2001年TI杯全国初中数学竞赛试卷B卷

合集下载

17.整式的乘法与除法(含答案)-

17.整式的乘法与除法(含答案)-

17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n,学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,•方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3=________. (第14届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0=_______.思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365【例2】已知25x=2000,80y=2000,则11x y+等于( ).A.2B.1C. 12D.32(第11届“希望杯”邀请赛试题)思路点拨因x、y为指数,我们目前无法求x、y的值,11x y+=x yxy+,其实只需求出x+y、•xy的值或它们的关系,自然想到指数运算律.解:选B 提示:25xy=2000y①,80xy=2000x②,①×②得(25×80)xy=2000x+y,得xy=x+y.【例3】设a、b、c、d都是自然数,且a5=b4,c3=d2,a-c=17,求d-b的值.(上海市普陀区竞赛题) 思路点拨设a5=b4=m20,c3=d2=n6,这样a,b可用m的式子表示,c、d可用n的式子表示,减少字母的个数,降低问题的难度.解:提示:设a5=b4=m20,c3=d2=n6(m,n为自然数),则a=m4,b=m5,c=n2,d=n3,由已知得m4-n2=17,即(m2+n)(m2-n)=17因17是质数m2+n、m2-n是自然数,且m2+n>m2-n故22171m nm n⎧+=⎪⎨-=⎪⎩解得m=3,n=8,所以,d-b=n3-m5=83-35=269【例4】已知x2-xy-2y2-x-7y-6=(x-2y+A)(x+y+B),求A、B的值.思路点拨等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于A、B的等式.【例5】是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q•的值,否则请说明理由.思路点拨由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式×商式”,运用待定系数法求出p、q的值,所谓p、q是否存在,其实就是关于待定系数的方程组是否有解.解:提示:假设存在满足题设条件的p、q值,设(x4+px2+q)=(x2+2x+5)(x2+mx+n),•即x 4+px 2+q=x 4+(m+2)x 3+(5+n+2m)x 2+(2n+5m)x+5n,得20522505m n m p n m n q +=⎧⎪++=⎪⎨+=⎪⎪=⎩ 解得25625m n p q =-⎧⎪=⎪⎨=⎪⎪=⎩ 故存在常数p,q 且p=6,q=25,使x 4+px 2+q 能被x 2+2x+5整除.学力训练一、基础夯实1. (2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖,•如果他选用地砖的价格是a 元/米2,则买砖至少需要_______元(用含a 、x 、y 的代数式表示).4x2y4yy2xx 卫生间厨房客厅卧室2.若2x+5y -3=0,则4x ·32y =_______. (2002年绍兴市竞赛题)3.满足(x -1)200>3300的x 的最小正整数为_______. (2003年武汉市选拨赛试题)4.a 、b 、c 、d 都是正数,且a 2=2,b 3=3,c 4=4,d 5=5,则a 、b 、c 、d•中,•最大的一个是__________. (“英才杯”竞赛题)5. (2001年TI 杯全国初中数学竞赛题)化简4322(2)2(2)n n n ++-得( ).A.2n+1-18 B.-2n+1 C. 78 D. 746.已知a=255,b=344,c=533,d=622,那么a 、b 、c 、d 从小到大的顺序是( ). A.a<b<c<d B.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0的整数,并且关系x 的方程ax=2a 3-3a 2-5a+4有整数根,则a•的值共有( ). A.1个 B.3个 C.6个 D.9个 8.计算(0.04)2003×[(-5)2003]2得( ). A.1 B.-1 C.200315 D.-200315 (2003年杭州市中考题)9.已知6x 2-7xy -3y 2+14x+y+a=(2x -3y+b)(3x+y+c),试确定a 、b 、c 的值.10.设a 、b 、c 、d 都是正整数,并且a 5=b 4,c 3=d 2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数29x y =2x ·9y ,试确定29x y -x(x 2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8与多项式ax+bx+11的乘积中,没有含x4的项,也没有含x3•的项,则a2+b=________.13.若多项式3x2-4x+7能表示成a(x+1)2+b(x+1)+c的形式,则a=____,b=_____,•c=______.14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4=________. (2003年北京市竞赛题)15.如果多项式(x-a)(x+2)-1能够写成两个多项式(x-3)和(x+b)的乘积,那么a=___,b=_____.16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M与N的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x的整系数二次三项式ax2+bx+c,当x取1,3,6,8时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1时,ax2+bx+c=1B.当x=3时,ax2+bx+c=5C.当x=6时,ax2+bx+c=25D.当x=8时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999的值.21.已知a是方程2x2+3x-1=0的一个根,试求代数式543223395131a a a a aa+++-+-的值.22.已知2a·5b=2c·5d=10,求证:(a-1)(d-1)=(b-1)(c-1).三、综合创新23.是否存在整数a、b、c,满足(98)a·(109)b·(1615)c =2?若存在,求出a、b、c的值;若不存在,•说明理由.24.当自然数n的个位数分别为0,1,2,……,9时,n2,n3,n4,n5的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n为自然数,和数1981n+1982n+1983n+1984n不能被10整除,那么n必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62的大小7.C 提示:x=2a2-3a-5+4a,a│4 8.A 9.a=4,b=4,c=1提示:•参见例5•10.75711.提示:由条件得2│29x y且9│29x y,则y的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3的系数分别为2b-5a,7a-5b+22,由2b-5a=0及7a-5b+22=0•得a=4,b=1013.3,-10,14 14.-120 令x=±1代入 15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),(•8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+200221.提示:2a2+3a-1=0,3a-1=-2a2原式=23322 (231)(21)5553122 a a a a a aa a+-+-+==---22.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)23.原式可化为32a·2-3a·2b·5b·3-2b·24c·3-c·5-c=2, 即2-3a+b+4c·32a-2b-c·5b-c=21×30×50故341220a b ca b cb c-++=⎧⎪--=⎨⎪-=⎩,解得a=3,b=2,c=224.(1)以下解答仅供参考:①n5的个位数与n的个位数相等;②个位数是0,1,5,6的自然数的任何次幂,其个位数不变;③个位数是4,9的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分n=4k,4k+1,4k+2,4k+3为讨论(k为自然数)当n=4k时,1981n、1982n、1983n、1984n的个位数字分别为1,6,1,6,则1981n+•1982n+1983n+1984n的个位数字为4,故10(1981n+1982n+1983n+1984n);当n=4k+1时,1981n、1982n、1983n、1984n的个位数字分别为1,•2,•3,•4,•则1981n+1982n+1983n+1984n的个位数字为0,故10│(1981n+1982n+1983n+1984n),同理,当n=4k+2、4k+3时,10│(1981n+1982n+1983n+1984n)故当且仅当n=4k,即n是4的倍数时,和数1981n+1982n+1983n+1984n不能被10整除.。

第1讲一元二次方程的根与解法学生版

第1讲一元二次方程的根与解法学生版

初中数学联赛体系第1讲 一元二次方程的根与解法【知识要点与基本方法】 一、一元二次方程基本概念1、概念:只含有一个未知数x 的整式方程,并且都可以化为20ax bx c ++=(,,a b c 为常数,0a ≠)的形式的方程叫做一元二次方程.2、一元二次方程必须满足的三大条件 (1)整式方程(2)含有一个未知数(3)未知数的最高次数为2 3、一元二次方程的一般形式形如关于x 的一元二次方程:)0(02≠=++a c bx ax 的形式,(它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.注意b 、c 可以是任何实数,但a 绝对不能为零)二、一元二次方程的根与解法1、一元二次方程的根0x x =是方程20ax bx c ++=(,,a b c 为常数,0a ≠)的根的充要条件是0020=++c bx ax . 2、直接开平方法解一元二次方程:(1)把方程化成有一边是含有未知数的完全平方的形式,另一边是非负数的形式,即化成)0()(2≥=±a a b x 的形式(2)直接开平方,解得a b x a b x -=+= 21,3、配方法的定义:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.【注】、用配方法解一元二次方程的步骤:(1)利用配方法解一元二次方程时,如果02=++c bx ax 中a 不等于1,必须两边同时除以a ,使得二次项系数为1.(2)移项,方程的一边为二次项和一次项,另一边为常数项。

(3)方程两边同时加上一次项系数一半的平方。

(4)用直接开平方法求出方程的根. 4、公式法解一元二次方程(1)对于一元二次方程02=++c bx ax 其中0≠a ,由配方法有22244)2(aacb a b x -=+, ①当042≥-ac b 时,得aacb b x 242-±-=;②当042<-ac b 时,一元二次方程无实数解.(2)公式法的定义:利用求根公式接一元二次方程的方法叫做公式法.(3)运用求根公式求一元二次方程的根的一般步骤:①必须把一元二次方程化成一般式02=++c bx ax ,以明确a 、b 、c 的值; ②再计算ac b 42-的值:当04Δ2≥-=ac b 时,方程有实数解,其解为:aacb b x 242-±-=;当04Δ2<-=ac b 时,方程无实数解. 5、因式分解解一元二次方程(1)分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法.(2)分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b (3)用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解.6、含字母系数一元二次方程的解法解关于含字母系数的方程,要求对每个参数允许值回答:方程是否有解?若有解,写出解集.特别地,当二次项系数含有字母系数时,如果题目本身没有指明时一元二次方程,则必须对二次项系数讨论是否为零.【例1】 1、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. 2、若方程()112=⋅+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 . 【例2】1、用分解因式法解下列方程(1)01032=--x x (2)01762=+-x x (3)0625412=-+x x (4)021)1(4)1(2=----x x . 2、利用求根公式求解下列方程(1) 0222=--x x (2)010342=+-x x(3)()()()()5211313+-=+-x x x x (4)061054422=--++-p x p px x【对应训练】:1、用公式法解下列方程(1)0232=+-x x (2)2212x x -=- (3)x x 3)1(2-=+(4)1(61)432(2)2x x x x ++-=+ (5)023222=--+-n mn m mx x【例3】解下列方程(1)42200x x --=;(2)06)13(2)32(2=----x x ;(3).02)23()21(2=++-+x x【例4】解下列方程 (1)4122+-=x x(2)112432--=-+x x x【例5】解关于x 的方程 (1);0)(222=++-ab x b a abx(2).)1()1()232(22222b x x ab a x x -=+---【例6】1、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 .2、设b a 、是整数,方程02=++b ax x 有一个根是347-,则=+b a .3、已知02=++c bx ax )0(≠ac 有一个根是3,则方程02=++a bx cx 一定有一个根是 ,方程02=+-a bx cx 一定有一个根是 .4、已知两数积1≠ab ,且03123456789022=++a a ,02123456789032=++b b ,则=ba【例7】已知方程p x x =--)97)(19(有实根21,r r ,试求方程p r x r x -=--))((21的最小实根.【例8】求k 的值,使得两个一元二次方程0)2(,0122=-++=-+k x x kx x 有公共根,并分别求出这两个方程的解集.【例9】对于任意实数,k 方程04)(2)1(2222=++++-+b k k x k a x k 都有实根1,试求另一个根的最大值与最小值.【例10】已知方程)0(2>=++a x c bx ax 的两根21x x 、满足ax x 1021<<<.当10x x <<时,证明:12x c bx ax x <++<.【例11】已知首项系数不相等的两个一元二次方程0)2()2()1(,0)2()2()1(222222=+++--=+++--b b x b x b a a x a x a 有公共根.(1)求证:.2++=b a ab(2)若b a ,为正整数,求ab ab ba b a --++的值. (3)设0x 为公共根,求证:.048403040>++-x x x【课后强化训练】A 组1、下列方程中,是一元二次方程的序号是①042=-y y ; ②0322=--x x ; ③312=x; ④bx ax =2; ⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ; ⑨22=-x x ; ⑩)0(2≠=a bx ax2、已知方程3ax 2-bx -1=0和ax 2+2bx -5=0,有共同的根1-,则a = ,b = .3、已知a 2-5ab +6b 2=0,则abb a +等于 4、在实数范围内分解因式:=--12x x ;=++-223y xy x5、等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形周长为 6、已知042=+-b x x 的一根的相反数为042=-+b x x 的根,则042=-+bx x 的根是 7、已知0132=+-a a ,那么=++--2219294a a a ___________. 8、方程019991997199822=⋅++x x 的解是 . 9、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=ba. 10、已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.11、方程0672=+-x x ,各根的和是 .12、若31028-是方程02=++b ax x 的一个根(其中b a 、是有理数),则ab 的值是 . 13、用公式法解下列各方程(1)x 2+6x +9=7 (2)017122=++x x(3)08242=+-x x (4)4)3)(12(=--x x(5)02)82(42=++-y y (6)02322=--x x(7))3)(21()12(5+-=-x x x14、用因式分解法解下列方程:(1)t (2t -1)=3(2t -1); (2)y 2+7y +6=0;(3)y 2-15=2y (4)(2x -1)(x -1)=1.(5))3)(21()12(5+-=-x x x (6)10x 2-x -3=015、解下列方程(1)0)34()45(22=---x x ; (2)06)23(2=++-x x ;(3)0154)35(222=----x x ; (4)02)32()347(2=----x x ;(5)629332+=-+++x x x x .16、已知两个二次方程02=++b ax x ,02=++d cx x 有一个公共根1,求证:二次方程0222=++++db xc a x 也有一个根为1.17、求方程072=--kx x 与()0162=+--k x x 的公共根.B 组1、已知c b 、为方程02=++c bx x 的两个根,且0≠c ,c b ≠.则c b 、的值分别是 、2、已知正实数a b c ,,满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,则a b c ++的值是3、关于x 的方程1)12(62++-=m x m x 有一根α,满足不等式:19981998≤≤-α,且使得α53为整数,则m 可取 个值.4、已知02=++c bx ax 的两根和为1S ,两根平方和为2S ,两根立方根为3S ,则123cS bS aS ++的值是5、已知1=x 是方程02=++c bx ax 的根,0≠abc .则)111(32333222cb ac b a c b a +++++++的值是 .6、(2012湖北随州)设0122=-+a a ,01224=--b b ,且012≠-ab ,52213⎪⎪⎭⎫ ⎝⎛+-+a a b ab 的值是 .7、解下列关于x 的方程(1)03222=-+m x m x ; (2)0))()((=+++++++abc b a x a c x c b x ;(3))0(0)(33442≠=++-ab b a x b a abx ;(4)0)3(2)1(2=+--+m x m x m ;(5)02)5(522=--+-x m x m )(.8、已知下面三个方程有公共根.02=++c bx ax ,02=++a cx bx , 02=++b ax cx .求证:abc c b a 3333=++.9、设等腰三角形的一腰与底边长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,试求a 的取值范围.10、若21q q 、是方程02=++b ax x 的两个实根,且0,21≠≠b q q .又21c c 、是任意两个实数,则n n n q c q c x 2211+=是方程021=++--n n n bx ax x 的解.11、设2121,,,b b a a 都是实数,21a a ≠,且1))(())((22122111=++=++b a b a b a b a ,求证:1))(())((22211211-=++=++b a b a b a b a .初中数学联赛体系第2讲 可化为一元二次方程的方程(组)模块一、特殊高次方程的解法次数超过2的整式方程称为高次方程.一般地高次方程没有统一的求解方法.对于一些特殊的高次方程,可通过降次,转化为一元二次方程或一元一次方程求解.转化的方法有因式分解法、换元法、变换主元法等.【例1】解下列方程(1)13322)132(222+-=+-x x x x(2)222222)143()352()2(+-=+-+-+x x x x x x(3).3123=--x x x(4).022224223=-+++x x x(5)062536506650362562345678=+-+-+-+-x x x x x x x x【例2】解方程.02)65(2)11(2102234=++++---a a x a x a x x 其中a 是常数.【例3】方程02=++b ax x 有两个不同的实数根.求证:方程01)2(234=+--++ax x b ax x 有4个不同的实数根.模块二、特殊分式方程的解法分母中含有未知数的方程叫分式方程,求解分式方程总的原则是通过去分母或换元,时期转化为整式方程,然后再求解.在这个过程中离不开分式的恒等变形,如通分、约分及降低分子的次数等等,这就有可能使未知数的范围扩大(或缩小),从而使方程产生增根(或遗根),因此,当未知数的范围扩大时,需验根。

正方形练习与答案

正方形练习与答案

选择题1.下列四个命题:(1)两条对角线互相垂直的四边形是菱形;(2)两条对角线相等的四边形是矩形;(3)四条边、四个角分别相等的四边形是正方形;(4)两条对角线分别平分一组对角的四边形是正方形. 其中命题正确的是( )A .1个B .2个C .3个D .4个 2.(无锡市,2001;福州市,2002)下列命题中,正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .对角线互相垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形3.在正方形ABCD 的边BC 的延长线上取一点E ,使AC CE =,连AE 与CD 交于F ,则=∠AFC ( )A .︒5.112B .︒120C .︒135D .︒150 4.(湖州市,2001)正方形的对角线与边长之比为( )A .1:1B .1:2C .2:1D .1:25.(北京市石景山区,2001)如图,在正方形ABCD 中,点E 是BC 边的中点,如果5=DE ,那么四边形ABED 的面积是( )A .5B .15C .20D .30参考答案:1.A 2.B 3.A 4.B 5.B选择题1.(北京市东城区,2002)下列说法中错误的是( )A .一组对边平行且一组对角相等的四边形是平行四边形B .每组邻边都相等的四边形是菱形C .四个角相等的四边形是矩形D .对角线互相垂直的平行四边形是正方形 2.(荆州市,2002)如图,过矩形ABCD 的四个顶点作对角线AC ,BD 的平行线,分别相交于E ,F ,G ,H 四点,则四边形EFGH 是( )A .平行四边形B .矩形C .菱形D .正方形3.(济南市,2002)如图(1),用一块边长为22的正方形ABCD 厚纸板,按下面作法,做了一套七巧板:作对角线AC ,分别取AB ,BC 中点E ,F ,连结EF ;作EF DG ⊥于G ,交AC 于H ;过G 作BC GH //,交AC 于L ,再由E 作DG EK //,交AC 于K ;将正方形ABCD 沿画出的线剪开. 现用它拼出一座桥(如图(2)),这座桥的阴影部分的面积是( )A .8B .6C .4D .5 4.(北京市宣武区,2001)在正方形ABCD 中,E 、F 两点分别是BC ,CD 边上的点,若AEF ∆是边长为2的等边三角形,则正方形ABCD 的边长为( )A .213+ B .213- C .3 D .2 5.(泰州市,2001)已知:如图,正方形ABCD 中,O 是对角线AC ,BD 的交点,过O 点作OF OE ⊥分别交AB ,BC 于E ,F . 若3,4==CF AE ,则EF 等于( )A .7B .5C .4D .36.(TI 杯全国初中数学竞赛,2001)如图,若将正方形分成k 个全等的矩形,其中上,下各横排两个,中间竖排若干个,则k 的值为()A .6B .8C .10D .12参考答案:1.D 2.C 3.C 4.A 5.B 6.B填空题1.(眉山市,2001)如图,已知四边形ABCD 是菱形,当满足条件______时,它成为正方形. (填上你认为正确的一个条件即可)2.已知ABCD ,对角线AC ,BD 交于O . (1)若BC AB =,则ABCD 是_______; (2)若BD AC =,则ABCD 是_______; (3)若︒=∠90BCD ,则ABCD 是_______;(4)若OB OA =,且OB OA ⊥,则ABCD 是_______; (5)若BC AB =,且BD AC =,则ABCD 是_______.3.如图,四边形ABCD 是边长为2的正方形,P 是ABCD 的边CD 上任意一点,且DB PE ⊥于E ,CA PF ⊥于F ,则=+PF PE ______.4.(济南市,2001)如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成. 设中间最小的一个正方形边长为1,则这个矩形色块图的面积为_______.5.(河南省,2002)如图,P 是正方形ABCD 内一点,将ABP ∆绕点B 顺时针方向旋转能与P CB '∆重合,若3=BP ,则P P '_______.参考答案:1.︒=∠90A 2.(1)菱形,矩形,矩形,正方形,正方形 3.2 4.143 5.23解答题1.如图,在正方形ABCD 外以CD 为边作等边CDE ∆. 求AED ∠的度数.2.如图,ABC Rt ∆,︒=∠90C ,A ∠,B ∠的平分线交于点D ,BC DE ⊥于E ,AC DF ⊥于F .求证:四边形CEDF 是正方形.3.如图,正方形ABCD 的边长为cm 4,E 是AD 的中点,EC BM ⊥,垂足为M . 求BM 的长.4.(北京市朝阳区,2002)已知:如图,在正方形ABCD 中,E 是CD 延长线上一点,BC EB 21=,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连成线段,并证明它和AE 相等.5.已知:如图,正方形CEFG 的边CG 在正方形ABCD 的边CD 上,延长CD 到H ,使CE DH =. K 在BC 边上,且CE DH =.求证:四边形AKFH 是正方形.6.(杭州市,1997)如图,过正方形ABCD 顶点A 作直线交BD 于E ,交CD 于F ,交BC 的延长线于G ,若H 是FG 的中点,求证:CH EC ⊥.参考答案: 1.︒152.作AB DG ⊥于G ,先证四边形CEDF 为矩形,再证DE DF =,则矩形CEDF 是正方形.3.连BE . 821==∆ABCD EBC S S 正方形. 52=EC 821=⋅⋅BM EC .558=BM 4.CF . 证CBF ABE ∆≅∆.5.证ABK HGF KEF ADH ∆≅∆≅∆≅∆. ∴AK HF KF AH ===. 则四边形AKFH 是菱形. 证︒=∠90HAK ,则菱形AKFH 是正方形.6.证明:在AED ∆和CED ∆中,∵ ︒=∠=∠==45,,CDE ADE DE DE CD AD , ∴CED AED ∆≅∆ ∴ ECD EAD ∠=∠ 在FCG Rt ∆中,H 为斜边FG 的中点,∴FH GH CH == ∴ HGC HCG ∠=∠ 而 EAD HGC ∠=∠, ∴ECD HCG ∠=∠ ∴︒=∠+∠90FCH ECD ∴CH EC ⊥解答题用两种方法解答下列各题:1.如图,已知正方形ABCD 的边长为cm 12,点P 在BC 上,cm BP 5=,AP EF ⊥,垂足Q ,与AB ,CD 分别交于E ,F .求EF 的长.2.如图,正方形ABCD 中,E 在AD 上,F 在CD 上,︒=∠45EBF . 求证:FC AE EF +=.3. 已知:如图,正方形ABCD 中,P 为BC 一点,Q 为CD 边上一点,且DQ BP PQ +=. 求PAQ ∠.参考答案1.cm EF 13=2.延长DC 到G ,使AE CG =,连BG 或延长DA 到K ,使FC AK =,连BK 3. 解法1 延长PB 到E ,使DQ BE =,连结AE .在ABE ∆与ADQ ∆中,∵ DQ BE =,ADQ ABE ∠=∠,AD AB =, ∴ADQ ABE ∆≅∆. ∴QAD EAB AD AE ∠=∠=,. ∵ DQ BP PQ DQ BP BE BP PE +=+=+=,, ∴ PQ PE =在APE ∆与APE ∆中,AQ AE PQ PE AP AP ===,,, ∴APQ APE ∆≅∆. ∴ PAQ PAE ∠=∠∵ EAB QAD PAB QAD PAQ ∠=∠︒=∠+∠+∠,90, ∴︒=∠+∠90PAE PAQ . ∴︒=︒⨯=∠459021PAQ解法2 延长CD 到G ,使BP DG =,连AG (如图)在ADG ∆与ABP ∆中,∵︒=∠=∠=90,B ADG AB AD ,BP DG =, ∴ABP ADG ∆≅∆. ∴BAP DAG AP AG ∠=∠=,. ∵DG BP DQ DG GQ DQ BP PQ ++=+=,,,∴GQ PQ = 在APQ ∆与AGQ ∆中,∵GQ PQ AQ AQ AG AP ===,,, ∴AGQ APQ ∆≅∆. ∴ GAQ PAQ ∠=∠.∵︒=∠+∠+∠90DAQ PAQ BAP , ∴ ︒=∠+∠+∠90DAQ PAQ GAD∴︒=∠+∠90GAQ PAQ ∴︒=∠=∠45GAQ PAQ解答题1.(宁夏,2002)如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O ,四边形AEFC 是菱形,AC EH ⊥,垂足为H .求证:FC EH 21=.2.(山东荷泽地区,2001)如图,正方形ABCD 中,M 、F 分别在边AB 、AD 上且FD MB =,E 是AB 延长线上一点,DM MN ⊥交CBE ∠的平分线于N .求证:MBN DFM ∆≅∆.3.如图,正方形ABCD 的对角线相交于O ,Q 是DC 上的任意一点,过D 作AQ DP ⊥,交AQ 于H ,交BC 于P .求证:OPQ ∆是等腰直角三角形.4.如图,在正方形ABCD 中,E 是AD 的中点,BD 与CE 相交于点F . 求证:BE AF ⊥.5.如图,四边形ABCD ,CEFG 都是正方形,DE 交BG 的延长线于H . 求证:(1)DE BG =;(2)DE BH ⊥.6.如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,MCN ∆的周长等于正方形ABCD 的周长的一半,求MAN ∠.7.如图,E 是正方形ABCD 边DC 之中点,F 是CD 上一点,且CB FC FA +=. 求证:BAF DAE ∠=∠21.8.如图,E ,F 分别为正方形ABCD 的边AB ,BC 上的点,AC EF //,G 在DA 的延长线上,且AD AG =,GE 的延长线交DF 于H .求证:DA HA =.9.如图,四边形ACDE ,BAFG 是以ABC ∆的边AC ,AB 为边向ABC ∆外所作的正方形.求证:(1)FC EB =;(2)FC EB ⊥.10.如图,正方形ABCD 中,E 是CF 上的点,四边形BEFD 为菱形,求BEF ∠的度数.11.已知正方形ABCD 中,M 是AB 的中点,E 是AB 延长线上一点,DM MN ⊥且交CBE ∠的平分线于N (如图甲).(1)求证:MN DM =;(2)若将上述条件中的“M 是AB 中点”改为“M 是AB 上任意一点”,其余条件不变(如图乙),则结论“MN MD =”还成立吗?如果成立,请证明;如果不成立,请说明理由.12.如图,过正方形顶点C 作BD CG //,在CG 上取一点F ,使BD BF =,且交CD 于E ,连结DF .求证:DF DE =.参考答案:1.AC OB EH 21== 2.证NMB ADM ∠=∠,MBN DFM ∠=∠ 3.证ADQ DCP ∆≅∆,得DQ CP =,从而可证DOQ COP ∆≅∆,得OQ OP =,DOQ COP ∠=∠,从而可证︒=∠+∠90COP COQ . 则OPQ ∆是等腰直角三角形.4.证CDF ADF ∆≅∆,得DCF DAF ∠=∠. 证DCE ABE ∆≅∆,得DCF ABE ∠=∠. ∴ABE DAF ∠=∠,从而可证︒=∠+∠90AEB DAF ,则BE AF ⊥5.证DCE BCG ∆≅∆,得DE BG =,CBG CDE ∠=∠,则DGH CDE ∠+∠CGB CBG ∠+∠=︒=906.延长ND 到E ,使BM DE =,连结AE ,则AEN AMN ∆≅∆. ∴MAN EAN ∠=∠. ∵︒=∠+∠90MAN EAN ,∴︒=∠45MAN7.作BAF ∠的平分线AN 交BC 于N ,交DC 的延长线于M ,证AB CM FM FA ==,, 则有MCN ABN ∆≅∆,得CN BN =.则ADE MCN ABN ∆≅∆≅∆. DAE M BAN ∠=∠=∠. ∴BAF DAE ∠=∠21. 8.证︒=∠90GHD9.证ABE AFC ∆≅∆10.︒150. 提示:作BD CM ⊥于M ,BD EN ⊥于N ,则EN CM BD BE 22===,得︒=∠30EBD ,︒=∠150BEF11.(1)取AD 中点F ,连MF ,证MBN DFM ∆≅∆;(2)结论MN DM =仍成立. 在AD 上取AM AF =,连FM ,证MBN DFM ∆≅∆12.证明:连AC ,设AC 与BD 交点为O . 作BD FH ⊥于H .∵四边形ABCD 是正方形, ∴BD OC BD AC 21,=⊥. ∵BD CO BD FH BD CG ⊥⊥,,//,∴OC FH =.∵BD BF =,∴BF FH 21=. ∴ ︒=∠301 ∴ ︒=︒-︒=∠75230180DFB ∵ ︒=︒+︒=∠+∠=∠75453012BDC ,∴2∠=∠DFB .∴DF DE =.解答题1.如图,已知P ,Q ,R ,S 为动点,分别从正方形ABCD 的顶点A ,B ,C ,D 同时沿着AB ,BC ,CD ,DA 以同样的速度向点B ,C ,D ,A 移动.(1)求证:PQRS 总是正方形;(2)求证:PR总是过正方形的中心;AB=,求四边形PQRS的面积最大时和最小时顶点的位置.(3)设a2.如图,一个画有五个边长为1的正方形纸片,要把它剪成三块,拼成一个正方形ABCD,请你在原图上画出剪裁线和拼成正方形ABCD.3.如图,有四个动点P、Q、E、F分别从正方形ABCD的四个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动.(1)证明:四边形PQEF是哪种特殊的平行四边形;(2)PE是否总是经过某一定点,并说明理由;(3)四边形PQEF的顶点位于何处时,其面积最小、最大?各是多少?4.(杭州市,2002)在平面上有且只有四个点,这四个点有一个独特的性质:每两点之间的距离有且只有两种长度. 例如正方形ABCD(如图),有≠=AB==. 请画出只有这种独特性质的另外四种不同的图形,并=BCBCDAACCD标明相等的线段.5.(山东省,2000)今有正方形土地一块,要在其上修筑两条笔直的道路,使道路把这块土地分成形状相同且面积相等的四部分. 若道路的宽度可忽略不计,请你设计三种不同的修饰方案(在给出的三张正方形图纸上分别画图,并简述画图步骤).6.(北京市崇文区,2001)为增加绿地面积,现将停车场铺设的整数块正方形实体地砖(尺寸如图(1),单位:cm )更换为通透性地砖. 通透性地砖是在原地砖的四边挖去四个全等的等腰梯形,梯形的上底与腰长相等(尺寸如图(2),单位:(cm ),图(3)为拼接图(阴影部分种草). 设原铺设实体地砖总面积为x (单位:2m ),增加绿地总面积为y (单位:2m ),求y 与x 的关系式(不要求写出x 的取值范围).7.(南京市,2001)(1)如图,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AB AF 21=.求证:ADF ABE ∆≅∆.(2)阅读下面材料:如图(1),把ABC ∆沿直线BC 平行移动线段BC 的长度,可以变到DBC ∆的位置; 如图(2),以BC 为轴把ABC ∆翻折︒180,可以变到DBC ∆的位置;如图(3),以点A 为中心,把ABC ∆旋转︒180,可以变到AED ∆的位置.像这样,其中一个三角形是由另一个三角形平行移动、翻折、旋转等方法变成的. 这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:① 在下图中,可以通过平行移动、翻折、旋转中的哪一种方法,使ABE ∆变到ADF ∆的位置?②指出下图中线段BE 与DF 之间的关系.8. (黄冈市,2000)国家电力总公司为了改善农村用电电缆过高的现状,目前正在全国各地农村进行电网改造. 莲花村六组有四个村庄A 、B 、C 、D 正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如下图中的实践部分. 请你帮助计算一下,哪种架设方案最省电线. (以下数据可供参考:414.12=,732.13=,236.25=)9.(山东省淄博市,2002)工人师傅要将一块如图所示的铝板,经过适当的剪切后,焊接成一块正方形铝板,请在下图中画出剪切线,并将剪切后的铝板拼成一个面积最大的正方形(保留拼接痕迹,不写画法).【参考答案】1.(1)证SDR RCQ QBP PAS ∆≅∆≅∆≅∆;(2)连AC ,PR ,设AC 和PR 交于O ,可证RCO PAO ∆≅∆. ∴OR PO OC AO ==,. ∵O 为正方形ABCD 的中心,∴PR 总过正方形的中心;(3)︒=∠90B ,在PBQ Rt ∆中,222BQ PB PQ +=22PA PB +=)22(2122PA PB +=)22(2122PA PB +=])()[(2122PA PB PA PB -++=])([2122PA PB AB -+= ∴正方形PQRS 的面积])([2122PA PB AB -+=)]([2122PA PB a -+=. 当PA BP =时,即P ,Q ,R ,S 为正方形ABCD 各边中点时,最小面积等于221a . 当P ,Q ,R ,S 位于点A ,B ,C ,D 时,最大面积为2a2.如图所示;3.(1)证DEF CQE BPQ AFP ∆≅∆≅∆≅∆可得四边形PQEF 为正方形;(2)连结AC 交PE 于O ,证O 为AC 的中点,得PE 一定过AC 的中点;(3)OP 最小即AB OP ⊥时,正方形面积最小,为正方形面积的一半,OP 最大,即等于正方形的面积.4.图形如下:其中:①AD BC DC DB AC AB ≠====;②CD BD BC AD AC AB ====,;③OC OB OA CA BC AB ====,;④CD BC AD BD AC AB ====,;⑤BC OC OB OA AC AB ====,.5.略6.设每块地砖增加绿色面积为1S ,每块实体地砖面积为2S ,则2143243cm S =,22262525cm S ==. x y 25003243=. 7.(1)证ADF ABE ∆≅∆;(3)①ABE ∆绕点A 逆时针旋转︒90到ADF ∆的位置;②DF BE =,且DF BE ⊥.8.不妨设正方形的边长为1(也可设为a ). 在图(1)、(2)中,总线路长分别为3=++BC AB AD ,3=++CD BC AB . 在图(3)中,总线路长为282.22211222==+=+BD AC . 在图(4)中,延长线EF 交BC 于点H ,是BC FH ⊥,HC BH =. 由︒=∠30FBH ,21=BH 及股定理得33====FC FB ED EA ,63=FH . ∴ 33121-=-=FH EF . 此时,总线路长为EF EA +4331334-+=31+=732.2=.显然732.2828.23>>,∴ 图(4)的联结线路最短,架设方案最省电线.9.略。

历年初中数学竞赛真题库含答案

历年初中数学竞赛真题库含答案

1991年全国初中数学联合竞赛决赛试题第一试 一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是(A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18. 答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n . 答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除. 答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1. 答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21; 答( )11=S 3S =132=S(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+acb 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y ,yx四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC 中,AB <AC <BC ,D 点在BC 上,E 点在BA 的延长线上,且BD =BE =AC ,ΔBDE 的外接圆与ΔABC 的外接圆交于F 点(如图).求证:BF =AF +CF三、将正方形ABCD 分割为 2n 个相等的小方格(n 是自然数),把相对的顶点A ,C 染成红色,把B ,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题 第一试 一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD ,AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(baa b . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N. 1993年全国初中数学联合竞赛决赛试题 第一试 一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A)Ⅰ,Ⅱ都对 (B)Ⅰ对,Ⅱ错 (C)Ⅰ错,Ⅱ对. (D)Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值. 其中正确的是(A)Ⅰ (B)Ⅱ (C)Ⅲ (D)Ⅳ 4.实数54321,,,,x x x x x 满足方程组其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B)53124x x x x x >>>>; (C)52413x x x x x >>>>; (D)24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A)等于4 (B)小于4 (C)大于5 (D)等于5 6.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是 (A)22-(B)22(C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那么m :n :p 等于(A)cb a1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( ) 8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( ) 二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB ,AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题 第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A ,B 、C ,D ,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0 B.都不大于0C.至少有一个小0于D.至少有一个大于0 〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4 B.等于5C.等于6 D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

初中数学竞赛试题及答案汇编

初中数学竞赛试题及答案汇编

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)c b c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p b a c a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

全国初中数学竞赛试题及答案(2001年).doc

全国初中数学竞赛试题及答案(2001年).doc

2001年全国初中数学联赛一、选择题(每小题7分,共42分)1、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a +999b +1001c 的值是( )(A ) 1999(B )2000(C )2001(D )不能确定2、若1≠ab ,且有5a 2+2001a +9=0及05200192=++b b ,则ba 的值是( ) (A )59(B )95(C )52001-(D )92001- 3、已知在△ABC 中,∠ACB =900,∠ABC =150,BC =1,则AC 的长为( )(A )32+(B )32-(C )30⋅(D )23-4、如图,在△ABC 中,D 是边AC 上的一点,下面四种情况中,△ABD ∽△ACB 不一定成立的情况是( )(A )BD AB BC AD •=• (B )AC AD AB •=2(C )∠ABD =∠ACB (D )BD AC BC AB •=•5、①在实数范围内,一元二次方程02=++c bx ax 的根为aac b b x 242-±-=;②在△ABC 中,若222AB BC AC >+,则△ABC 是锐角三角形;③在△ABC 和111C B A ∆中,a ,b ,c 分别为△ABC 的三边,111,,c b a 分别为111C B A ∆的三边,若111,,c c b b a a >>>,则△ABC 的面积S 大于111C B A ∆的面积1S 。

以上三个命题中,假命题的个数是( )(A )0(B )1(C )2(D )36、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。

某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是( )(A )522.8元(B )510.4元(C )560.4元(D )472.8二、填空题(每小题7分,共28分)1、已知点P 在直角坐标系中的坐标为(0,1),O 为坐标原点,∠QPO =1500,且P 到Q 的距离为2,则Q 的坐标为 。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案This manuscript was revised by the office on December 10, 2020.2001年全国初中数学联赛一、选择题(每小题7分,共42分)1、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a +999b +1001c 的值是( )(A ) 1999(B )2000(C )2001(D )不能确定2、若1≠ab ,且有5a 2+2001a +9=0及05200192=++b b ,则ba 的值是( ) (A )59(B )95(C )52001-(D )92001- 3、已知在△ABC 中,∠ACB =900,∠ABC =150,BC =1,则AC 的长为( ) (A )32+(B )32-(C )30⋅(D )23-4、如图,在△ABC 中,D 是边AC 上的一点,下面四种情况中,△ABD ∽△ACB 不一定成立的情况是( )(A )BD AB BC AD •=• (B )AC AD AB •=2(C )∠ABD =∠ACB (D )BD AC BC AB •=•5、①在实数范围内,一元二次方程02=++c bx ax 的根为a ac b b x 242-±-=;②在△ABC 中,若222AB BC AC >+,则△ABC 是锐角三角形;③在△ABC 和111C B A ∆中,a ,b ,c 分别为△ABC 的三边,111,,c b a 分别为111C B A ∆的三边,若111,,c c b b a a >>>,则△ABC 的面积S 大于111C B A ∆的面积1S 。

以上三个命题中,假命题的个数是( ) (A )0(B )1(C )2(D )36、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。

17.整式的乘法与除法(含答案)-(可编辑修改word版)

17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4 个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n, 学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展, 方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3= . (第14 届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6 展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0= .思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6 的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x 的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365⎩【例 2】已知 25x =2000,80y =2000,则 1 + 1等于().x y1 3 A.2 B.1 C.D.(第 11 届“希望杯”邀请赛试题)221 1 x + y思路点拨 因 x 、y 为指数,我们目前无法求 x 、y 的值, + =,其实只需求 x y xy出 x+y 、•xy 的值或它们的关系,自然想到指数运算律.解:选 B 提示:25xy =2000y ①,80xy =2000x ②,①×②得(25×80)xy =2000x+y ,得 xy=x+y. 【例 3】设 a 、b 、c 、d 都是自然数,且 a 5=b 4,c 3=d 2,a-c=17,求 d -b 的值.(上海市普陀区竞赛题)思路点拨 设 a 5=b 4=m 20,c 3=d 2=n 6,这样 a,b 可用 m 的式子表示,c 、d 可用 n 的式子表示, 减少字母的个数,降低问题的难度.解:提示:设 a 5=b 4=m 20,c 3=d 2=n 6(m,n 为自然数),则 a=m 4,b=m 5,c=n 2,d=n 3,由已知得 m 4- n 2=17,即(m 2+n)(m 2-n)=17因 17 是质数 m 2+n 、m 2-n 是自然数,且 m 2+n>m 2-n⎧⎪m 2+ n = 17 故⎨⎪m 2- n = 1 解得 m=3,n=8,所以,d -b=n 3-m 5=83-35=269【例 4】已知 x 2-xy -2y 2-x -7y-6=(x -2y+A)(x+y+B),求 A 、B 的值.思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于 A 、B 的等式.【例 5】是否存在常数 p 、q 使得 x 4+px 2+q 能被 x 2+2x+5 整除?如果存在,求出 p 、q•的值,否则请说明理由.思路点拨 由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式× 商式”,运用待定系数法求出 p 、q 的值,所谓 p 、q 是否存在,其实就是关于待定系数的 方程组是否有解.解:提示:假设存在满足题设条件的 p 、q 值,设(x 4+px 2+q)=(x 2+2x+5)(x 2+mx+n),•⎪ ⎪⎪⎪y 2yx4x 2x4y客厅厨房卧室卫生间即x4+px2+q=x4+(m+2)x3+(5+n+2m)x2+(2n+5m)x+5n,得⎧m + 2 = 0⎪5 +n + 2m =p⎨2n + 5m = 0 ⎪⎩5n =q⎧m =-2⎪n = 5解得⎨p = 6⎪⎩q=25故存在常数p,q 且p=6,q=25,使x4+px2+q 能被x2+2x+5 整除.学力训练一、基础夯实1.(2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖, 如果他选用地砖的价格是a 元/米2,则买砖至少需要元(用含a、x、y 的代数式表示).2.若2x+5y-3=0,则4x·32y= . (2002 年绍兴市竞赛题)3.满足(x-1)200>3300 的x 的最小正整数为. (2003 年武汉市选拨赛试题)4.a、b、c、d 都是正数,且a2=2,b3=3,c4=4,d5=5,则a、b、c、d•中,•最大的一个是. (“英才杯”竞赛题)5.(2001 年TI 杯全国初中数学竞赛题)化简2n+4-2(2n)2(2n+3 )得( ).A.2n+1-18 B.-2n+1 C.7D.78 46.已知a=255,b=344,c=533,d=622,那么a、b、c、d 从小到大的顺序是( ).A.a<b<c<dB.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0 的整数,并且关系x 的方程ax=2a3-3a2-5a+4 有整数根,则a•的值共有( ).A.1个B.3 个C.6 个D.9 个8.计算(0.04)2003×[(-5)2003]2 得( ).1 1A.1B.-1C.52003 D.-52003(2003 年杭州市中考题)9.已知6x2-7xy-3y2+14x+y+a=(2x-3y+b)(3x+y+c),试确定a、b、c 的值.10.设a、b、c、d 都是正整数,并且a5=b4,c3=d2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数2x9 y =2x·9y ,试确定2x9 y -x(x2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8 与多项式ax+bx+11 的乘积中,没有含x4 的项,也没有含x3•的项则,a2+b= .13.若多项式3x2-4x+7 能表示成a(x+1)2+b(x+1)+c 的形式,则a= ,b= ,•c= .14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4= . (2003 年北京市竞赛题)15.如果多项式(x-a)(x+2)-1 能够写成两个多项式(x-3)和(x+b)的乘积,那么a= ,b= .16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d 的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M 与N 的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999 的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x 的整系数二次三项式ax2+bx+c,当x 取1,3,6,8 时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1 时,ax2+bx+c=1B.当x=3 时,ax2+bx+c=5C.当x=6 时,ax2+bx+c=25D.当x=8 时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999 的值.2a 5 + 3a 4 + 3a 3 + 9a 2 - 5a +121.已知 a 是方程 2x 2+3x -1=0 的一个根,试求代数式的值.3a -122.已知 2a ·5b =2c ·5d =10,求证:(a -1)(d -1)=(b -1)(c -1).三、综合创新9 23. 是否存在整数 a 、b 、c,满足a ·( 10 )b ·( 16 )c =2?若存在,求出 a 、b 、c 的值;若不存在•,说明理由.( )8 9 1524.当自然数n 的个位数分别为0,1,2,……,9 时,n2,n3,n4,n5 的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n 为自然数,和数1981n+1982n+1983n+1984n 不能被10 整除,那么n 必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62 的大小7.C 提示:x=2a2-3a-5+ 4,a│4 8.A 9.a=4,b=4,c=1 a提示:•参见例5•10.75711.提示:由条件得2│2x9 y 且9│2x9 y ,则y 的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3 的系数分别为 2b-5a,7a-5b+22,由2b-5a=0 及7a-5b+22=0 得 a=4,b=1013.3,-10,14 14.-120 令x=±1 代入15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D 提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),( 8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+2002(2a2+ 3a -1)(a3+ 2a -1) + 5a3 21.提示:2a2+3a-1=0,3a-1=-2a2 原式=3a -1 =5a2=-5 -2a2 222.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)⎩23.原式可化为 32a ·2-3a ·2b ·5b ·3-2b ·24c ·3-c ·5-c =2,即 2-3a+b+4c ·32a-2b-c ·5b-c =21×30×50 ⎧-3a + b + 4c = 1 ⎪故⎨2a - 2b - c = 0 ⎪b - c = 0 24.(1)以下解答仅供参考:,解得 a=3,b=2,c=2①n 5 的个位数与 n 的个位数相等;②个位数是 0,1,5,6 的自然数的任何次幂,其个位数不变;③个位数是 4,9 的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分 n=4k,4k+1,4k+2,4k+3 为讨论(k 为自然数)当 n=4k 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,6,1,6,则 1981n +•1982n +1983n +1984n 的个位数字为 4,故 10(1981n +1982n +1983n +1984n );当 n=4k+1 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,•2,•3,•4,•则 1981n +1982n +1983n +1984n 的个位数字为 0,故 10│(1981n +1982n +1983n +1984n ),同理,当 n=4k+2、4k+3 时,10│(1981n +1982n +1983n +1984n )故当且仅当 n=4k,即 n 是 4 的倍数时,和数 1981n +1982n +1983n +1984n 不能被 10 整除.。

初中竞赛数学25.奇数、偶数与奇偶分析(含答案)

25.奇数、偶数与奇偶分析知识纵横整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m 、n 是整数,则m ±n,│m ±n │的奇偶性相同.5.设m 是整数,则m 与│m │、m 的奇偶性相同.奇偶性是整数的固有属性,•通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题求解【例1】三个质数之和为86,那么这三个质数是______.(“希望杯”邀请赛试题)思路点拨 运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性入手。

解:(2,5,79),(2,11,73),(2,13,71),(2,23,61),(2,31,53),(2,37,47),(2,41,43)【例2】如果a 、b 、c 是三个任意整数,那么2a b +、2b c +、2c a +( ). A.都不是整数 B.至少有两个整数C.至少有一个整数D.都是整数 (2001年TI 杯全国初中数学竞赛题)思路点拨 举例验证或从a 、b 、c 的奇偶性说明.解:选C 提示:a 、b 、c 中至少有两个数的奇偶性相同,则a+b 、b+c 、c+a 中至少有一个为偶数.【例3】(1)设1,2,3,9的任一排列为a 1,a 2,a 3,…,a 9。

求证:(a 1-1)·(a 2-2)…(a 9-9)•是一个偶数.(2)在数11,22,33,44,55,…20022002,20032003,这些数的前面任意放置“+”或“-”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨 (1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“+”号或“-”号,形式多样,因此不可能一一尝试再作解答,从奇数、•偶数的性质入手.解:(1)因(a 1-1)+(a 2-2)+…+(a 9-9)=(a 1+a 2+…+a 9)-(1+2+…+9)=0,故a 1-1、a 2-2…a 9-9这9个数不可能全为奇数,即这9个数中至少有一个为偶数,从而它们的积必为偶数.(2)11,22,33,20022002,20032003的奇偶性依次与1,2,3,…2002,2003的奇偶性相同,因此,•在11,22,33…20022002,20032003的前面任意放置“+”或“-”的代数和的奇偶性与1+2+3+…+2003的奇偶性相同为偶数,而2003为奇数.【例4】已知x 1,x 2,x 3,…,x n 都是+1或-1,并且12x x + 23x x + 34x x + …+1n n x x +1n x x =0。

2001年全国初中数学联赛试卷参考答案与试题解析

2001年全国初中数学联赛试卷参考答案与试题解析一、选择题(共6小题,每小题7分,满分42分)1.(7分)a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A.1999 B.2000 C.2001 D.不能确定解答:解:∵==,∴a+b+c=,∴a=0,b=1,c=1,2a+999b+1001c=2000.故选B.2.(7分)若ab≠1,且有5a2+2002a+9=0及9b2+2002b+5=0,则的值是()A.B.C.﹣D.﹣解答:解:∵5a2+2002a+9=0,则5++=0,∴9()2+2002()+5=0,又9b2+2002b+5=0,而≠b,故,b为方程9x2+2002x+5=0的两根,故两根之积==.∴=故选A.3.(7分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.4.(7分)如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.A D•BC=AB•BD B.A B2=AD•AC C.∠ABD=∠CBD D.A B•BC=AC•BD解答:解:A、因为AD•BC=AB•BD的夹角非∠A,所以不能判定两三角形相似,故本选项错误;B、因为符合两边及夹角法,故可判定两三角形相似,故本选项正确;C、因为无法确定三角形的对应角相等,故无法判定两三角形相似,故本选项错误;D、因为AB•BC=AC•BD的夹角为∠C、∠B,不确定是否相等,无法判定两三角形相似,故本选项错误,故选B.5.(7分)①在实数范围内,一元二次方程ax2+bx+c=0的根为;②在△ABC中,若AC2+BC2>AB2,则△ABC是锐角三角形;③在△ABC和△AB1C1中,a、b、c分别为△ABC的三边,a1、b1、c1分别为△AB1C1的三边,若a>a1,b>b1,c>c1,则△ABC的面积大S于△AB1C1的面积S1.以上三个命题中,真命题的个数是()A.0B.1C.2D.3解答:解:(1)当△<0时,无实数根,故是假命题.(2)三边的平方关系不能确定是否是锐角三角形,故是假命题.(3)面积不止和边有关系,和高还有关系,故是假命题.故选A.6.(7分)某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是()A.522.8元B.510.4元C.560.4元D.472.8元解答:解:某人两次去购物,分别付款168元与423元,由于商场的优惠规定,168元的商品未优惠,而423元的商品是按九折优惠后的,则实际商品价格为423÷0.9=470元,如果他只去一次购买同样的商品即价值168+470=638元的商品时,应付款为:500×0.9+(638﹣500)×0.8=450+110.4=560.4(元).故选C.二、填空题(共4小题,每小题7分,满分28分)7.(7分)已知点P在直角坐标系中的坐标为(0,1),O为坐标原点,∠QPO=150°,且P到Q的距离为2,则Q的坐标为(1,1+)或(﹣1,1+).解答:解:如图,PQ与y轴正方向的夹角是30°,设Q坐标(x,y),x=QH=2×sin30°=1;y=OH=2×cos30°+1=1+,解得Q坐标为(1,1+),由于坐标的对称性在第二象限也有一个点满足要求,纵坐标相等,横坐标互为相反数,Q坐标为(﹣1,1+),故答案为:(1,1+)或(﹣1,1+).8.(7分)已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.解答:解:连接BO1,AO2,O1O2,过点O1作O1C⊥AO2,TP交O1OC于D,如图,则O1O2=3,BO1=AC=DP=1,∴CO2=2﹣1=1,∵PD∥CO2,∴△O1DP∽△O1CO2,∴DP:CO2=O1P:O1O2,∴DP==,∴PT=1+=.故答案为:.9.(7分)已知x、y是正整数,并且xy+x+y=23,x2y+xy2=120,则x2+y2= 34 .解答:解:由xy+x+y=23,x2y+xy2=120,得xy,x+y是关于t的一元二次方程t2﹣23t+120=0的两根,解得t=8或15,∴或(舍去)∴x2+y2=(x+y)2﹣2xy=82﹣2×15=34.10.(7分)一个正整数,若分别加上100与168,则可得到两个完全平方数.则这个正整数为156 .解答:解:设此数为n,且n+168=a2,n+100=b2,则a2﹣b2=68=22×17,即(a+b)(a﹣b)=22×17.但a+b与a﹣b的奇偶性相同,故a+b=34,a﹣b=2,于是a=18,b=16,从而n=156.故答案为 156.三、解答题(共7小题,满分70分)11.(10分)在直角坐标系中有三点A(0,1),B(1,3),C(2,6);已知直线y=ax+b上横坐标为0、1、2的点分别为D、E、F.试求a,b的值使得AD2+BE2+CF2达到最小值.解答:解:由题意可得:D(0,b),E(1,a+b),F(2,2a+b),∴AD2+BE2+CF2=(b﹣1)2+(a+b﹣3)2+(2a+b﹣6)2,=(b﹣1)2+[(a﹣3)+b]2+[2(a﹣3)+b]2,=3b2﹣2b+1+5(a﹣3)2+6(a﹣3)b,=5[a﹣3+()]2+b2﹣2b+1,=5[a﹣3+()]2+(b﹣)2+,∴a﹣3+=0,b﹣=0.解得a=,b=时,有最小值为.12.(10分)(1)证明:若x取任意整数时,二次函数y=ax2+bx+c总取整数值,那么2a、a﹣b、c都是整数.(2)写出上述命题的逆命题,且证明你的结论.解答:解:(1)若x取整数值时,二次函数y=ax2+bx+c总取整数值,则当x=0时,y0=c,为整数,故c为当x=﹣1时,y﹣1=a﹣b+c为整数,于是a﹣b=y﹣1﹣y0为整数;当x=﹣2时,y﹣2=4a﹣2b+c为整数,于是2a=y﹣2﹣2y﹣1+y0为整数,于是,2a、a﹣b、c都是整数;(2)所求的逆命题为:2a、a﹣b、c都是整数,那么x取任意整数时,二次函数y=ax2+bx+c总取整数值,这是一个真命题.证明:若c,a﹣b,2a都是整数,y=ax2+bx+c=ax(x+1)﹣(a﹣b)x+c,当x为整数时,x(x+1)是偶数,故x(x+1)必是整数,由2a是整数得2a×x(x+1)是整数,又有a﹣b,c是整数得﹣(a﹣b)x+c是整数,因此,当x取任意整数时,二次函数y=ax2+bx+c总取整数值.13.(10分)如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.解答:(1)结论:两圆外切.证明:作⊙ABD的切线l,则∠1=∠B,∵∠3=∠B+∠C,∴∠3=∠1+∠C,∵∠1+∠2=∠3=∠1+∠C,∴∠2=∠C,过A点作AP⊥l,交⊙AEC于点P,连PE,∵∠P=∠ACE,则∠2=∠P,∴∠PAE+∠P=90°,于是∠AEP=90°,从而AP是⊙AEC的切线,即二圆相切于点A;(2)解:延长DA交⊙AEC于点G(不妨设F在⊙AEC上),连GF,由∠4=∠DAE+∠AED=∠3+∠AFC,有∠4+∠5=180°,则∠4=∠AGF,∴△ADB∽△AGF,∴AB:AF=2(即等于两圆半径比),但AB=4,∴AF=2(这里可用正弦定理做),∵BA•BF=BE•BC,14.(10分)求所有的正整数a,b,c,使得关于x的方程x2﹣3ax+2b=0,x2﹣3bx+2c=0,x2﹣3cx+2a=0的所有的根都是正整数.解答:解:x2﹣3ax+2b=0可知a,△=(﹣3a)2﹣4×2b=9a2﹣8b≥0,因为x是整数,所以设9a2﹣8b=s2,(3a+s)×(3a﹣s)=8b=1×8b=2×4b=4×2b=8×b,讨论:(1)、(3a+s)×(3a﹣s)=1×8b,3a+s=1 ①,3a﹣s=8b ②,①+②得 6a=1+8b,同理可得 6b=1+8c,6c=1+8a,∴a+b+c=<0(不符合已知条件),(2)、(3a+s)×(3a﹣s)=8b*1,3a+s=8b ①,3a﹣s=1 ②,①+②得 6a=1+8b,同理可得 6b=1+8c,6c=1+8a,∴a+b+c=<0(不符合已知条件),(3)、(3a+s)×(3a﹣s)=2×4b,(3a+s)=4b ①,(3a﹣s)=2 ②,①+②得 6a=2+4b,即3a=1+2b,同理可得 3b=1+2c,3c=1+2a,解得 a=b=c=1,x=1,2,(4)、(3a+s)×(3a﹣s)=2×4b,(3a+s)=2 ①,(3a﹣s)=4b ②,①+②得 6a=2+4b,即3a=1+2b,同理可得 3b=1+2c,3c=1+2a,解得a=b=c=1,x=1,2,(5)、(3a+s)×(3a﹣s)=4×2b,3a+s=4 ①,3a﹣s=2b ②,①+②得 6a=4+2b,即3a=2+b,同理可得 3b=2+c,3c=2+a,解得 a=b=c=1,x=1,2,(6)、(3a+s)×(3a﹣s)=4×2b,3a+s=2b ①,3a﹣s=4 ②,①+②得 6a=4+2b,即3a=2+b,同理可得 3b=2+c,3c=2+a,解得 a=b=c=1,x=1,2;(7)、(3a+s)×(3a﹣s)=8×b,3a+s=8 ①,3a﹣s=b ②,①+②得 6a=8+b,同理可得 6b=8+c,6c=8+a,∴a+b+c=,可见a、b、c至少一个不是整数,不符合已知条件;(8)、(3a+s)×(3a﹣s)=8×b,3a+s=b ①,3a﹣s=8 ②,①+②得 6a=8+b,同理可得 6b=8+c,6c=8+a,∴a+b+c=,可见a、b、c至少一个不是整数,不符合已知条件;答:当a=b=c=1时,x=1或2.15.(10分)如图,在四边形ABCD中,AC与BD相交于点O,直线l平行于BD,且与AB、DC、BC、AD及AC的延长线分别相交于点M、N、R、S和P,求证:PM•PN=PR•PS.解答:证明:∵直线l平行于BD,∴==,得=①,==,得=②,由①②得=,即PM•PN=PR•PS.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年TI 杯全国初中数学竞赛试卷B 卷
分别
次射击中第第第在第次必须射击进行打靶训练某个学生参加军训分共分每小题小题本题共解答题三的取值范围是那么且满足已知实数的横坐标点取最小值时那么当和的距离分别为到定点轴上的动点中在直角坐标系的值应该确定为那么总金额最大为了使该商品的销售
则售出的数量就将减少如果单价上涨销售某种商品于那么这个梯形的面积等的线段为边作梯形用长为的值为则若那么已知分共分每小题小题本题共填空题二不能确定
之间的大小关系是与则且满足是正数若等于则且交于点与若如图的值为则中间竖排若干个下各横排两个其中上个全等的矩形若将正方形分成如图或或的值为那么且是质数如果都是整数
至少有一个整数至少有两个整数都不是整数那么是三个任意整数如果得化简
分共分每小题小题本题共选择题一,9,8,7,6.10,,.13)
60,20,3(..___________,,1,.12.
___________,,)1,2(),5,5()0,(,.11.____________,.150
%,,.10.
____________,5,4,4,1.9.
,28
,14.8.
___________,2
32
3,2
323.7)30,5.6(.)()()()((),111)(111(12345,,.616)(12)(7)(6)()
(,3,4,,2,,.512
)(10)(8
)(6
)()
(
,,,,,.42
22123)(22125)(222125)(22123)()
(,013,013,,.3)()()()()(2
,2,2,,,.24
7)
(8
7)
(2)(8
1
2)()
(
,)
2(2)
2(22
.122
)30,5,6(.22222222221134
t b a ab t b ab a b a x M MQ MP MQ MP Q P x M x xoy m m
m y x x xy y y xy x y x
x y y x D b a C b a B b
a A
b a b a b a D C B A DC AD PD PB D PB AC ACB APB PB PA D C B A k k D C B A b
a
a b m b b m a a b a D C B A a
c c b b a c b a D C B A n n n n
n --==++=++=++=++=+-+=
+-=
<=>-+=⋅==∠=∠=+=+-=+-+++--
-++++.,11
3
11,,)2(.
)1(.
011)72(1)1(.1511211:
,,,⊙,⊙,⊙,,⊙,.14)
1.0?(10,8.810.59,3.9,1.8,4.8,0.92211212
2
的值求且
为若原方程的两个实数根的取值范围求有实数根的方程已知关于求证于点并交两点于交的割线作过点的两条切线是外一点是已知点如图环确到每次射击所得环数都精环次射击中至少要得多少那么他在第环次射击的平均环数超过如果他要使环数次射击所得的平均高于前次射击所得的平均环数他的前环环环环得了a x x x x x x a x x a x x a x PB PA PC C ST B A O PAB O P O PT PS O P =-+-=+⎪⎭

⎝⎛-+-⎪⎭⎫ ⎝⎛--⎪⎭

⎝⎛+=。

相关文档
最新文档