人教A版高中数学必修四上学期第一次月考
高中数学人教A版必修第一册全册测试卷(含答案)

……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。
人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
2019年上海民办西南高级中学高考数学选择题专项训练(一模)

2019年上海民办西南高级中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:湖南省衡阳市2017届高三数学第六次月考试题试卷及答案理(实验班)已知全集U={1,2,3,4,5},A∩∁UB={1,2},∁U(A∪B)={4},则集合B为()A.{3} B.{3,5} C.{2,3,5} D.{1,2,3,5}【答案】B第 2 题:来源:山东省潍坊市2019年高考数学模拟训练试题理已知对任意不等式恒成立(其中e=2.71828…是自然对数的底数),则实数a的取值范围是A.B.(0,e) C. D.【答案】A第 3 题:来源: 2016_2017学年黑龙江省大庆市高二数学下学期期中试题试卷及答案理,若,则的值等于( )A. B. C.D.【答案】A第 4 题:来源:云南省民族大学附属中学2019届高三数学上学期期中试题理若=,则tan 2α=A.-B.C.-D.【答案】B第 5 题:来源:安徽省巢湖市2016_2017学年高二数学下学期第三次月考试题理若曲线y=x在点(a,a)处的切线与两个坐标轴围成的三角形的面积为18,则a=( ) A.64 B.32 C.16 D.8【答案】A第 6 题:来源:福建省福州市八县(市)一中2018_2019学年高二数学下学期期末联考试题理可表示为()A. B. C.D.【答案】B第 7 题:来源: 2016_2017学年江苏省泰安市岱岳区高一数学下学期期中试题试卷及答案中,则( )A B C D【答案】A第 8 题:来源:安徽省肥东县高级中学2019届高三数学12月调研考试试题理设当时,函数取得最大值,则()A. B.C.D.【答案】.C第 9 题:来源: 2019高中数学第三章不等式单元测试(二)新人教A版必修5不等式的解集为,则的值为()A. B. C.4D.2【答案】D【解析】当时,用穿针引线法易知不等式的解集满足题意,∴.故选D.第 10 题:来源:河北省石家庄市正定县第七中学2018_2019学年高一数学下学期3月月考试题数列1,-3,5,-7,9,…的一个通项公式为()A B C D【答案】B第 11 题:来源:云南省玉溪市2017_2018学年高一数学上学期期中试题试卷及答案已知是上的增函数,,是其图象上两个点,那么的解集是( )A. B.C. D.【答案】D第 12 题:来源:江西省会昌县2018届高三数学上学期第一次半月考试卷理试卷及答案已知,当时,有,则必有()A. B. C. D.【答案】D第 13 题:来源: 2019高中数学第二章推理与证明测评(含解析)新人教A版选修1_2无限循环小数为有理数,如:0.,0.,0.,……则可归纳出0.=( )A. B.C. D.【答案】D解析:由题意,得0.=0.45+0.004 5+…=.第 14 题:来源: 2019高中数学第一章三角函数单元质量评估(含解析)新人教A版必修4若120°角的终边上有一点(-4,a),则a的值为 ( )A.-4B.±4C.4D.2【答案】C第 15 题:来源: 2017年高考仿真卷•数学试卷含答案(六)理科.若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围是( )A.[2-,1] B. C.D.[0,+∞)【答案】.B 解析圆的方程可化为(x-2)2+(y-2)2=18,则圆心为(2,2),半径为3,由圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则圆心到直线l:ax+by=0的距离d≤3-2,即,则a2+b2+4ab≤0,若b=0,则a=0,故不成立,故b≠0,则上式可化为1++40,由直线l的斜率k=-,可知上式可化为k2-4k+1≤0,解得2-k≤2+,即k的取值范围为[2-,2+].故选B.第 16 题:来源:吉林省实验中学2018_2019学年高一数学上学期期中试题下列函数中,在(0,+∞)上是增函数的是A.f(x)= B.f(x)=lg(x-1) C.f(x)=2x2-1 D.f(x)=x+【答案】C第 17 题:来源:湖南省桃江县2017_2018学年高一数学上学期入学考试试题试卷及答案如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为,其中,,下列结论:①;②;③;④.其中正确的有 ( )A、1个B、2个C、3个D、4个【答案】D第 18 题:来源:河北省大名县一中2018_2019学年高二数学下学期第四周周测试题文定义域为R的函数满足,且在上>0 恒成立,则的解集为A. B. C. D.【答案】.C【解:根据题意,定义域为R的函数f(x)满足f(x)+f(﹣x)=0,则函数f(x)为奇函数,且f(0)+f(﹣0)=0,则有f(0)=0,又由在[0,+∞)上f'(x)>0恒成立,则函数f(x)在[0,+∞)上为增函数,而函数f(x)为奇函数,则函数f(x)在R上为增函数,f(x+1)≥0⇒x+1≥0⇒x≥﹣1,即不等式的解集为[﹣1,+∞);第 19 题:来源:山西省芮城县2017_2018学年高二数学上学期第一次月考试题理试卷及答案有如下命题:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱。
高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修14

(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B,A∩B.
解:(2)将x≤-2或x>5及1<x≤7在数轴上表示出来, 据并集的定义,图中所有阴影部分即为A∪B, 所以A∪B={x|x≤-2,或x>1}. 据交集定义,图中公共阴影部分即为A∩B, 所以A∩B={x|5<x≤7}.
(2)并集的运算性质
性质 A∪B=B∪A (A∪B)∪C=A∪(B∪C)
A∪A=A A∪ = ∪A=A 如果 A⊆ B,则 A∪B=B A⊆ (A∪B),B⊆ (A∪B)
说明 并集运算满足交换律 并集运算满足结合律 集合与本身的并集仍为集合本身 任何集合与空集的并集仍为集合本身 任何集合与它子集的并集都是它本身 任何集合都是该集合与另一个集合的并集的子集
解:(2)①因为9∈(A∩B),所以9∈B且9∈A,所以2a-1=9或a2=9,所以 a=5或a=±3.检验知a=5或a=-3. ②因为{9}=A∩B,所以9∈(A∩B),所以a=5或a=-3.当a=5时,A={-4,9, 25},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去;当a=-3 时,A={-4,-7,9},B={-8,4,9},A∩B={9},满足题意. 综上可知a=-3.
解:如图,要使 S∪T=R,
则只需
a a
7 4, 1 2,
即-3≤a≤-1.
故 a 的取值范围为{a|-3≤a≤-1}.
一题多变2:本题(2)中,将集合A变为A={x|a-2≤x≤2a},其他条件不变, 求a的范围.
人教A版高中数学必修第二册强化练习题-第2课时-圆柱、圆锥、圆台与球

人教A版高中数学必修第二册第2课时 圆柱、圆锥、圆台与球基础过关练题组一 圆柱、圆锥、圆台1.(2024黑龙江大庆期中)下列命题中正确的是( )①圆锥的轴截面是所有过顶点的截面中面积最大的截面;A.2.A.是A.6.) R,球冠的高是h,则球冠的面积S=2πRh.已知“中国天眼”的底的半径约为250 m,反射面面积(球冠面积)约为25万m2,则“中国天眼”的高度约为 m.参考数据:4-1≈0.52π题组三 简单组合体8.(2024福建福州期中)将一个等腰梯形绕它较长的底边所在直线旋转一周,所得的几何体包括 ( )A.一个圆台、两个圆锥 B.两个圆台、一个圆柱C.两个圆柱、一个圆台 D.一个圆柱、两个圆锥9.(2023辽宁沈阳模拟)刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角和的差(多面体的面的内角叫做多面体的面角,角的大小用弧度制表示),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.正八面体(八个面均为正三角形,如图)的总曲率为( )A.2πB.4πC.6πD.8π能力提升练题组一 空间几何体的结构特征1.(多选题)(2024山东烟台莱阳一中月考)对如图所示的组合体的结构说法正确的是( )A.由一个长方体挖去一个四棱柱而成B.由一个长方体与两个四棱柱组合而成C.由一个长方体挖去一个四棱台而成D.由一个长方体与两个四棱台组合而成2.(2024北京广渠门中学月考)半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.下图是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有 个面,其棱长为 .题组二 与旋转体表面展开图有关的问题3.(2024浙江绍兴期中)下图是一个圆柱形开口容器(下底面密封),其轴截面ABCD是边长为2的正方形.现有一只蚂蚁从外壁A处出发,沿外壁先爬到上口边沿再沿内壁爬到BC的中点P处,则它所爬过的最短路程为 .4.(2024广东佛山第一中学月考)如图,一个立在水平地面上的圆锥形物体的母线长为2,一小虫从圆锥底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处,若该小虫爬行的最短路程为23,则圆锥底面圆的半径为 .题组三 旋转体中的计算问题5.(2024山东东营利津高级中学开学考试)如图,圆台OO1的侧面展开图扇环的圆心角为180°,SA=2,SB=4,则该圆台的高为( )A.1B.2C.3D.46.从一个底面半径与高均为2的圆柱中挖去一个正四棱锥(以圆柱的上底面为正四棱锥底面的外接圆,下底面圆心为顶点)得到的几何体如图所示,现用一个平行于底面且与底面的距离为1的平面去截这个几何体,则截面面积为( )A.4π-4B.4πC.4π-2D.2π-27.(2024天津期中)圆锥的母线长为3,轴截面三角形的顶角为120°,用过圆锥顶点的平面截球答案与分层梯度式解析第2课时 圆柱、圆锥、圆台与球基础过关练1.C 2.D 3.D 5.C 6.A 8.D 9.B1.C 过圆锥顶点的截面为等腰三角形,且两腰长为母线长,设该等腰三角形的顶角为θ,圆锥的母线长为l,则截面三角形的面积为12l 2sin θ,显然当θ=π2时,面积最大,故当圆锥的轴截面三角形的顶角大于π2时,圆锥的轴截面面积不是最大的,故①错误;根据圆柱母线的定义可知②错误;根据圆台的定义知③正确.故选C.2.D 用一个不平行于圆锥底面的平面去截圆锥,截面可能为椭圆;用一个平行于圆锥底面的平面去截圆锥,截面为圆;用一个过圆锥的轴的平面去截圆锥,截面为等腰三角形.故选D.3.D 若4为底面周长,则高为2,此时圆柱的底面直径为4π,故轴截面面积为2×4π=8π;若2为底面周长,则高为4,此时圆柱的底面直径为2π,故轴截面面积为4×2π=8π.故选D.4.答案 12解析 如图,由题意可知,CD AB =14,BD=9,设原圆锥的母线长为l,根据相似三角形的性质可得ED EB =CD AB ,即l -9l =14,解得l=12,故原圆锥的母线长为12.5.C 圆柱的截面可能是矩形,圆锥的截面可能是三角形,圆台的截面可能是梯形,故选C.6.A 设截面圆的半径为r,则r=22-(3)2=1,所以球O 被平面α截得的截面面积为πr 2=π.故选A.7.答案 130解析 由题意得(R-h)2+2502=R 2,则2Rh=h 2+2502,故2πRh=πh 2+2502π=250 000,=250-1,所以h2=250000−2502ππ所以h=2504-1≈250×0.52=130(m).π8.D 从较短的底边的端点向另一底边作垂线,两条垂线把等腰梯形分成两个全等的直角三角形和一个矩形,故旋转后的几何体是由一个圆柱和两个圆锥组成的,如图所示.2.设解得a=2-1,即该半正多面体的棱长为23.解析 将圆柱侧面沿AD展开,如图,其中AB=π,AD=2,则问题转化为在CD上找一点Q,使AQ+PQ的值最小,作P关于CD的对称点E,连接AE,QE,CE,则QE=PQ,所以AQ+PQ=AQ+QE≥AE=π2+9.4.答案 23解析 把圆锥侧面沿母线OP 展开成如图所示的扇形OPP',则PP'的长为小虫爬行的最短路线长,所以PP'=23,又OP=OP'=2,所以∠POP'=2π3,则由弧长公式得l PP '=2π3×2=4π3.设圆锥底面圆的半径为r,则2πr=4π3,解得r=23.5.C 在圆锥SO 1中,2π·O 1A=12×2π·SA=2π,所以O 1A=1,在圆锥SO 中,2π·OB=12×2π·SB=4π,所以OB=2,所以该圆台的高为AB 2-(OB -O 1A)2=(SB -SA )2-(OB -O 1A)2=(4-2)2-(2-1)2=3,故选C.6.C 截面应为圆面挖去一个正方形,且圆面的半径是2,面积为4π.设正四棱锥的底面正方形的边长为a,易知a=22,故正四棱锥的底面正方形的面积为(22)2=8,由棱锥中截面的性质,可得圆面中挖去的正方形与正四棱锥的底面正方形相似,设圆面中挖去的正方形的面积为S',正四棱锥的底面正方形的面积为S,则S 'S =S '8=14,所以S'=2,所以截面的面积为4π-2.故选C.7.答案 92解析 因为圆锥轴截面三角形的顶角为2π3,所以任意两条母线的夹角的范围是0,设截面三角形的顶角为θ,则过圆锥顶点的轴截面面积为12×32×sin θ=92sin θ,因为θ∈0,所以sin θ∈(0,1],.所以轴截面面积的最大值是928.答案 1或17解析 因为球O的两个平行截面的面积分别为19π和36π,所以这两个平行截面的半径分别为19和6,则球心到两个平行截面的距离分别为102-(19)2=9,102-62=8.当两个平行截面在球心O的同侧时,如图1所示,则这两个平行截面之间的距离为|O1O2|=9-8=1;当两个平行截面在球心O的两侧时,如图2所示,则这两个平行截面之间的距离为|O1O2|=9+8=17.故答案为1或17.。
人教A版高中数学选择性必修第二册课后习题 第四章 数列 4.1 第1课时 数列的概念与简单表示

第四章4.1 数列的概念第1课时 数列的概念与简单表示A 级必备知识基础练1.[探究点三]数列{a n }中,若a n =√16-2n,则a 4=( ) A.12B.√2C.2√2D.82.[探究点三]已知数列-1,14,-19,…,(-1)n 1n2,…,它的第5项的值为( ) A.15B.-15C.125D.-1253.[探究点三]已知数列的通项公式a n ={3n +1,n 为奇数,2n -2,n 为偶数,则a 2a 3等于( ) A.70B.28C.20D.84.[探究点三]数列2,-5,8,-11,…,(-1)n-1(3n-1),…的第2n 项为( ) A.6n-1B.-6n+1C.6n+2D.-6n-25.[探究点二·陕西西安检测]数列-2,4,-6,8,…的通项公式可能为( )A.a n =(-1)n+12nB.a n =(-1)n 2nC.a n =(-1)n+12nD.a n =(-1)n 2n6.[探究点二、三](多选题)已知数列√2,2,√6,2√2,…,则下列说法正确的是( )A.此数列的通项公式是√2nB.8是它的第32项C.此数列的通项公式是√n +1D.8是它的第4项7.[探究点一](多选题)下面四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…,1n,…B.sin π7,sin 2π7,sin 3π7,…,sin nπ7,…C.-1,-12,-14,-18,…,-12n -1,…D.1,√2,√3,…,√n ,…8.[探究点四(角度2)]已知数列{a n }的通项公式为a n =2 021-3n,则使a n >0成立的正整数n 的最大值为 .9.[探究点三]已知数列{a n }的通项公式,写出这个数列的前5项,并作出它的图象: (1)a n =2;(2)b n ={n ,n 为奇数,-2n,n 为偶数.10.[探究点二]写出以下各数列的一个通项公式. (1)1,-12,14,-18,….(2)10,9,8,7,6,…. (3)2,5,10,17,26,…. (4)12,16,112,120,130,….(5)3,33,333,3 333,….11.[探究点三]已知数列{a n},a n=n2-pn+q,且a1=0,a2=-4.(1)求a5.(2)150是不是该数列中的项?若是,是第几项?B级关键能力提升练12.设a n=1n +1n+1+1n+2+1n+3+…+1n2(n∈N*),则a2等于( )A.14B.12+13C.12+13+14D.12+13+14+1513.若数列{a n }的通项公式为a n =-2n 2+25n,则数列{a n }的各项中最大项是( ) A.第4项B.第5项C.第6项D.第7项14.(多选题)已知数列{a n }的前4项依次为2,0,2,0,则数列{a n }的通项公式可以是( ) A.a n ={2,n 为奇数,0,n 为偶数B.a n =1+(-1)n+1C.a n =2|sinnπ2| D.a n =21-(-1)n215.[湖南长沙月考]数列{a n }的通项公式a n ={(7-t )n +4,n ≤4,t n -2,n >4,若{a n }是递增数列,则实数t 的取值范围是( ) A.[4,7)B.(325,7)C.[325,7)D.(1,7)16.已知数列{a n }的通项公式为a n =3n+k 2n,若数列{a n }为递减数列,则实数k的取值范围为 .17.函数f(x)=x 2-2x+n(n ∈N *)的最小值记为a n ,设b n =f(a n ),则数列{a n },{b n }的通项公式分别是a n = ,b n = . 18.已知数列{a n }的通项公式为a n =n 2-21n 2(n ∈N *).(1)0和1是不是数列{a n}中的项?如果是,那么是第几项?(2)数列{a n}中是否存在连续且相等的两项?若存在,分别是第几项?C级学科素养创新练19.1766年,德国有一位名叫提丢斯的数学老师,把数列0,3,6,12,24,48,96,…,经过一定的规律变化,得到新数列:0.4,0.7,1,1.6,2.8,5.2,10,…,科学家发现,新数列的各项恰好为太阳系行星与太阳的平均距离,并据此发现了“天王星”“谷神星”等天体,这个新数列就是著名的“提丢斯—波得定则”.根据规律,新数列的第8项为( )A.14.8B.19.2C.19.6D.20.420.若数列{a n }的通项公式为a n =n n 2+(n ∈N *),则这个数列中的最大项是( ) A.第43项 B.第44项 C.第45项D.第46项21.在数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项.(2)求证:此数列的各项都在区间(0,1)内. (3)区间(13,23)内有没有数列中的项?若有,有几项?第1课时 数列的概念与简单表示1.B 由a n =√16-2n可知16-2n>0,即n<8,所以a 4=√16-8=√2.2.D 第5项为(-1)5×152=-125.3.C 由a n ={3n +1,n 为奇数,2n -2,n 为偶数,得a 2a 3=2×10=20.4.B 由数列可知奇数项为正数,偶数项为负数,即可表示为(-1)n-1,又首项为2,故数列的通项公式为a n =(-1)n-1(3n-1),所以第2n 项为a 2n =(-1)2n-1(6n-1)=-(6n-1)=-6n+1.5.B 数列-2,4,-6,8,…的奇数项为负,偶数项为正,且均为2的倍数,故a n =(-1)n 2n.故选B.6.AB 数列√2,2,√6,2√2,…,即√2,√4,√6,√8,…,则此数列的通项公式为√2n ,故A 正确,C 错误;令√2n =8,解得n=32,故8是它的第32项,故B 正确,D 错误.故选AB.7.CD 选项C,D 既是无穷数列又是递增数列. 8.673 由a n =-3n>0,得n<3=67323,又因为n ∈N *,所以正整数n 的最大值为673. 9.解列表法给出这两个数列的前5项:它们的图象分别为10.解(1)a n =(-1)n+112n -1;(2)a n =11-n; (3)a n =n 2+1; (4)a n =1n (n+1);(5)a n =13(10n -1). 11.解(1)由已知,得{1-p +q =0,4-2p +q =-4,解得{p =7,q =6,所以a n =n 2-7n+6,所以a 5=52-7×5+6=-4.(2)令a n =n 2-7n+6=150,解得n=16(n=-9舍去),所以150是该数列中的项,并且是第16项.12.C ∵a n =1n+1n+1+1n+2+1n+3+ (1)2(n ∈N *),∴a 2=12+13+14.13.C 因为a n =-2n 2+25n=-2·(n-254)2+6258,且n ∈N *,所以当n=6时,a n 的值最大,即最大项是第6项. 14.ABC ∵a n ={2,n 为奇数,0,n 为偶数,∴a 1=2,a 2=0,a 3=2,a 4=0,故A 正确;∵a n =1+(-1)n+1,∴a 1=1+(-1)2=2,a 2=1+(-1)3=0,a 3=1+(-1)4=2,a 4=1+(-1)5=0,故B 正确; ∵a n =2|innπ2|s,∴a 1=2|sin π2|=2,a 2=2|sin2π2|=0,a 3=2|sin3π2|=2,a 4=2|sin4π2|=0,故C 正确; ∵a n =21-(-1)n2,∴a 1=21-(-1)12=2,a 2=21-(-1)22=1,a 3=21-(-1)32=2,a 4=21-(-1)42=1,故D 错误.故选ABC.15.A 因为数列{a n }的通项公式a n ={(7-t )n +4,n ≤4,t n -2,n >4,若{a n }是递增数列,则{7-t >0,t >1,4(7-t )+4≤t 2,解得4≤t<7. 故选A.16.(0,+∞) 由数列{a n }为递减数列可知a n+1<a n 对n ∈N *恒成立,即3(n+1)+k 2n+1<3n+k 2n,因此3(n+1)+k 2n+1−3n+k 2n=3(n+1)+k -6n -2k2n+1=3-k -3n 2n+1<0,即k>3-3n,因为n ∈N *,所以3-3n≤0(n=1时等号成立),即3-3n 的最大值为0,所以k>0.17.n-1 n 2-3n+3 当in =f(1)=1-2+n=n-1,即a n =n-1;将x=n-1代入f(x)得,b n =f(n-1)=(n-1)2-2(n-1)+n=n 2-3n+3.18.解(1)令a n =0,得n 2-21n=0,∴n=21或n=0(舍去),∴0是数列{a n }中的第21项.令a n =1,得n 2-21n 2=1,而该方程无正整数解,∴1不是数列{a n }中的项.(2)假设存在连续且相等的两项是a n ,a n+1,则有a n =a n+1,即n 2-21n 2=(n+1)2-21(n+1)2.解得n=10,∴存在连续且相等的两项,它们分别是第10项和第11项.19.C 0,3,6,12,24,48,96的规律是从第三项起,每一项是前一项的两倍,故该数列的第8项是192.新数列0.4,0.7,1,1.6,2.8,5.2,10,…的规律是原数列的每一项加4,再除以10,计算即可.20.C 设f(x)=xx 2+(x>0),则f(x)=1x+x ,又由x+x≥2√,当且仅当x=√时,等号成立,则当x=√时,x+x取得最小值,此时f(x)取得最大值,而44<√<45,a 44=44442+<a 45=45452+,则数列中的最大项是第45项. 21.(1)解a 7=7272+1=4950. (2)证明∵a n =n 2n 2+1=1-1n 2+1,∴0<a n <1,故数列的各项都在区间(0,1)内.(3)解令13<n 2n 2+1<23,则12<n 2<2,n ∈N *,故n=1,即在区间(13,23)内有且只有1项a 1.。
人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷
人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
2019年北海九中高考数学选择题专项训练(一模)
2019年北海九中高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源: 2017年河北省保定市高考数学二模试卷(理科)含答案设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=()A.{3,0} B.{3,0,1} C.{3,0,2} D.{3,0,1,2}【答案】 B【考点】1D:并集及其运算.【分析】根据集合P={3,log2a},Q={a,b},若P∩Q={0},则log2a=0,b=0,从而求得P∪Q.【解答】解:∵P∩Q={0},∴log2a=0∴a=1从而b=0,P∪Q={3,0,1},故选B.第 2 题:来源:湖南省永州市双牌县第二中学2018_2019学年高一数学上学期期中试题设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()【答案】B第 3 题:来源:山西省山西大学附中2018_2019学年高二数学下学期2月模块诊断试题理已知,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A第 4 题:来源:浙江省温州市“十五校联合体”2018_2019学年高一数学上学期期中联考试题给出下列三个等式:,.下列选项中,不满足其中任何一个等式的是 ( )A.B.C.D.【答案】 D第 5 题:来源: 2016_2017学年浙江省东阳市高二数学下学期期中试题试卷及答案是虚数单位,则复数的虚部为()A. B. C.D.【答案】C第 6 题:来源:福建省莆田市2016_2017学年高一数学下学期期中试题试卷及答案要想得到函数的图像,只须将的图像 ()A.向右平移个单位B.向左平移个单位C.向右平移个单位 D.向左平移个单位【答案】A第 7 题:来源:高中数学第三章导数及其应用 3.2导数的运算课后导练新人教B版选修1_120171101244设y=-2exsinx,则y′等于( )A.-2excosxB.-2exsinxC.2exsinxD.-2ex(sinx+cosx)【答案】D第 8 题:来源:甘肃省武威市2018届高三数学第一次阶段性过关考试试题理试卷及答案若函数的定义域为实数集,则实数的取值范围为 ( ).A. B. C. D.【答案】D第 9 题:来源:重庆市江北区2016_2017学年高一数学下学期期中试题试卷及答案理已知单位向量满足:,则()A.B.C.D.【答案】A第 10 题:来源:黑龙江省大庆市2017_2018学年高二数学上学期开学考试试题试卷及答案设则的大小关系为( )A. B.C. D.【答案】C第 11 题:来源: 2019高中数学第一章三角函数单元质量评估(含解析)新人教A版必修4下列三角函数值的符号判断正确的是 ( )A.sin 156°<0B.cos>0C.tan<0D.tan 556°<0【答案】C第 12 题:来源:湖南省岳阳县、汨罗市2017_2018学年高二数学10月月考试题理试卷及答案若将函数的图象向左平移()个单位,所得图象关于原点对称,则最小时,()A. B. C. D.【答案】B第 13 题:来源: 2017届安徽省黄山市高三第二次模拟考试理数试题含答案解析过圆锥顶点的平面截去圆锥一部分,所得几何体的三视图如图所示,则原圆推的体积为()A. B. C. D.【答案】D【解析】由已知中的三视图,圆锥母线,圆锥的高,圆锥底面半径为,故原圆锥的体积为,故选D.第 14 题:来源:宁夏石嘴山市第三中学2017届高三数学上学期第五次适应性考试(期末)试已知复数,其中为虚数单位,则A. B. C.D.2【答案】C.【解析】试题分析:由题意得,,∴,故选C.考点:复数的运算.第 15 题:来源:河北省沧州市盐山中学2018_2019学年高二数学6月月考试题理若随机变量,则有如下结论: ,, ;高三(1)班有40名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为()A. 19B. 12C. 6D. 5【答案】C第 16 题:来源:高中数学第三章导数及其应用单元检测新人教B版选修1_若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是( )A.(-2,2) B.[-2,2]C.(-∞,-1) D.(1,+∞)【答案】A f′(x)=3x2-3=3(x+1)(x-1).∵当x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0;当x>1时,f′(x)>0,∴当x=-1时,f(x)有极大值,当x=1时,f(x)有极小值.要使f(x)有3个不同的零点,只需解得-2<a<2.第 17 题:来源:新疆呼图壁县2018届高三数学9月月考试题理试卷及答案判断下列函数是同一函数的是()A、 B、C、 D、y=x0与y=1【答案】B第 18 题:来源:四川省成都市龙泉驿区2018届高三数学上学期第一次月考(8月)试题试卷及答案理已知函数若则实数的值等于()A. 3 B.-1 C.1 D.-3【答案】D第 19 题:来源:贵州省仁怀市2016-2017学年高一数学下学期开学考试试题试卷及答案已知集合M={1,2,3},N={2,3,4},则M∩N=()A. {2,3} B. {1,2,3,4} C. {1,4} D.∅【答案】A第 20 题:来源:河南省新野县2018届高三数学上学期第一次月考试题理试卷及答案设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(﹣2,1]上的图象,则f (2017)+f(2018)=()A.3 B.2 C.1D.0【答案】C第 21 题:来源:山东省夏津一中2019届高三数学10月月考试题理若,且,则等于()A. B. C.D.【答案】B第 22 题:来源:河南省鹤壁市2017_2018学年高二数学上学期第二次月考试题理试卷及答案椭圆的长轴长为()A.2 B.3 C.6 D. 9【答案】C第 23 题:来源:吉林省舒兰市第一高级中学校2018_2019学年高二数学上学期期中试题理公差不为零的等差数列的前项和为.若是的等比中项,则等于A. 18 B. 24 C. 60 D. 90()【答案】C第 24 题:来源: 2017年山东省济宁市高考模拟考试数学试题(理)含答案复数满足(为虚数单位),则复数在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A第 25 题:来源: 2016_2017学年高中数学每日一题(3月13日_3月19日)试卷及答案新人教A 版必修3从一箱分为四个等级的产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到次品(一等品、二等品、三等品都属于合格品)”的概率为A.0.7 B.0.65 C.0.3D.0.05【答案】D 【解析】设“抽到次品”为事件D,由题意知事件A,B,C,D互为互斥事件,且每次试验必有A,B,C,D中的一个事件发生,则P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=1,所以P(D)=1(0.65+0.2+0.1)=0.05.第 26 题:来源:贵州省湄江中学2016-2017学年高二数学上学期期末考试试题理试卷及答案要得到函数y=sin的图象,只需将函数y=sin 4x的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】B第 27 题:来源:湖南省长沙市2018届高三数学上学期9月月考试题理(含解析)已知抛物线y2=4x,圆F:(x-1)2+y2=1,过点F作直线l,自上而下依次与上述两曲线交于点A,B,C,D(如图所示),则有|AB|·|CD|( )(A)等于1(B)最小值是1(C)等于4(D)最大值是4【答案】A【解析】设直线l:x=ty+1,代入抛物线方程,得y2-4ty-4=0.设A(x1,y1),D(x2,y2),根据线定义得|AF|=x1+1,|DF|=x2+1,故|AB|=x1,|CD|=x2,所以|AB|·|CD|=x1x2=·=,而y1y2=-4,代入上式,得|AB|·|CD|=1.故选A.第 28 题:来源:贵州省遵义市2016_2017学年高二数学下学期第一次月考试题理试卷及答案设函数f(x)在(m,n)上的导函数为g(x),x∈(m,n),若g(x)的导函数小于零恒成立,则称函数f(x)在(m,n)上为“凸函数”.已知当a≤2时,,在x∈(﹣1,2)上为“凸函数”,则函数f(x)在(﹣1,2)上结论正确的是()A.有极大值,没有极小值 B.没有极大值,有极小值C.既有极大值,也有极小值 D.既无极大值,也没有极小值二、填空题(本大题共4小题,每小题5分,共20分).【答案】A第 29 题:来源:黑龙江省大庆市2017_2018学年高一数学上学期期中试题试卷及答案函数的单调递减区间是()A. B. C. D.【答案】A第 30 题:来源:河北省武邑中学2018_2019学年高二数学下学期开学考试试题理在同一直角坐标系中,函数的图像可能是()【答案】D第 31 题:来源:广东省天河区普通高中2017_2018学年高二数学11月月考试题08试卷及答案如果双曲线过点P(6,),渐近线方程为,则此双曲线的方程为_______________.【答案】第 32 题:来源:黑龙江省伊春市2017_2018学年高二数学上学期期中试题理试卷及答案下列选项中,的一个充分不必要条件的是()A. B. C. D.【答案】B第 33 题:来源:黑龙江省青冈2018届高三第一次模拟考试数学试卷(理)含答案若满足条件,则目标函数的最小值是()A. B. C. D.【答案】B第 34 题:来源: 2016_2017学年广西钦州市高新区高一数学下学期期中试题试卷及答案若等差数列中,已知,,,则 n=( )A. 50 B.51 C.52 D.53【答案】 B第 35 题:来源: 2017_2018学年高中数学第三章概率章末综合测评试卷及答案北师大版必修3在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,p2为事件“xy≤”的概率,则( )A.p1<p2< B.p2<<p1C.<p2<p1 D.p1<<p2【答案】 D第 36 题:来源: 2017届河北省张家口市高三4月统一模拟考试数学试题(理)含答案、已知等差数列的前10项和为165,,则A.14 B.18 C.21 D.24【答案】C第 37 题:来源:河北省定州市2016-2017学年高二数学下学期开学考试试题试卷及答案(承智班)如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的表面积为()A. B. C. D.【答案】C第 38 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案已知在△ABC中,sinA∶sinB∶sinC=3∶5∶7,那么这个三角形的最大角是( )A.135° B.90°C.120° D.150°【答案】C第 39 题:来源:广东省广州市2017_2018学年高一数学上学期10月段考试题试卷及答案.已知,且那么()A. B. C.10 D.【答案】 D.第 40 题:来源:甘肃省兰州市2017_2018学年高一数学上学期期中试题试卷及答案已知函数,则满足的a的取值范围是()A.B.∪C.D.∪【答案】D。
高二数学第三次月考卷02(人教A版选修1~4章)-24-25学年高中上学期第三次月考(考试版A4)
2023-2024学年高二数学上学期第三次月考卷02(人教A 版2019)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A 版2019选择性必修第一册全部内容+选择性必修第二册第四章数列(第一章 空间向量与立体几何21%+第二章 直线和圆的方程21%+第三章 圆锥曲线的方程26%+第四章 数列32%)。
5.难度系数:0.65。
第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等差数列{}()*n a n ÎN 中,274110,2a a a a =-=,则7a =( )A .40B .30C .20D .102.经过点()()3,2,4,4A B -的直线在y 轴上的截距是( )A .207B .207-C .10D .-23.已知抛物线C :2y mx =过点(,则抛物线C 的准线方程为( )A .58x =B .58x =-C .38y =D .38y =-4.设,R x y Î,向量(,1,1)a x =-r ,(1,,1)b y =r ,(2,4,2)c =-r ,且a c ^r r ,//b c r r ,则×=r r a b ( )A .B .0C .1D .25.已知点P 是圆 22:4210C x y x y +--+=上一点,点(1,5)Q -,则线段PQ 长度的最大值为( )A .3B .5C .7D .96.已知等比数列{}n a 的前n 项和为n S ,若51012,48S S ==,则20S =( )A .324B .420C .480D .7687.已知正方体1111ABCD A B C D -的棱长为1,若存在空间一点P ,满足1312433DP DA DC DD =+-u uuu r uuu r u uu r uuu r ,则点P 到直线BC 的距离为( )A .56B C D 8.已知椭圆E :22221x y a b +=(0a b >>)的左焦点为F ,过焦点F 作圆222x y b +=的一条切线l 交椭圆E 的一个交点为A ,切点为Q ,且2OA OF OQ +=uuu r uuu r uuu r (O 为坐标原点),则椭圆E 的离心率为( )A B C D 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设{}n a 是等差数列,n S 是其前n 项的和,且67789,a a S S S >=>,则下列结论正确的是( )A .80a =B .0d >C .7S 与8S 均为n S 的最大值D .8S 为n S 的最小值10.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,直线y kx =与双曲线交于,A B 两点(点A 在第一象限),且12F AF Ð=,若223BF AF =,则下列结论正确的是( )A B .双曲线的渐近线方程为23y x =±C .23a b=D .若点P 是双曲线上异于,A B 的任意一点,则94PA PB k k ×=11.如图,已知正六棱柱ABCDEF A B C D E F ¢¢¢¢¢¢-的底面边长为2,所有顶点均在球O 的球面上,则下列说法错误的是( )A .直线DE ¢与直线AF ¢异面B .若M 是侧棱CC ¢上的动点,则AM MD ¢+C .直线AF ¢与平面DFE ¢D .球O 的表面积为18π第二部分(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分,其中12题第一空2分,第二空3分。
15-全章综合检测高中数学必修一人教A版
解得−1 ≤ ≤ 0;当 ≥ 2时,
≤ 0,
2
max
= 0 = 2,
2 − −4 + 6 ≤ 8,
= 2 = −4 + 6,则ቊ
解得2 ≤ ≤ 3;当
≥ 2,
0 < ≤ 1时,
min
= = − 2 + 2,
max
= 2 = −4 + 6,则
max −
min
≤ 8,即对任意 ∈ [0,2],
≤ 8恒成立. = 2 − 2 + 2 = −
∈ [0,2],当 ≤ 0时,
min
= 0 = 2,
max
min
− 2 + 2,
= 2 = −4 + 6,
−4 + 6 − 2 ≤ 8,
=
3
1
1+ 2
3 2
,
2
+1
> 0,且 单调递增,A符合题意;当 = 1时, =
为奇函数,当 > 0时, =
意;当 > 0时, =
=
为偶函数,当 > 0时,
3
2 +1
3
2 +1
3
1
+
3
,
2
+1
> 0,且 先增后减,B符合题
6 − 2, ∈ (2,3],
有 − = ,所以在 −1,1 上, 的图象关于轴对称,画出
的大致图象,如图,则由图可知 图象的对称轴为直线 = 2 ∈ ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料 (灿若寒星 精心整理制作)新华中学2011—2012学年度上学期第一次月考高二级数学科(理科)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在正整数100至500之间能被11整除的个数为A .34B .35C .36D .372.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是A .24B .27C .30D .333.设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)为 A .95B .97C .105D .1924.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大A .第10项B .第11项C .第10项或11项D .第12项5.在△ABC 中,若0030,6,90===B a C ,则b c -等于 A .1B .1-C .32D .32-6.等比数列{a n },a n >0,q ≠1,且a 2、21a 3、a 1成等差数列,则5443a a a a ++等于A .215+ B .215- C .251- D .215± 7.数列{a n }前n 项和是S n ,如果S n =3+2a n (n ∈N *),则这个数列是A .等比数列B .等差数列C .除去第一项为等比数列D .除去第一项为等差数列8.在等差数列{a n }中,若S 9=18,S n =240,4n a -=30,则n 的值为A .14B .15C .16D .179.在ABC ∆中,若2sin sin cos 2AB C =,则ABC ∆是 A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形10.数列{a n }满足a 1=1, a 2=32,且n n n a a a 21111=++- (n ≥2),则a n 等于 A .12+n B .(32)n -1 C .(32)nD .22+n 二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卷的相应位置上.) 11. 已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c ,若62a c ==+且75A ∠=o ,则b =_____________.12.等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若n n T S =132+n n,则1111b a =_____________. 13.数列}{n a 满足12 (01),1 (1).n n n n n a a a a a +≤≤⎧=⎨->⎩且167a =,则2010a =_____________.14.数列{a n }中,a n +1=nna a 31+,a 1=2,则a 4=_____________.三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)已知{a n }是一个等差数列,且21a =,55a =-。
(Ⅰ)求{}n a 的通项n a ; (Ⅱ)求{}n a 前n 项和n S 的最大值.16.(本小题满分12分)已知数列}{n a 满足:111,2n n a a a n -=-=且.(Ⅰ)求234,a a a ,; (Ⅱ)求数列}{n a 的通项n a .17.(本小题满分14分)在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积.18.(本小题满分14分)等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S =33960b S =.(Ⅰ)求n a 与n b ; (Ⅱ)求和:12111nS S S +++.19.(本小题满分14分)设数列{}n a 满足211233333n n na a a a -++++=…,a ∈*N . (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S .20.(本小题满分14分)设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+(Ⅰ)设12n n n b a a +=-,证明数列{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式.新华中学2011—2012学年度上学期第一次月考高二理科数学答案及评分标准一、选择题:(本题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案CDBCCBABAA二、填空题:(本题共4小题,每小题5分,共20分) 11. 2 12.213213.3714. 192三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 15. 解: (方法一):(Ⅰ)设{}n a 的公差为d ,由已知条件111,45,a d a d +=⎧⎨+=-⎩………………2分 解得13a =,2d =-.………………5分 所以1(1)25n a a n d n =+-=-+.………………8分 (Ⅱ)221(1)44(2)2n n n S na d n n n -=+=-+=--. ………………11分 所以 当2n =时, n S 取得最大值4.………………12分(方法二):(Ⅰ)设 1(1)n a a n d =+-,则211511,3,45, 2.a a d a a a d d =+==⎧⎧⇒⎨⎨=+=-=-⎩⎩3(1)(2)n a n =+-⋅-, ∴52n a n =-.(Ⅱ)520n a n =-≥, 52n ≤. 2n ≤. 要使n S 最大,只有使n a 的各项非负.所以 当2n =时, max 212()314n S S a a ==+=+=.16. 解: (1)2123422,415;1119a a a a a -=⨯∴=+===同理,,………………6分()()()21324312(2)22232421223121221n n n a a a a a a a a n a n n n n n --=⨯-=⨯-=⨯-=⨯=+⨯+++-+=+⨯=+-以上等式相加得:………………9分………………12分17. 解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··························································· 3分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ·························· 6分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ································· 9分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ···········12分18. 解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=.………………2分 依题意有22233(6)64(93)960S b d q S b d q =+=⎧⎨=+=⎩………………4分解得2,8d q =⎧⎨=⎩或65403d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去) ………………6分故132(1)21,8n n n a n n b -=+-=+ = ………………8分(2)35(21)(2)n S n n n =++++=+ ………………10分∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+11111111(1)2324352n n =-+-+-++-+ 1111(1)2212n n =+--++32342(1)(2)n n n +=-++ ………………14分19. 解:(I)2112333...3,3n n na a a a -+++=221231133...3(2),3n n n a a a a n ---+++=≥1113(2).333n n n n a n --=-=≥………………4分 1(2).3n n a n =≥………………6分 验证1n =时也满足上式,*1().3n n a n N =∈………………7分 (II) 3n n b n =⋅,………………8分23132333...3n n S n =⋅+⋅+⋅+⋅...①....②①-②得: 231233333n n n S n +-=+++-⋅………………11分即11332313n n n S n ++--=-⋅-, 111333244n n n n S ++=⋅-⋅+⋅ ………………14分20. 解:(I )由11,a =及142n n S a +=+,有12142,a a a +=+21121325,23a ab a a =+=∴=-=………………2分由142n n S a +=+,...①则当2n ≥时,有142n n S a -=+.....②①-②得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-………………5分又12n n n b a a +=-,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.…7分(II )由(I )可得11232n n n n b a a -+=-=⋅,………………9分23413132333...3n n S n +==⋅+⋅+⋅+⋅113224n n n n a a ++∴-=∴数列{}2n n a 是首项为12,公差为34的等差数列.………12分 ∴1331(1)22444n na n n =+-=-,2(31)2n n a n -=-⋅ ………………14分。