法处理每个关节每段轨迹的方程。时间变化范围均由 t 0 (各
段轨迹的初始时间)变到 t 1(各段轨迹的终止时间)。
18
定义下列变量:
轨迹是由多项式序列hi(t)构成的,这些多项式合起来形成关 节 j 的轨迹。在每段轨迹中关节变量的多项式用归一化时间表 示为:
19
这些关节轨迹分段多项式所应满足的边界条件为:
20
4—3—4关节轨迹的边界条件如图示。
21
这些多项式对实际时间 t 的一阶和二阶导数。可写成
4
7.1.2 机器人任务规划的作用
机器人的规划程序只需要给定任务初始状态和最终状态的描 述。这些规划系统一般都不说明为实现一个算符所需的详细的 机器人运动。任务规划程序则把任务级的说明变换成操作机级 的说明。为了进行这种变换,任务规划程序必须包含被操作物 体、任务环境、机器人执行的任务、环境的初始状态和所要求 的最终(目标)状态等描述。任务规划程序的输出就是一个机器 人程序,在指定的初始状态下执行该程序后,就能达到所要求 的最终状态。
相关文档
最新文档