八下直角三角形1.1-1.2
数学湘教版八年级下册第1章直角三角形 教案

1.1.1 直角三角形的性质教学目标知识与技能:1.理解并掌握直角三角形的判定定理和斜边上的中线性质定理。
2.能运用直角三角形的判定与性质,解决有关的问题。
过程与方法:通过对几何问题的“操作—探究—讨论—交流—讲评”的学习过程,提高分析问题和解决问题的能力。
情感、态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参与数学思维与交流活动。
教学重点:直角三角形斜边上的中线性质定理的推导与运用。
教学难点:“操作—探究—讨论—交流—讲评”得出直角三角形斜边上的中线性质定理。
教学过程一、教学引入1、三角形的内角和是多少度。
学生回答。
2、什么是直角三角形?日常生活中有哪些物品与直角三角形有关?请举例说明。
3、 等腰三角形有哪些性质? 二、探究新知1、探究直角三角形的判定定理:⑴ 观察小黑板上的三角形,由∠A +∠B 的度数,能说明什么? ——两个锐角互余的三角形是直角三角形。
⑵ 讨论:直角三角形的性质和判定定理是什么关系? 2、探究直角三角形的性质:⑴ 学生画出直角三角形ABC 斜边的中线CD 。
⑵ 测量并讨论斜边上的中线的长度与斜边长度之间的关系。
⑶ 学生猜想:在直角三角形中斜边上的中线等于斜边的一半。
3、 共同探究:例 已知:在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线。
求证:CD =12AB 。
[教师引导:数学方法——倒推法、辅助线]三、应用迁移 巩固提高练习:如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形。
即已知CD 是△ABC 的AB 边上的中线,且CD =12AB 。
求证:△ABC 是直角三角形。
提示:倒推法,要证明△ABC 是直角三角形,只有通过定义和判定定理,定义与判定定理都与角有关系。
现在我们只有边的关系,我们学过的边与角能联系起来的就是等腰三角形。
还要找到与90°有关的角,但是我们只知道三角形的内角和为180°。
八下第1章直角三角形1-1直角三角形的性质与判定Ⅰ1-1-2含30°角的直角三角形的性质及其应用习题

解:过点D作DC⊥AB于点C.∵∠DAB=15°, ∠DBC=30°,∴∠ADB=15°,∴DB=AB=100 m, ∴在Rt△DBC中,DC= ×100=50(m). 答:河宽是50 m.
8.[临湘期中]如图,已知在△ABC中,∠C=90°,∠B=60°,D是BC上一点,过点D作DE∥AC,交AB于点E,若BD=3,CD=2,则AE的长为________.
D
6.[教材改编题]如图是某建筑物的屋顶架的示意图,D是斜梁AB的中点,立柱BC,DE都垂直于横梁AC,DE=2 m,∠A=30°,则AB等于________m.
8
【点拨】∵∠A=30°,DE⊥AC,∴DE= AD.又DE=2 m,∴AD=4 m.∵D是.[教材改编题]如图,吴敏在河岸的点A测得看对岸点D的视线与其所在河岸的直线成15°角,然后沿该直线行走100 m到达点B,此时测得看对岸点D的视线与前进方向成30°角,问河宽是多少米?
4
9.设计一张折叠型方桌如图所示,若AO=BO=50 cm,CO=DO=30 cm,将桌子放平后,要使AB离地面的高度为40 cm,则两条桌腿需要叉开的角度(∠AOB)应为( ) A.60° B.90° C.120° D.150°
C
【点拨】过点D作DE⊥AB交AB于点E.在Rt△ADE中,AD=OA+OD=50+30=80(cm),易知DE=40 cm,∴DE= AD.∴∠BAD=30°.∵OA=OB,∴∠ABC=∠BAD=30°.∴∠AOB=180°-2×30°=120°.故选C.
10.[邵阳洞口期中]如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为点E.若BC=9,则DE的长是( ) A.3 B.4 C.4.5 D.5
八下第1章直角三角形1-1直角三角形的性质和判定Ⅰ第2课时含30°角的直角三角形的性质习题新版湘教版

腰长为12 m,则底边上的高是( B
A.4 m
B.6 m
C.10 m
D.12 m
)
(第6题)
7.(母题:教材P8习题T6)如图,在△ABC中,∠C=90°,点
E是边AC上的点,且∠1=∠2,DE垂直平分边AB,垂足
为点D.若EC=3 cm,则AE的长为 6 cm
∴∠B=30°,∴∠BAC= (180°-∠B)=75°.
②如图(b),AC=BC,AD⊥BC交BC的延长线于点D,
AD在三角形的外部,∴∠CAB=∠B.由题意知AD= BC=
AC,∴∠ACD=30°=∠B+∠CAB.
∵∠B=∠CAB,∴∠BAC= ∠ACD=15°.
③如图(c),AC=AB,AD⊥BC,BC边为等腰三角形底
交BC于点D,E为AB上一点,连接DE,则下列说法错误的
是( D
)
A.∠CAD=30°
B.AD=BD
C.BD=2CD
D.CD=ED
3.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC
绕点C按顺时针方向旋转一定角度得到△DEC,点D恰好在
AB上.
(1)若AC=4,求DE的长度;
【解】在△ABC中,∠ACB=90°,
形状
12. [新考法 分类判断法]如图,在Rt△ABC中,∠C=90°,
∠A=30°,BC=12 cm.动点P从点A出发,沿AB向点B运
动,动点Q从点B出发,沿BC向点C运动.如果动点P以2
cm/s,动点Q以1 cm/s的速度同时出发,设运动时间为t
s,解答下面的问题:
八年级下册数学直角三角形的性质和判定(1)

教学过程:
共案
个案
(一)知识回顾:
1.在前面我们学习了三角形的哪些概念及性质?
2.三角形按角可分哪几类?什么叫做直角三角形?
3.直角三角形的性质:
课练(一):1.△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是__________三角形。
2.已知△ABC中,∠A=∠B,∠B=∠C,则∠A=________,∠B=_______,∠C=________。
②上述条件拼成的图形有什么特点?仔细观察,回答下面问题:
1.图中有哪些相等线段?
2.点D具备什么特征?
线段CD是△ABC的什么线?
△ABC中AB的中线CD与AB有什么数量关系?
3.△ABC是什么样的三角形?为什么?
结论:
性质定理:直角三角形斜边上的中线等于斜边的一半。
判定定理:如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
∠C=_________。
3.动手操作及探究:
操作:①画一个Rt△ABC;②找到斜边AB的中点D;③连接CD(CD就是Rt△ABC斜边
上的中线。)④量一量DA、DB、DC的长度,你发现什么结论?
猜想:斜边上的中线与斜边的长度有何关系?怎么证明?
探究:①用两个腰相等,且顶角互补的等腰三角形能拼成一个三角形吗?
课练(三):1.Rt△ABC中,∠C=90°,O为AB的中点,若OC=5则AB=若AB=18,则OC=若AB+OC=18,则AB=OC=.
2.在△ABC中,CE是AB边上的中线,且CE=AE,则△ABC是_________三角形,若∠CEA=80°,则∠B=_________,
∠A=_________。
(2)Rt△ABC中,∠C=90°,∠B=28°,则∠A=_________
八年级数学下册(北师版) 周周清 检测内容:1

检测内容:1.1-1.2得分________卷后分________评价________一、选择题(每小题5分,共35分)1.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为(B)A.25°B.65°C.70°D.75°第1题图第3题图2.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边.若(a-2)2+b-2+|c-22 |=0,则此三角形是(A)A.等腰直角三角形B.直角三角形C.等腰三角形D.钝角三角形3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是△ABC,△BCD的角平分线,则图中的等腰三角形有(A)A.5个B.4个C.3个D.2个4.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植一草皮以美化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要(B)A.300a元B.150a元C.450a元D.225a元5.等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数是(C)A.70°B.110°C.70°或110°D.20°或160°6.如图,点A,B,C在同一条直线上,△ABD,△BCE均为等边三角形,连接AE 和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM, 则∠DMA的度数为(B)A.45°B.60°C.75°D.90°第6题图第7题图7.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有(D)A .1个B .2个C .3个D .3个以上二、填空题(每小题5分,共20分)8.命题“两条直线相交只有一个交点”的逆命题是__只有一个交点的两条直线一定相交__,它是__真__命题.9.如图,在△ABC 中,AB =AC ,AD ,CE 是三角形的高,垂足为D ,E ,若∠CAD =20°,则∠BCE =__20°__.第9题图第10题图10.如图,在Rt △ABC 中,∠C =90°,点D 在线段BC 上,且∠B =30°,∠ADC =60°,BC =3,则BD 的长度为__2__.11.在△ABC 中,AB =22 ,BC =1,∠ABC =45°,以AB 为边作等腰直角三角形ABD ,使∠ABD =90°,连接CD ,则线段CD 的长为.三、解答题(共45分)12.(8分)如图,AC ⊥BC ,BD ⊥AD ,AC ,BD 相交于点O ,AC =BD .(1)求证:BC =AD ;(2)求证:△OAB 是等腰三角形.证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠D =∠C =90°,在Rt △ADB 与Rt △BCA 中,⎩⎪⎨⎪⎧AB =BA ,AC =BD , ∴Rt △ABD ≌Rt △BAC (HL),∴BC =AD (2)由(1)得,∠DBA =∠CAB ,∴OA =OB ,即△OAB 是等腰三角形13.(12分)如图,△ABC 为等边三角形,∠1=∠2=∠3.(1)求∠BEC 的度数;(2)△DEF 是等边三角形吗?请说明理由.解:(1)∠BEC=∠ADE+∠DFE=∠ABD+∠2+∠CAF+∠1=∠ABC+∠BAC=60°+60°=120°(2)是等边三角形.理由:由(1)知∠DEF=180°-120°=60°.同理∠EDF=∠DFE=60°,∴△DEF是等边三角形14.(12分)如图,把长方形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.解:(1)证明:由题意得B′F=BF,∠B′FE=∠BFE.又∵AD∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B′EF,∴B′F=B′E,∴B′E=BF(2)a,b,c的关系为a2+b2=c2,连接BE,则BE=B′E,由(1)知B′E=BF=c,∴BE=c.∵AE2+AB2=BE2,又∵AE=a,AB=b,∴a2+b2=c2(若写a+b>c也可以)15.(13分)(1)操作发现:如图①,D是等边三角形ABC边BA上一动点(点D与点B 不重合),连接DC,以DC为边在BC上方作等边三角形DCF,连接AF.你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)类比猜想:如图②,当动点D运动至等边三角形ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:如图③,当动点D在等边三角形ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方,下方分别作等边三角形DCF和等边三角形DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你探究的结论.解:(1)AF=BD,证明△ACF≌△BCD(SAS)(2)仍成立(3)AF+BF′=AB,证明:由(1)知,AF=BD,易证△ACD≌△BCF′(SAS),∴BF′=AD,∴AF+BF′=BD+AD=AB。
湘教版八下数学1.1.1《直角三角形的性质与判定(一)》教学设计

湘教版八下数学1.1.1《直角三角形的性质与判定(一)》教学设计一. 教材分析湘教版八下数学1.1.1《直角三角形的性质与判定(一)》是初中数学的重要内容,主要介绍了直角三角形的性质和判定方法。
本节课的内容是学生掌握直角三角形的基本性质,包括勾股定理、直角三角形的边角关系等,同时学习如何运用这些性质判定一个三角形是否为直角三角形。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质和判定方法,对勾股定理也有了一定的了解。
但部分学生对直角三角形的性质和判定方法的掌握程度不够深入,尤其是一些学生对理论证明的过程不够熟练。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.理解直角三角形的性质,掌握直角三角形的判定方法。
2.能够运用勾股定理和直角三角形的性质解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.直角三角形的性质和判定方法的掌握。
2.勾股定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索、发现问题,培养学生的独立思考能力。
2.使用多媒体课件,直观展示直角三角形的性质和判定方法,提高学生的学习兴趣。
3.小组讨论,让学生在合作中学习,提高团队协作能力。
4.通过课后练习,巩固所学知识,提高学生的实际应用能力。
六. 教学准备1.多媒体课件2.教学PPT3.直角三角形的相关教具七. 教学过程1.导入(5分钟)利用多媒体课件展示直角三角形的图片,引导学生回顾直角三角形的定义,激发学生的学习兴趣。
2.呈现(10分钟)教师讲解直角三角形的性质,包括勾股定理、直角三角形的边角关系等,并通过例题展示如何运用这些性质判定一个三角形是否为直角三角形。
3.操练(10分钟)学生分组讨论,每组选取一道练习题,运用所学知识进行解答,教师巡回指导。
4.巩固(10分钟)教师选取几道具有代表性的练习题,让学生上黑板演示解题过程,讲解解题思路,巩固所学知识。
1.1-1.2 直角三角形的性质和判定
1.1-1.2 直角三角形的性质和判定知识总结直角三角形的性质定理:直角三角形的判定定理:1.直角三角形的两个锐角____。
1.有两个___角的三角形是直角三角形。
2. 直角三角形斜边上的___等于斜边的一半。
2.一条边上的___等于这条边的一半的三角形是直角三角形。
3.在直角三角形中,如果一个锐角等于___,那么它所对的直角边等于斜边的___。
4.在直角三角形中,如果一条直角边等于斜边的___,那么这条直角边所对的角等于___。
5.直角三角形两直角边a,b的平方和,等于斜边c 3.如果三角形的三条边长a,b,c满足关的平方。
即________。
(勾股定理)系:_______,那么这个三角形是直角三角形。
将以上的性质定理和判定定理转化成几何语言:直角三角形的性质定理:直角三角形的判定定理:1. 1.2. 2.3.45. 3.练习达标1.如图,△ABC 中,∠C=90°,∠A=60 °,EF 是AB 的垂直平分线,判断CE 与BE 之间的关系2、如图,在△ABC 中,∠B=∠C ,D 、E 分别是BC 、AC 的中点,AB=6,求DE 的长。
3、已知:如图,在△ABC 中,AB = AC , 点D 在BC 上 , ∠DAC = 90°, AD =21CD.求:∠BAC 的度数4、如右图,已知∠BAC=90°,∠C=30°,AD ⊥BC 于D,DE ⊥AB 于E,BE=1,求BC ? .5、在△ABC 中,∠BAC=90°,AC=5cm ,AD 是高,AE 是斜边上的中线,且DC=21AC ,求∠B 的度数及AE 的长。
6.求知中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?E F CBA。
湘教版八下数学1.1直角三角形的性质和判定(Ⅰ)第2课时含30°锐角的直角三角形的性质及其应用说课稿
湘教版八下数学1.1直角三角形的性质和判定(Ⅰ)第2课时含30°锐角的直角三角形的性质及其应用说课稿一. 教材分析湘教版八下数学1.1直角三角形的性质和判定(Ⅰ)第2课时含30°锐角的直角三角形的性质及其应用,这部分内容是初中数学的重要知识点,主要让学生了解含30°锐角的直角三角形的性质,并学会运用这些性质解决实际问题。
教材通过例题和练习,使学生掌握含30°锐角的直角三角形的性质,培养学生的运算能力和解决问题的能力。
二. 学情分析八年级的学生已经学习了直角三角形的基本概念和性质,对勾股定理也有了一定的了解。
但学生在解决实际问题时,往往不能灵活运用所学知识。
因此,在教学过程中,我将以学生为主体,引导学生主动探索、发现和运用含30°锐角直角三角形的性质,提高学生解决问题的能力。
三. 说教学目标1.知识与技能:使学生掌握含30°锐角的直角三角形的性质,能熟练运用这些性质解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现含30°锐角直角三角形的性质,培养学生的运算能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:使学生掌握含30°锐角的直角三角形的性质。
2.教学难点:如何引导学生发现含30°锐角直角三角形的性质,并运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探索、发现和运用含30°锐角直角三角形的性质。
2.教学手段:利用多媒体课件、实物模型等,辅助教学,提高教学效果。
六. 说教学过程1.导入:通过回顾直角三角形的基本概念和性质,引导学生思考含30°锐角的直角三角形的性质。
2.探究:分组讨论,每组尝试找出含30°锐角直角三角形的性质,并归纳总结。
八年级下数学全套教案浙教版
八年级下数学全套教案浙教版一、教学内容1. 第一章:三角形的初步认识1.1 三角形的定义及性质1.2 三角形的判定1.3 三角形的角平分线、中线、高线2. 第二章:全等三角形2.1 全等三角形的定义及判定2.2 全等三角形的性质2.3 直角三角形的全等3. 第三章:勾股定理3.1 勾股定理及其逆定理3.2 勾股数3.3 勾股定理在实际问题中的应用二、教学目标1. 掌握三角形的基本概念、性质及判定方法。
2. 理解并运用全等三角形的判定及性质。
3. 熟练掌握勾股定理及其逆定理,并能应用于解决实际问题。
三、教学难点与重点1. 教学难点:三角形的判定方法全等三角形的判定及性质勾股定理在实际问题中的应用2. 教学重点:三角形的基本概念和性质全等三角形的判定方法勾股定理及其逆定理四、教具与学具准备1. 教具:三角板、直尺、量角器、多媒体课件2. 学具:三角板、直尺、量角器、练习本五、教学过程1. 实践情景引入:通过生活中的实例,引导学生认识三角形,并探讨三角形的性质。
2. 例题讲解:讲解三角形的判定方法,通过例题巩固知识。
3. 随堂练习:让学生运用三角形判定方法进行练习。
4. 全等三角形的判定及性质:讲解全等三角形的判定方法,通过例题和练习巩固知识。
5. 勾股定理及其逆定理:引导学生发现勾股定理,并通过实验验证逆定理。
六、板书设计1. 三角形的定义及性质2. 三角形的判定方法3. 全等三角形的判定及性质4. 勾股定理及其逆定理七、作业设计1. 作业题目:已知三角形两边和夹角,求第三边。
已知三角形两边和一个角,判断三角形是否全等。
应用勾股定理解决实际问题。
2. 答案:(1)利用余弦定理计算第三边长度。
(2)根据全等三角形的判定方法进行判断。
(3)利用勾股定理计算实际问题中的未知长度。
八、课后反思及拓展延伸1. 反思:关注学生对三角形、全等三角形和勾股定理的理解程度,及时进行辅导。
2. 拓展延伸:引导学生探索四边形、多边形的性质和判定方法。
湘教版数学八年级下册第1章《直角三角形》
初中数学试卷2016—2017学年湘教版八年级数学下册第1章《直角三角形》1.1—1.2同步练习与解析一.选择题(共8小题)1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60° D.70°2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30° C.20° D.10°3.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形 B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A4.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.62C.63D.125.如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A.3 B.6 C.63D.126.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10 B.6 C.8 D.57.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.258.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°二.填空题(共8小题)9.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.10.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于度.11.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= .12.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.13.若一直角三角形的两个锐角的差是20°,则其较大锐角的度数是.14.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为.15.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为,面积为.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= .三.解答题(共5小题)17.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.18.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.19.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?20.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.21.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).四.回顾与思考(1小题)22.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).2016—2017学年湘教版八年级数学下册第1章《直角三角形》1.1—1.2同步练习解析一.选择题(共8小题)1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60° D.70°【分析】根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.【解答】解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.【点评】本题考查了直角三角形两锐角互余的性质,角平分线的定义,熟记性质是解题的关键.2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30° C.20° D.10°【分析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B 的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90°,∠A=55°,∴∠B=180°﹣90°﹣55°=35°,由折叠可得:∠CA′D=∠A=55°,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55°﹣35°=20°.故选:C.【点评】此题考查了直角三角形的性质,三角形的外角性质,以及折叠的性质,熟练掌握性质是解本题的关键.3.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形 B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A【分析】在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.【解答】解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∵图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∵∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∵∠2=∠A;故本选项正确.故选B.【点评】本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.4.(2016•百色)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.62C.63D.12【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12AB=12×12=6,故答选A.【点评】本题考查解直角三角形,解题的关键是正确的利用合适的边角关系.5.如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A.3 B.6 C.63D.12【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD,进而可得答案.【解答】解:∵∠ABC=90°,点D为斜边AC的中点,∴AC=2BD,∵BD=6cm,∴AC=12cm,故选:D.【点评】此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.6.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10 B.6 C.8 D.5【分析】由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.【解答】解:∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=12AB=12×10=5,故选D.【点评】本题主要考查了等腰三角形的性质,三角形的中位线,熟练掌握三角形的中位线是解决问题的关键.7.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.25【分析】根据勾股定理求出斜边长,根据直角三角形斜边上的中线等于斜边的一半求出答案.【解答】解:∵两直角边分别为12和16,∴斜边2212+16=20,∴斜边上的中线的长为10,故选B.【点评】本题考查的是直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.8.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:连接AC,设每个小正方形的边长都是a,根据勾股定理可以得到:AC=BC=5a,AB=10a,∵(5a)2+(5a)2=(10a)2,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°,故选B.【点评】本题主要考查了勾股定理,利用勾股定理判断△ABC是等腰直角三角形是解决本题的关键.二.填空题(共8小题)9.(2016•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 45 度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.10.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于30 度.【分析】根据直角三角形斜边上的中线等于斜边的一半可得到EC=AE,从而得到∠A=∠ACE,再由折叠的性质及三角形的外角性质得到∠B=2∠A,从而不难求得∠A的度数.【解答】解:∵在Rt△ABC中,CE是斜边AB的中线,∴AE=CE,∴∠A=∠ACE,∵△CED是由△CBD折叠而成,∴∠B=∠CED,∵∠CEB=∠A+∠ACE=2∠A,∴∠B=2∠A,∵∠A+∠B=90°,∴∠A=30°.故答案为:30.【点评】此题主要考查:(1)在直角三角形中,斜边上的中线等于斜边的一半;(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.11.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12 米.【分析】如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.【点评】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.13.若一直角三角形的两个锐角的差是20°,则其较大锐角的度数是55°.【分析】设较大的锐角度数是x°,根据直角三角形两锐角互余表示出较小的锐角,然后列出方程求解即可.【解答】解:设较大的锐角度数是x°,则较小的锐角为(90﹣x)°,由题意得,x﹣(90﹣x)=20,解得x=55,即较大锐角的度数是55°.故答案为:55°.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并列出方程是解题的关键.14.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为40°.【分析】设直角三角形中一个锐角为x,另一个锐角为2x﹣60°,根据两个锐角之和为90度即可求出答案.【解答】解:设直角三角形中一个锐角为x,另一个锐角为2x﹣60°,根据两个锐角之和为90°可得,x+2x﹣60°=90°,解的x=50°,较小角为90°﹣50°=40°,故答案为40°.【点评】本题主要考查了直角三角形的性质,解题的关键是掌握直角三角形中两个锐角之和为90°,此题基础题.15.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为12cm ,面积为30cm2.【分析】根据直角三角形的斜边上中线性质求出AB,根据三角形的面积公式求出即可.【解答】解:∵CD是Rt△ACB斜边AB上的中线,∴AB=2CD=2×6cm=12cm,∴Rt△ACB的面积S=12AB×CE=1212cm×5cm=30cm2,故答案为:12cm,30cm2.【点评】本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出AB 的长,注意:直角三角形斜边上的中线等于斜边的一半.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= 3 .【分析】过P作PC垂直于MN,由等腰三角形三线合一性质得到MC=CN,求出MC的长,在直角三角形OPC中,利用30度角所对的直角边等于斜边的一半求出OC的长,由OC﹣MC求出OM的长即可.【解答】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=12MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=12OP=4,则OM=OC﹣MC=4﹣1=3,故答案为:3【点评】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.三.解答题(共5小题)17.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.18.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【分析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.【解答】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.【点评】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.19.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?【分析】根据三角形外角的性质得到∠CAD=∠ADB﹣∠ACB=15°,根据等腰三角形的性质得到AD=CD=20,由直角三角形的性质即可得到结论.【解答】解:∵∠ADB=30°,∠ACB=15°,∴∠CAD=∠ADB﹣∠ACB=15°,∴∠ACB=∠CAD,∴AD=CD=20,又∵∠ABD=90°,∴AB=12AD=10, ∴树的高度为10米.【点评】本题考查了含30°角的直角三角形的性质,三角形的外角的性质,熟练掌握含30°角的直角三角形的性质是解题的关键.20.如图,在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的中线,DE ⊥AB 于点D ,交AC 于点E .(1)若BC=3,AC=4,求CD 的长;(2)求证:∠1=∠2.【分析】(1)由勾股定理求出AB ,再根据直角三角形斜边上的中线等于斜边的一半解答即可;(2)由直角三角形的锐角关系和等腰三角形的性质即可得出结论.【解答】(1)解:∵∠ACB=90°,BC=3,AC=4,∴22AC BC ,∵CD 是AB 边上的中线,∴CD=12AB=2.5; (2)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵DE ⊥AB ,∴∠A+∠1=90°,∴∠B=∠1,∵CD 是AB 边上的中线,∴BD=CD ,∴∠B=∠2,∴∠1=∠2.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,等腰三角形的判定与性质;熟记性质是解题的关键.21.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).【分析】(1)根据直角三角形的性质得到EF=12BC,DF=12BC,等量代换即可;(2)根据三角形内角和定理和等腰三角形的性质计算;【解答】解:(1)△DEF是等腰三角形.∵CE,BD分别是边AB,AC上的高,F是BC边上的中点,∴EF=12BC,DF=12BC,∴EF=DF,∴△DEF是等腰三角形;(2)∵FE=FB,FD=FC,∴∠FEB=∠FBE,∠FDC=∠FCD,∴∠FEB+∠FDC=∠FBE+∠FCD=180°﹣∠A=180°﹣x°,∠AED+∠ADE=180°﹣∠A=180°﹣x°,∴∠FED+∠FDE=360°﹣(180°﹣x°)﹣(180°﹣x°)=2x°,∴∠EFD=180°﹣2x°;【点评】本题考查的是直角三角形的性质、三角形内角和定理、等腰三角形的判定,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.四.回顾与思考(1小题)22.(2016•北京)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【分析】(1)根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.【解答】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章直角三角形
预习课本,把下列空格填写完整
1.1直角三角形的性质和判定(1)
知识点1 直角三角形的性质定理
性质1:
性质2:
注意:这性质只在直角三角形里才有
性质3:
性质3的逆命题:
知识点2直角三角形的判定定理
1:
2:
1.
经典例题
1.如图,Rt三角形中,AB=8,D为AB的中点,DE垂直AC于点E,角A等于30度,
求BC和DE的长。
五三P142
解题思路:在直角三角形中,只要有一个角是30度,就要寻找这个角所对的边和所求结论之间的联系。
变式练习:在等腰三角形ABC中,AB=AC=2,角B等于15度,求腰AB上的高。
解题思路:三角形ABC为钝角三角形,腰上的高在三角形外部,所以要先做出高,这题同样用到了例题1的知识。
2.如图AB=AE,求证AD=BC 五三141页
解题思路:直角三角形量锐角互余
3.如图,延长矩形ABCD的边CB至E,使CE=CA,F为AE的中点,试说明BF垂直DF 五
三141页
解题思路:直角三角形斜边上的中线等于斜边的一半
4.如图,已知AB,BD分别垂直于直线CD于C,D两点,AC=DE,CE=BD,求证:三角形
AEB是直角三角形。
解题思路:直角三角形的判断定理,有两个角互余的三角形是直角三角形。
1.2直角三角形的性质和判定{ 2}
预习课本,填空
知识点一:勾股定理的内容:
提示:勾股定理只适用于直角三角形
知识点二:勾股定理的逆定理:
例题1.直角三角形中,已知两边的长分别为3和4,求第三边长的平方
解题思路:分情况讨论第三边
如图,在正方形中,F点DC的中点,E为BC上一点,且EC=1/4BC,证明,角EFA等于90度。
解题思路:勾股定理以及它的逆定理的应用。