小学数学四年级50道奥数题资料讲解
四年级奥数题50道及答案大全

四年级奥数题50道及答案大全1.如果四位数6□□8能被73整除,那么商是多少?解:估计这个商的十位应该是8,看个位可以知道是6因此这个商是86。
2.求各位数字都是 7,并能被63整除的最小自然数。
解:63=7*9所以至少要9个7才行(因为各位数字之和必须是9的倍数)3.是否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?解:不能。
因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。
4.有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?解:42份;每份有苹果8个,桔子6个,梨5个。
5.一副扑克牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)6.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)7.两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。
求这两个整数。
解:3,74;18,37。
提示:三个数字相同的三位数必有因数111。
因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。
8.学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
小学四年级下册奥数题100道及答案(完整版)

小学四年级下册奥数题100道及答案(完整版)1. 简便计算:25×125×4×8答案:(25×4)×(125×8)= 100×1000 = 1000002. 小明在计算加法时,把一个加数十位上的0 错写成8,把另一个加数个位上的6 错写成9,所得的和是532。
正确的和是多少?答案:把一个加数十位上的0 错写成8,所得的和就多了80;把另一个加数个位上的6 错写成9,所得的和就多了3。
所以正确的和是532 - 80 - 3 = 4493. 果园里有梨树、桃树和苹果树共1200 棵,其中梨树的棵数是苹果树的3 倍,桃树的棵数是苹果树的4 倍。
求梨树、桃树和苹果树各有多少棵?答案:苹果树:1200÷(1 + 3 + 4)= 150(棵);梨树:150×3 = 450(棵);桃树:150×4 = 600(棵)4. 某工厂一车间和二车间共有100 人,二车间和三车间共有97 人,一车间和三车间共有93 人。
三个车间各有多少人?答案:三个车间总人数:(100 + 97 + 93)÷2 = 145(人);一车间:145 - 97 = 48(人);二车间:145 - 93 = 52(人);三车间:145 - 100 = 45(人)5. 学校买了4 个足球和2 个排球,共用去162 元。
每个足球比每个排球贵3 元,每个足球和每个排球各多少元?答案:假设全买的足球,总价要多2×3 = 6 元,所以足球的单价:(162 + 6)÷(4 + 2)= 28(元);排球单价:28 - 3 = 25(元)6. 鸡兔同笼,共有头30 个,脚86 只。
求鸡、兔各有多少只?答案:假设全是鸡,兔:(86 - 30×2)÷(4 - 2)= 13(只);鸡:30 - 13 = 17(只)7. 一条公路长1200 米,在公路的两旁每隔20 米栽一棵树,两端都栽。
(完整)小学四年级奥数题100道带答案有解题过程

(完整)小学四年级奥数题100道带答案有解题过程姓名:__________ 班级:__________ 学号:__________1.甲、乙两人同时从相距36千米的A、B两地相向而行,4小时后相遇。
已知甲每小时行5千米,乙每小时行多少千米?解:先根据“速度和=路程÷相遇时间”,求出甲、乙的速度和为36÷4=9(千米/小时)。
再用速度和减去甲的速度,即9-5=4(千米/小时),所以乙每小时行4千米。
2.有一堆苹果,平均分给5个小朋友余2个,平均分给7个小朋友也余2个,这堆苹果最少有多少个?解:先求出5和7的最小公倍数,5×7=35。
再加上余数2,35+2=37(个),所以这堆苹果最少有37个。
3.一个长方形的周长是24厘米,长是宽的2倍,求这个长方形的面积。
解:设宽为x厘米,则长为2x厘米。
根据“长方形周长=(长+宽)×2”,可列出方程:(x+2x)×2=24,3x×2=24,6x=24,x=4。
那么长为2×4=8(厘米),面积=长×宽=8×4=32(平方厘米)。
4.在一个除法算式中,被除数、除数、商和余数的和是100,已知商是8,余数是3,求被除数和除数各是多少?解:设除数为x,则被除数为8x+3。
根据题意可列出方程:(8x+3)+x+8+3=100,9x+14=100,9x=86,x=9.56(此处若考虑除数应为整数,则需要检查题目数据是否有误,但按照题目要求继续计算)。
被除数为8×9.56+3=79.48(同样,此处数据也因除数非整数而带有小数)。
5.小明有一些邮票,他送给小红12张后,还比小红多8张,原来小明比小红多多少张邮票?解:小明送给小红12张后还多8张,那么原来多的数量是12×2+8=32(张)。
6.有一个等差数列:3,8,13,18,…,这个数列的第20项是多少?解:先求公差为8-3=5。
四年级数学经典奥数题训练50(含答案)图文百度文库

四年级数学经典奥数题训练50(含答案)图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.3.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.4.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.5.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.6.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.7.两数相除,商是12,余数是3,被除数最小是.8.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.9.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.10.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.11.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.12.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此13.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.14.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..15.(8分)有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出6张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.3.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.4.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.5.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.6.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.7.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.8.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.9.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.10.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.11.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.12.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.13.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.14.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.15.解:10÷2=5(个)5+1=6(个)故填6。
四年级数学有趣经典的奥数题及答案解析

四年级数学有趣经典的奥数题及答案解析在四年级学习数学的过程中,经典的奥数题对于培养学生对数学的兴趣和思维能力起到了至关重要的作用。
本文将为大家介绍一些有趣的经典奥数题,并给出相应的答案解析,希望能够帮助大家更好地理解和掌握其中隐藏的数学知识。
1. 等差数列求和题目:1 + 2 + 3 + ... + 100 = ?解析:这是一个等差数列求和的问题。
根据等差数列求和公式,我们可以得到求和结果为:S = (首项 + 末项) * 项数 / 2。
根据题目中的条件,首项为1,末项为100,项数为100。
代入公式得到:S = (1 + 100) * 100 / 2 = 5050。
因此,1 + 2 + 3 + ... + 100 = 5050。
2. 数字排列组合题目:用数字1、2、3、4组成没有重复数字的三位数共有多少个?解析:对于这个问题,我们可以采用穷举法来解决。
首先确定百位数,根据题意,百位数可以是1、2、3、4中的一个数字,即有4种选择。
然后确定十位数,由于百位数已经确定,所以十位数只能是剩下的3个数字中的一个,即有3种选择。
最后,个位数由于前两位数已经确定,所以只剩下1个数字可选。
因此,总共的排列组合方式为4 *3 * 1 = 12种。
所以,用数字1、2、3、4组成没有重复数字的三位数共有12个。
3. 分数约分题目:将分数8/24化简为最简形式。
解析:要将一个分数化简为最简形式,需要找到其最大公约数,并将分子和分母都除以最大公约数。
首先,求解8和24的最大公约数。
可以发现8和24都可以被2整除,因此最大公约数为2。
然后,将分子8和分母24都除以2得到4/12。
再次求解4和12的最大公约数,可以发现4和12都可以被4整除,因此最大公约数为4。
最后,将4/12化简为1/3。
所以,分数8/24化简为最简形式为1/3。
4. 阶乘计算题目:计算4的阶乘。
解析:阶乘是指从1乘到给定的正整数的连续乘积。
4的阶乘表示为4!,计算方法为4! = 4 * 3 * 2 * 1 = 24。
四年级奥数题难题大全

四年级奥数题难题大全一、和差问题1. 甲、乙两箱共有水果60千克,如果从甲箱中取出5千克放到乙箱中,则两箱水果一样重。
求两箱原来各有水果多少千克?- 解析:两箱水果调整后一样重时,每箱重60÷2 = 30千克。
那么原来甲箱有30+5 = 35千克,乙箱有30 - 5=25千克。
2. 四年级有3个班,一班和二班的平均人数是44人,二班和三班的平均人数是43人,三班和一班的平均人数是42人。
这三个班各有多少人?- 解析:一班和二班总人数为44×2 = 88人,二班和三班总人数为43×2 = 86人,三班和一班总人数为42×2 = 84人。
把这三个和相加,就是三个班总人数的2倍,即(88 + 86+84)÷2=129人。
那么三班人数为129 - 88 = 41人,一班人数为129 - 86 = 43人,二班人数为129 - 84 = 45人。
二、倍数问题3. 有两堆棋子,第一堆有87个,第二堆有69个。
从第一堆中拿多少个棋子到第二堆,就能使第二堆棋子数是第一堆的3倍?- 解析:两堆棋子总数为87 + 69 = 156个。
当第二堆棋子数是第一堆的3倍时,把棋子总数分成4份,第一堆占1份,第二堆占3份。
此时第一堆有156÷(3 + 1)=39个。
所以从第一堆拿到第二堆的棋子数为87 - 39 = 48个。
4. 被除数、除数、商三个数的和是212,已知商是2。
被除数和除数各是多少?- 解析:因为商是2,设除数为x,被除数就是2x。
根据题意可得2x+x +2=212,3x=210,x = 70。
被除数为2×70 = 140。
三、年龄问题5. 父亲今年47岁,儿子今年21岁。
多少年前父亲的年龄是儿子年龄的3倍?- 解析:父子年龄差为47 - 21 = 26岁。
当父亲年龄是儿子年龄的3倍时,儿子年龄为26÷(3 - 1)=13岁。
所以是21 - 13 = 8年前。
小学四年级奥数题及答案[五篇]
小学四年级奥数题及答案[五篇]1.小学四年级奥数题及答案篇一1、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?解析:把4个数全加起来就是每个数都加了3遍,所以,这四个数的和等于(45+46+49+52)÷3=64。
用总数减去最大的三数之和,就是这四个数中的最小数,即64-52=12。
2、电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。
每辆电车每停开1分钟的经济损失是11元。
现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?答案与解析:由题可知,要使经济损失最小,3名工人的工作时间尽量均等,缤纷接每个人要先维修时间短的,故有:12+17+8+18+23+30+14=122122÷3=40余2①12+30=42②17+23=40③8+14+18=40这7辆车最少共停开的时间为:(12+12+30)+(17+17+23)+(8+8+8+14+14+18)=181(分钟)最小损失为11×181=1991(元)2.小学四年级奥数题及答案篇二1、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。
求这块平行四边形地原来的面积?解析:根据只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高。
根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。
再用原来的底乘以原来的高就是要求的面积。
解:(40÷5)×(40÷8)=40(平方米)答:平行四边形地原来的面积是40平方米。
2、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
分析:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。
小学四年级30道高难度奥数题及分析
小学四年级30道高难度奥数题及分析1、巧用计算器如果你只能按计算器上1与0两个数字键,请试试看你是否能用不同的方式得出其他的数字。
例如,要想得到120,你可以按下,第一种方式需要按键9次,其他两种方式只需7次,因此后两种是比较有效率的方式。
请用最有效率的方式,在计算器上得出下列数字:(1)77 (2)979 (3)1432(4)1958 (5)2046 (6)159832、巧妙分酒一个人晚上出去打了10斤酒,回家的路上碰到了一个朋友,恰巧这个朋友也是去打酒的。
不过,酒家已经没有多余的酒了,且此时天色已晚,别的酒家也都已经打烊了,朋友看起来十分着急。
于是,这个人便决定将自己的酒分给他一半,可是朋友手中只有一个7斤和3斤的酒桶,两人又都没有带称,如何才能将酒平均分开呢?3、买书小红和小丽一块到新华书店去买书,两个人都想买《综合习题》这本书,但钱都不够,小红缺少4.9元,小丽缺少0.1元,用两个人合起来的钱买一本,但是钱仍然不够,那么,这本书的价格是多少呢?4、马匹喝水。
老王要养马,他有这样一池水:如果养马30匹,8天可以把水喝光;如果养马25匹,12天把水喝光。
老王要养马23匹,那么几天后他要为马找水喝?5、灵活解题弟弟让姐姐帮他解答一道数学题,一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。
姐姐看了以后,心里很是着急,觉得自己摸不到头绪,你能帮姐姐得到这首题的答案吗?6、买卖衣服小丽花90元买了件衣服,她脑子一转,把这件衣服120元卖了出去,她觉得这样挺划算的,于是又用100元买进另外一件衣服,原以为会150元卖出,结果卖亏了,90元卖出。
问:你觉得小丽是赔了还是赚了?赔了多少还是赚了多少?7、过桥星期天,洛洛全家人出去游玩,由于玩的太高兴了,忘记了时间,他们慌慌张张来到一条小河边,河上有座桥,一次只允许两个人通过。
如果他们一个一个过桥的话,洛洛需要15秒,妹妹要20秒,爸爸要8秒,妈妈要10秒,奶奶要23秒。
小学数学50道经典奥数题及解析
小学数学50道经典奥数题及解析1. 小明的妈妈给他买了一些贴纸,其中3/4是花纹贴纸,剩下的是字母贴纸。
如果小明得到了60个字母贴纸,那么他一共收到了多少个贴纸?解析:假设小明一共收到了x个贴纸,则有3/4x是花纹贴纸,剩下的x - 3/4x = 1/4x 是字母贴纸。
根据题目可得:1/4x = 60。
解方程可得:x = 240。
所以小明一共收到了240个贴纸。
2. 某个数的三分之一加上四分之一等于40,这个数是多少?解析:设这个数为x,根据题目可得:1/3x + 1/4x = 40。
化简方程可得:7/12x = 40。
解方程可得:x = 40 * 12 / 7 = 68.57。
所以这个数约等于68.57。
3. 甲、乙、丙三个人合作种地,甲每天种地的1/5,乙每天种地的1/4,丙每天种地的1/3。
如果三个人连续工作8天,他们一共种了多少地?解析:甲、乙、丙三个人每天种地的比例为1/5:1/4:1/3。
将分母相同化简后相加可得:12/60 + 15/60 + 20/60 = 47/60。
所以三个人连续工作8天一共种了(47/60) * 8 = 6.27 地。
4. 一个两位数,各位数字的和是9,除以6的余数是3。
这个两位数是多少?解析:设这个两位数为10a + b,其中a为十位上的数字,b为个位上的数字。
根据题目可得:a + b = 9,并且(10a + b) % 6 = 3。
列举10的倍数加上3的倍数得到的数,最终找到满足条件的两位数为33。
所以这个两位数是33。
5. 甲、乙、丙三个人一起喝了一桶水,甲喝了其中的1/4,乙喝了剩下的1/3,丙喝了剩下的1/2。
如果桶中还有1升水,那么这桶水一共有多少升?解析:设桶中水的总体积为x,根据题意可得:(3/4) * (2/3) * (1/2) * x = 1。
化简方程可得:x = 4/3。
所以这桶水一共有(4/3 + 1) = 7/3升,约等于2.33升。
四年级奥数题目30道
四年级奥数题目30道一、四则运算类1. 计算:1 + 2 + 3+…+100解析:这是一个等差数列求和的问题。
等差数列求和公式为公式,其中公式是项数,公式是首项,公式是末项。
在公式中,公式,公式,公式。
则公式。
2. 25×32×125解析:把32拆分成公式,原式变为公式。
3. 999×999+1999解析:将1999拆分为公式,原式变为公式。
二、数字规律类4. 找规律填数:1,1,2,3,5,8,(),21解析:这是斐波那契数列,从第三项起,每一项都等于前两项之和。
所以括号里的数为公式。
5. 观察数列:1,4,9,16,25,()解析:这个数列是平方数数列,公式,公式,公式,公式,公式,括号里的数为公式。
三、植树问题类6. 在一条长200米的路的一侧种树,每隔5米种一棵,两端都种,一共要种多少棵树?解析:根据公式公式,间隔数公式总长公式间隔长度。
这里总长公式米,间隔长度公式米,间隔数为公式,则棵数为公式棵。
7. 一个圆形池塘周长是180米,每隔6米种一棵柳树,一共要种多少棵柳树?解析:圆形是封闭线路,棵数公式间隔数。
所以公式棵柳树。
四、年龄问题类8. 父亲今年40岁,儿子今年12岁,几年后父亲的年龄是儿子年龄的2倍?解析:设公式年后父亲年龄是儿子年龄的2倍。
可列方程公式,公式,移项得公式,公式。
9. 哥哥5年前的年龄和妹妹3年后的年龄相等,哥哥今年18岁,妹妹今年多少岁?解析:哥哥5年前的年龄为公式岁,因为哥哥5年前的年龄和妹妹3年后的年龄相等,所以妹妹3年后是13岁,妹妹今年公式岁。
五、鸡兔同笼问题类10. 鸡兔同笼,共有头30个,脚84只,问鸡兔各有多少只?解析:假设全是鸡,则脚有公式只,比实际少公式只。
每把一只兔当成鸡就少算公式只脚,所以兔有公式只,鸡有公式只。
11. 有蛐蛐和蜘蛛共10只,共有68条腿,蛐蛐有6条腿,蜘蛛有8条腿,问蛐蛐和蜘蛛各有多少只?解析:假设全是蛐蛐,则腿有公式条,比实际少公式条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级上册数学
智力题
杨群
沾化县第一实验小学四年级二班
2014年1月
1、某五个数的平均值为60,如果将其中一数改为80,这五个数的平均值为70,改的这个数应是多少?
2、30个同学平分一些练习本,后来又来了6人,大家重新分配,每人分得的练习本比原来少2本,这些练习本共有多少?
3、甲乙两位同学带着同样多的钱去买日记本,乙买了8本,剩下的钱全部借给了甲,刚好使甲买到了12本。
回家后甲还给乙6元,问:日记本每本多少钱?
4、两个仓库共有10000千克大米,从每个仓库里取出同样多的大米,结果甲仓库里剩下3450千克,乙仓库里剩下4270千克,每个仓库原来有多少千克大米?
5、把一个减法算式的被减数、减数、差加起来和是180,已知减数比差大26,被减数、减数和差各是多少?
6、一个数乘8后比原数多了84,原来的数是多少?
7、小明今年18岁,小强今年14岁,当两人岁数和是70岁时,两人各有多少岁?
8、小明在算有余数的除法时,把被除数237错写成273。
这样商比原来多3而余数正好相同。
这道题的除数和余数各是多少?
9、学校图书馆有科技书和故事书共320本,其中故事书的本数是科技书的3倍,故事书有多少本?
10、幼儿园小朋友分苹果,如果每人分4个,则多9个,如果每人分5个,则少6个,有多少个小朋友?多少个苹果?
11、在一个数的末尾添上一个“0”以后,得到的数比原来的数多36。
原来的数是多少?
12、计算:⑴454十999×999十545
⑵999十998十997十996十1000十1004十1003十1002十1001
13、数一数下面的图形.
()条线段()个长方形
14、要使上下两排的小猫一样多,应该怎样移?
15、按下面图形的排列情况,算出第24个图形是什么?
(1)○○△□○○△□○○△□……第24个图形是()
(2)☆◇◇△△☆◇◇△△☆◇◇△△……第24个图形是()
16、用火柴棍拼成的数字和符号如下图所示,那么用火柴棍拼成一个减法等式最少要用_____________根火柴
17、有学生若干人参加植树活动,如果每组12人,就多11人,如果每组14人,就少9人。
问分成______组,共有______人。
18、村姑卖鸡蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二个蛋,问这篮鸡蛋有多少个?
19、一个文具店中橡皮的售价为每块5角,圆珠笔的售价为每支1元,签字笔的售价为每支2元5角。
小明要在该店花5元5角购买其中两种文具,他有___________种不同的选择。
20、一个书架上有数学、语文、英语、历史4种书共27本,且每种书的数量互不相同。
其中数学书和英语书共有12本,语文书和英语书共有13本。
有一种书恰好有7本,是_____________书。
21、下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么A +B +C +D +E +F +G=_____________。
22、芳芳和明明两人集邮,芳芳给明明4张邮票后,芳芳还比明明多2张.芳芳原来比明明多几张邮票?
D C B A
G F E 9 3 8 7
+
A B C D
E F G 2 0 0 7
+
23、做一道加法题时,小虎把个位上的6看作9,把十位上的3看作5,结果和是86,问正确答案应是多少?
24、在1~9这9个数字中间,添上“+、-”两种运算符号,使等式成立。
1 2 3 4 5 6 7 8 9=100
25、从公园同往湖心的小岛有一条长1020米的小路,在这条小路的两侧,从头到尾每隔15米栽一棵桃树,一共需要栽________棵桃树。
26、在右图中,外圈最大正方形的边长为8厘米,那么最中间的小
正方形的面积是__________平方厘米。
27、一次数学竞赛,共有50人参加,其中第一题做错的有18人,
第二题做错的有21人,第一题和第二题都做对的有17人,那么这
两题都做错的有 ____人。
28、 2、4、6、8、...98这49个偶数的和是___________。
29、一本书有200页,数字1在所有页码中一共出现了________次。
30、有一列由三个数组成的数组:(1,1,1)、(2,4,8)、(3,9,27)......第12个数组中三个数的和比第6个数组中的三个数的和大___________。
31、王林在计算出2000个数的平均数后,把所求得的平均数混在原先的2000个数中,又求得混在一起的数的平均数为2001,则原来的2000个数的平均数是。
32、小明、妈妈、爸爸今年的年龄和是87岁,妈妈的年龄比小明年龄的3倍还大4岁,且比爸爸小2岁,今年小明岁,妈妈岁,爸爸岁。
33、有7只猴子要分90个桃子,其中一个猴子分到3只桃子,其它猴子分到的桃子个不相同,且一个比一个多1,分到最多的一个猴子分到()个桃子。
34、将一张长10厘米、宽9厘米的长方形纸片剪成一些边长是整数厘米的小正方形,大小不限。
那么怎样剪才能使剪成的小正方形数目尽量少呢?请在下图中画出来,并标出每个小正方形的边长。
35、观察下列算式:1+3=4=2×2
1+3+5+7=16=4×4
……
计算:1+3+5+……+2005= 。
36、甲乙两个冷藏库共存肉92吨,其中乙库
存的肉比甲库存的3倍少4吨,甲库存肉多少
吨,乙库存肉多少吨?
37、甲乙两人的存款相等,后来甲取50元,乙有存入40元,结果乙存款是甲的2倍,问二人原来的存款各是多少元?(写出过程)
38、有一种游戏称作“抢三十”,游戏规则是两人轮流报数,每人每次至少报1个数,最多报4个数,从1到30按顺序连续报数,谁先报到30,谁就获胜,请给出取胜的方法。
(写出过程)
39、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小虫共18只,有118条腿和20对翅膀。
那么,蜘蛛有多少只?蜻蜓有多少
只?蝉有多少只?
40、龟兔进行10000米赛跑,兔子速度是乌龟的5倍,当它们从起点出发后,乌龟的不断的跑,兔子跑到某一地点开始睡觉,兔子醒来时,乌龟已经领先它5000米,兔子奋起直追,但乌龟到达终点时,兔子仍落后100米,那么在兔子睡觉期间,乌龟跑了多少米?(写出过程)
41、有砖26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?
42、阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。
”你知道阿凡提一共带了多少钱?买鱼用了多少钱?
43、巧算加减法
100+99-98-97+96+95-94-93+……+8+7-6-5+4+3-2-1
44、巧算乘除法
9999×2222+3333×3334
45、用假设法解应用题
四(2)班学生共52人,到公园去划船共租用11条船,每条大船坐6人,每条小船坐4人,刚好坐满。
求租用的大船、小船各多少只?
46、列方程解应用题
甲、乙两人生产零件,甲生产了8小时,乙生产了6小时,甲比乙多生产了88个。
一直甲每小时比乙少生产2个,求乙每小时生产多少个?
47、盈亏问题
幼儿园老师给小朋友分糖果,每个小朋友分5颗糖果,就多出22颗糖果;每个小朋友分7颗糖果,就少18颗糖果。
有多少个小朋友和多少颗糖果?
48、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?
49、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?
50、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。