机械搅拌澄清池操作说明

合集下载

机械搅拌澄清池

机械搅拌澄清池

机械搅拌澄清池实验四机械搅拌澄清池的实验一、实验目的1.通过机械搅拌澄清池模型的模拟实验,进一步了解其构造和工作原理。

2.熟悉机械搅拌澄清池的操作方法。

二、基本概念与工作原理澄清池主要由集水箱、支撑桥、变速驱动装置、进出水管、加药管、取样管、排泥管、底部轴承及轴承座、底部轴承润滑管、底部轴承支架、角度调节夹、第一反应室延伸段、,第一反应室、第二反应室、导流板、污泥搅拌浆、搅拌叶轮、搅拌轴、刮泥机轴由刮泥机臂、顶部支撑钢结构等部件组成。

机械搅拌澄清池是混合室和反应室合二为一,即原水直接进入第一反应室中,在这里由于搅拌器叶片及涡轮的搅拌提升,使进水、药剂和大量回流泥渣快速接触混合,在第一反应室完成机械反应,并与回流泥渣中原有的泥渣再度碰撞吸附,形成较大的絮粒,再被涡轮提升到第二反应室中,再经折流到澄清区进行分离,清水上升由集水槽引出,泥渣在澄清区下部回流到第一反应室,由刮泥机刮集到泥斗,通过池底排泥阀控制排出,达到原水澄清分离的效果。

三、机械搅拌澄清池的基本结构机械搅拌澄清池的构造如图1所示。

图1机械搅拌澄清池示意图-1-四、实验设备和仪器1.有机玻璃模型―套。

2.浊度仪。

3.ph计。

4.投药设备。

5.玻璃仪器。

6.混凝剂a12(s04)3。

7.化学试剂等。

五、实验方法和步骤首先熟悉机械搅拌澄清池的构造与工作原理,检查其各部件是否漏水,水泵与闸阀等是否完好。

1.向原水中加入混凝剂。

2.启动搅拌浆进行搅拌。

3.加大或减小进水流量,测出不同负荷下运行时的进出水浊度,并计算其去除率。

4.改变混凝剂的投加量或调整罐顶提升阀,改变原水流量与污泥回流的比例,以找到最佳操作条件,并记录下来,以备将来的实验。

实验记录填入表1中。

表1测试记录序号ph12345原水搅拌速度流量l/h2名称投药投药量mg/l-1进水浊度出水去除率注:在流量选定时,以清水区上升流速不超过1.1mm/s为宜,如上升流速过大,效果不好。

六、实验结果与讨论1.绘制搅拌速度与去除率的关系曲线。

JJ1000澄清池搅拌机技术说明

JJ1000澄清池搅拌机技术说明

JJ-1000加速澄清池搅拌刮泥机技术说明一、主要技术参数二、主要结构及工作原理加速澄清池搅拌机主要由搅拌机部份,刮泥机部份、信号发讯器等部件组成。

1、搅拌机部份主要由驱动装置、搅拌轴、搅拌提升叶轮、调节拉杆等部件组成。

(1) 驱动装置主要由蜗轮减速箱、电机减速机及机座组成,由电机减速机出轴皮带轮带动四根三角带来驱动蜗轮减速箱,并由蜗轮减速箱出轴通过夹壳联轴器来带动搅拌轴及搅拌桨旋转,其核心部件蜗轮减速箱为我公司按国家有关部门设计制造,箱体材质HT200铸铁、轮缘材质ZQAL9-4青铜、蜗杆材质45#碳钢,调质处理后精加工,与轮缘啮合准确,本结构合理、外形美观、运行可靠、使用寿命长。

(2) 机座由型钢拼焊组成,结构牢固,并进一步作内应力消退处理,长期使用不变形。

(3) 搅拌轴由45#优质碳钢调质处理精加工而成,其外圆同轴度误差不大于0.05mm。

(4) 搅拌提升叶轮主要由上下提升叶片、搅拌桨板及联接筋板拼装组焊而成,组装后的叶轮均进行静平衡和动平衡检测,检测合格后方可进入下道工序。

2、刮泥部份主要由传动装置、中心枢轴、针齿盘、刮泥臂、上下拉紧装置等部件组成。

⑴传动装置主要由行星摆线针轮减速机、传动主轴、套筒、上下轴套、驱动齿轮等组成,并设有安全剪切销过扭矩保护装置,该装置传递扭矩大,运行平稳,无异常噪音,运行可靠。

⑵中心驱轴主要由管栓、上盖、轴座、轴套、轴瓦等部件组成,由于中心枢轴是刮泥装置的定心传动装置,同时又是刮泥臂及刮板的承重部件,因此对其的强度及传动件可耐磨性要求较高,其轴座、轴套采用QT45-15高强度球铁铸造而成,上下轴瓦采用ZQAL9-4青铜精加工并作磨削处理,精度高、耐磨性好。

⑶三个刮泥臂相交成120°布置由水平拉杆拉紧,结构牢固,刮泥臂采用φ4”无缝钢管与刮板焊接。

⑷针齿盘是刮泥装置的重要部件之一,对传动强度及传动精度要求较高,其传动齿圈是采用[16槽钢用卷板机卷成,外圈上钻有240个销眼穿上销轴,销轴孔距误差不大于0.2mm,销轴采用1Cr13不锈钢精加工而成,并作调质处理,为了能与Z16”小齿轮啮合准确,通过调节齿圈内拉杆来调整啮圈的外圆度不大于0.5mm.。

机械搅拌澄清池操作说明

机械搅拌澄清池操作说明

机械搅拌澄清池操作说明书江苏集成环境工程有限公司2010-10一、工艺原理及工艺参数1、工艺原理采用混凝沉淀法去除水中悬浮颗粒的工艺包括水和药剂的混合,反应以及絮凝体与水的分离三个阶段,澄清池是将这三个过程集于一个构筑物中完成的一种非凡形式的设施。

澄清池的工作原理是:原水在澄清池中由下向上流动,澄清池中有一层呈悬浮状态的泥渣,泥渣层由于重力作用在上升水流中处于动态平衡状态;当原水中的悬浮颗粒与混凝剂作用而形成的微小絮凝体随水流通过泥渣层时,在运动中与泥渣层相对较大的泥渣接触碰撞就被吸附在泥渣颗粒表面而迅速除去,使水获得澄清;清水经由澄清池上部的清水槽被收集排出。

因此,保持悬浮状态的、浓度稳定且均匀分布的泥渣区是保证澄清池处理效果的要害。

机械加速澄清池属于泥渣循环分离型,它是借助机械抽升作用,使泥渣在垂直方向不断循环,捕捉原水中形成的絮凝体,并在分离区加以分离。

其特点是充分利用已形成泥渣的活性,增加碰撞机会,强化碰撞几率,提高处理设备的功能。

在机械加速澄清池中心安装有机械搅拌设备,上部为提升叶轮,下部为搅拌浆,两者安装在同一轴上;提升叶轮将混合泥水提升至第二反应室,而搅拌浆使第一混合反应室的泥渣循环流动与拟处理原水进行混合和反应。

投药后的原水经进水管、配水槽进入第一混合反应室中,与回流泥渣混合并完成药剂与水的混合和反应过程;混合泥水从池中心提升至第二反应室,继续完成混凝过程;然后经由导流筒进入分离室完成泥水分离过程。

2、工艺参数项目设计参数备注机械搅拌澄清设备位号数量 2单池设计能力1330m3/h主体材质碳钢防腐尺寸Φ25000×H7500mm 池体直段高度1500mm停留时间(1.2~1.5)h总容积2095m3第一反应室回流量(3~5)Q第一反应室回流缝流速(0.10~0.20) m/s第一反应室直径15600mm第二反应室计算流量(3~5)Q第二反应室内流速(0.04~0.07) m/s第二反应室直径7800mm导流室内流速(0.04~0.07) m/s分离室上升流速(0.0008~0.0011) m/s 配水方式三角配水槽缝隙配水集水方式环形集水槽排泥方式定时周期排泥排泥斗数3个管口表进水管700mm出水管700mm排泥管100mm放空管250mm搅拌刮泥机设备位号数量 2搅拌机叶轮直径4.5m开启度110mm叶轮外缘线速度0.5-1.5m/s搅拌机外缘线速度0.3-1.0m/s转速125-1250rom配套电机型号YCT160-4B电机功率4.5KW电机转速1450RPM刮泥机S craper刮泥机直径15m刮泥机外缘线速度 1.5-2.0m/s配套电机型号Y型电机功率 1.5KW减速机型号BWEY2715-1.50生产厂家江苏集成二. 阀门仪表配置每套机械搅拌澄清池配套的阀门1 阀门型式及规格数量1.1 进水阀闸阀/DN700 1只1.2 出水阀闸阀/DN700 1只1.3 排泥阀气动蝶阀/DN150 3只1.6 放空阀闸阀 /DN150 1只1.7 管道放空阀闸阀/DN25 3只三、通用操作步骤1、制水:启动搅拌机、刮泥机启动加药泵启动原水泵打开进水阀,并调节流量,使3台机械搅拌澄清池的进水流量一致打开出水阀2、排泥排泥自动运行,每运行4小时,打开排泥阀,历时1分钟。

JJ600加速澄清池搅拌机技术说明

JJ600加速澄清池搅拌机技术说明

JJ600加速澄清池搅拌刮泥机技术说明一、主要技术参数·池径:D=10.9m·旋转直径:d=10.5m·耙臂数量:4个·外缘线速度:V=3.37m/分·驱动功率:N=0.75kw·搅拌机功率:N=4.0KW·叶轮直径:φ2.5m·转速:V=3.8转/分·外缘线速度:V=0.5-1.5m/秒·开启高度:H=0-245mm·防护等级:IP54·绝缘等级:F级·工作制:24小时/天连续运行或间歇运行二、主要结构及工作原理加速澄清池搅拌机主要由驱动装置、传动装置、搅拌提升装置、刮泥装置等部件组成。

1、主要结构(1) 驱动装置:搅拌机由JCTG180-4A型调速电机通过三角带驱动,电机功率4kw,转速120-1200转/分。

刮泥机由XWD08-4-59型行星齿轮减速机通过链条驱动,电机功率0.75kw。

该两套驱动装置运转平稳,无异常噪音,运行可靠。

(2) 传动部分:主要由搅拌机蜗轮箱和刮泥机蜗轮箱组成,两套蜗轮箱上下叠置,上部为刮泥机蜗轮箱,下部为搅拌机蜗轮箱,蜗轮箱为我公司按国家有关标准设计制造,箱体材质为HT200铸铁,蜗轮轮毂材质HT200铸铁,轮缘材质ZQAL9-4青铜,蜗杆材质为45#优质碳素结构钢,粗加工后经调质处理。

本结构合理、外形美观、运转可靠。

(3) 搅拌提升部分:主要由搅拌主轴、提升叶轮、搅拌浆等部件组成。

搅拌主轴由Φ159×12厚壁无缝钢管两端焊接法兰精加工而成,其垂直度<1mm/L(L轴的长度)。

叶轮主要由上下圆板与其它附件焊成,板厚δ=6mm。

组装后的叶轮进行静平衡检测,检测符合标准方可进入下道工序。

(4) 刮泥部分:该装置主要由传动主轴、2根长刮泥架、2根短刮泥架、固定盘、底轴承架、拉杆等部分组成,驱动主轴用圆钢精加工而成。

刮泥干净彻底,无污泥堆积现象。

机械搅拌澄清池设计说明(修正版)

机械搅拌澄清池设计说明(修正版)

机械加速澄清池机械搅拌澄清池属于泥渣循环型澄清池。

其池体主要由第一絮凝室、第二絮凝室及分离室三部分组成。

这种澄清池的工作过程(见图3-14)为:加过混凝剂的原水由进水管1,通过环形配水三角槽2的缝隙流入第一絮凝室,与数倍于原水的回流活性泥渣在叶片的搅动下,进行充分地混合和初步絮凝。

然后经叶轮5提升至第二絮凝室继续絮凝,结成良好的矾花。

再经导流室III进入分离室IV,由于过水断面突然扩大,流速急速降低,泥渣依靠重力下沉与清水分离。

清水经集水槽7引出。

下沉泥渣大部分回流到第一絮凝室,循环流动形成回流泥渣,另一小部分泥渣进入泥渣浓缩室V排出。

机械搅拌澄清池的设计要点与参数汇列于下。

♦池数一般不少于两个。

♦回流量与设计水量的比为(3:1)-(5:1),即第二絮凝室提升水量为进水流量的3-5倍。

♦水在池中的总停留时间为1.2-1.5h。

第二絮凝室停留时间为0.5-1.Omin,导流室停留时间为2.5-5.Omin(均按第二絮凝室提升水量计)。

♦第二絮凝室、第一絮凝室、分离室的容积比=1:2:7。

为使进水分配均匀,现多采用配水三角槽(缝隙或孔眼出流)。

配水三角槽上应设排气管,以排除槽中积气。

♦加药点一般设于原水进水管处或三角配水槽中。

♦清水区高度为1.5-2.0m。

池下部圆台坡角一般为45°。

池底以大于5%的坡度坡向池中心。

♦集水方式宜用可调整的淹没孔环形集水槽,孔径20-3Omm。

当单池出水量大于400m3/h时,应另加辐射槽,其条数可按:池径小于6m时用4-6条;直径为6~1Om时用6-8条。

♦根据池子大小设泥渣浓缩斗1-3个,小型池子可直接经池底放空管排泥。

浓缩室总容积约为池子容积的1%~4%。

排泥周期一般为0.5-1.Oh,排泥历时为5-60s。

排泥管内流速按不淤流速计算,其直径不小于1OOmm。

♦机械搅拌的叶轮直径,一般按第二絮凝室内径的70%-80%设计。

其提升水头约为0.05-0.lOm.♦搅拌叶片总面积,一般为第一絮凝室平均纵剖面积的10%-15%。

JJ1800加速澄清池搅拌刮泥机技术说明

JJ1800加速澄清池搅拌刮泥机技术说明

JJ1800加速澄清池搅拌刮泥机技术说明我公司在电力行业,特别是西北地区利用黄河水冷却主机工程中有多年的配套设备生产制造经验。

如给甘肃靖远电厂4×200MW工程配套的JJ1800加速澄清池搅拌刮泥机;给兰州西固热电厂3×125MW 工程配套的JJ1000加速澄清池搅拌刮泥机;给宝鸡第二电厂4×300MW工程配套的合同总价达三百多万元的大型闸门和取水泵船等设备;给甘肃平凉电厂4×300MW工程配套的JJ1330加速澄清池搅拌刮泥机。

这些设备已经成功运行多年,性能可靠,得到了电力行业用户和设计单位的一致好评。

一、主要技术参数1、搅拌机部份:·叶轮直径:D=4500mm·叶轮转速:V=2.07~6.22rpm·外缘线速度:V=0.5-1.5m/s·开启度:H=0-410mm·搅拌桨外缘线速度:V=0.33-1.0m/s·桨板高度:h=1300mm·电机型号:YCT200-4B·电机功率:N=7.5kw(防护等级IP54、F级绝缘)·电机转速:V=120-1200rpm·总速比:192.52、刮泥机部分·旋转直径:D=17m·耙臂数:3个·外缘线速度:2.1m/s·减速机型号:XLED1.5-84-1/2065·电机功率:N=1.5kw(防护等级IP54、F级绝缘)·电机转速:V=1500rpm·减速机速比:2065·针齿盘速比:16·总速比:330403、机械加速澄清池内斜管·斜管内径:35mm·斜管安装倾角:60度·斜管安装后高度:866mm4、运行信号发讯器:脉冲周期85S、220V、0.2A5、工作制:24小时/天连续运行或间歇运行二、主要结构及工作原理加速澄清池搅拌机主要由搅拌机部份,刮泥机部份、信号发讯器等部件组成。

JJ320加速澄清池搅拌刮泥机技术说明

JJ320加速澄清池搅拌刮泥机技术说明

JJ320加速澄清池搅拌刮泥机技术说明一、主要技术参数·叶轮直径:φ2.5m·叶轮转速:V=4.8~14.5r/min·叶轮外缘线速度:V=0.5~1.5m/s·搅拌电动机型号:YCTG160-4A·开启高度:H=0~175mm·转速:120-1200rpm·搅拌机功率:N=3.0kW·刮泥耙旋转直径:D=7.5m·耙臂数量:4个·外刮泥耙缘线速度:V=2.95m/min·减速机型号:XWD0.75-4-59·电机转速:1500rpm·驱动功率:N=0.75kw·电机防护等级:IP55·电机绝缘等级:F级·工作制:24小时/天连续运行或间歇运行二、主要结构及工作原理加速澄清池搅拌机主要由驱动装置、传动装置、搅拌提升装置、刮泥装置等部件组成。

1、主要结构(1) 驱动装置:搅拌机由调速电机通过三角带驱动,电机功率3kw。

刮泥机由行星齿轮减速机通过链条驱动,电机功率0.75kw。

该两套驱动装置运转平稳,无异常噪音,运行可靠。

(2) 传动部分:主要由搅拌机蜗轮箱和刮泥机蜗轮箱组成,两套蜗轮箱上下叠置,上部为刮泥机蜗轮箱,下部为搅拌机蜗轮箱,蜗轮箱为我公司按国家有关标准设计制造,箱体材质为HT200铸铁,蜗轮轮毂材质HT200铸铁,轮缘材质ZQAL9-4青铜,蜗杆材质为45#优质碳素结构钢,精加工后经调质处理。

本结构合理、外形美观、运转可靠。

(3) 搅拌提升部分:主要由搅拌主轴、提升叶轮、搅拌浆等部件组成。

搅拌主轴由无缝钢管两端焊接法兰精加工而成,其垂直度<1mm/L(L轴的长度)。

叶轮主要由上下圆板与其它附件焊成。

组装后的叶轮进行静平衡检测,检测符合标准方可进入下道工序。

(4) 刮泥部分:该装置主要由传动主轴、2根长刮泥架、2根短刮泥架、固定盘、底轴承架、拉杆等部分组成,驱动主轴用圆钢精加工而成。

机械搅拌澄清池操作说明

机械搅拌澄清池操作说明

机械搅拌澄清池操作说明书江苏集成环境工程有限公司2010-10一、工艺原理及工艺参数1、工艺原理采用混凝沉淀法去除水中悬浮颗粒的工艺包括水和药剂的混合,反应以及絮凝体与水的分离三个阶段,是将这三个过程集于一个构筑物中完成的一种非凡形式的设施。

的工作原理是:原水在中由下向上流动,中有一层呈悬浮状态的泥渣,泥渣层由于重力作用在上升水流中处于动态平衡状态;当原水中的悬浮颗粒与混凝剂作用而形成的微小絮凝体随水流通过泥渣层时,在运动中与泥渣层相对较大的泥渣接触碰撞就被吸附在泥渣颗粒表面而迅速除去,使水获得澄清;清水经由上部的清水槽被收集排出。

因此,保持悬浮状态的、浓度稳定且均匀分布的泥渣区是保证处理效果的要害。

属于泥渣循环分离型,它是借助机械抽升作用,使泥渣在垂直方向不断循环,捕捉原水中形成的絮凝体,并在分离区加以分离。

其特点是充分利用已形成泥渣的活性,增加碰撞机会,强化碰撞几率,提高处理设备的功能。

在中心安装有机械搅拌设备,上部为提升叶轮,下部为搅拌浆,两者安装在同一轴上;提升叶轮将混合泥水提升至第二反应室,而搅拌浆使第一混合反应室的泥渣循环流动与拟处理原水进行混合和反应。

投药后的原水经进水管、配水槽进入第一混合反应室中,与回流泥渣混合并完成药剂与水的混合和反应过程;混合泥水从池中心提升至第二反应室,继续完成混凝过程;然后经由导流筒进入分离室完成泥水分离过程。

2、工艺参数项目设计参数备注机械搅拌澄设备位号数量 2单池设计能力1330m3/h主体材质碳钢防腐尺寸Φ25000×H7500mm清池体直段高度1500mm停留时间(1.2~1.5)h总容积2095m3第一反应室回流量(3~5)Q第一反应室回流缝流速(0.10~0.20) m/s第一反应室直径15600mm第二反应室计算流量(3~5)Q第二反应室内流速(0.04~0.07) m/s第二反应室直径7800mm导流室内流速(0.04~0.07) m/s分离室上升流速(0.0008~0.0011) m/s配水方式三角配水槽缝隙配水集水方式环形集水槽排泥方式定时周期排泥排泥斗数3个管口表进水管700mm 出水管700mm 排泥管100mm 放空管250mm搅拌刮泥机设备位号数量 2搅拌机叶轮直径4.5m开启度110mm叶轮外缘线速度0.5-1.5m/s搅拌机外缘线速度0.3-1.0m/s转速125-1250rom配套电机型号YCT160-4B电机功率4.5KW电机转速1450RPM刮泥机S craper 刮泥机直径15m刮泥机外缘线速度 1.5-2.0m/s配套电机型号Y型电机功率 1.5KW减速机型号BWEY2715-1.50生产厂家江苏集成二. 阀门仪表配置每套机械搅拌澄清池配套的阀门1 阀门型式及规格数量1.1 进水阀闸阀/DN700 1只1.2 出水阀闸阀/DN700 1只1.3 排泥阀气动蝶阀/DN150 3只1.6 放空阀闸阀 /DN150 1只1.7 管道放空阀闸阀/DN25 3只三、通用操作步骤1、制水:启动搅拌机、刮泥机启动加药泵启动原水泵打开进水阀,并调节流量,使3台机械搅拌澄清池的进水流量一致打开出水阀2、排泥排泥自动运行,每运行4小时,打开排泥阀,历时1分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械搅拌澄清池操作说明书江苏集成环境工程有限公司2010-10一、工艺原理及工艺参数1、工艺原理采用混凝沉淀法去除水中悬浮颗粒的工艺包括水和药剂的混合,反应以及絮凝体与水的分离三个阶段,澄清池是将这三个过程集于一个构筑物中完成的一种非凡形式的设施。

澄清池的工作原理是:原水在澄清池中由下向上流动,澄清池中有一层呈悬浮状态的泥渣,泥渣层由于重力作用在上升水流中处于动态平衡状态;当原水中的悬浮颗粒与混凝剂作用而形成的微小絮凝体随水流通过泥渣层时,在运动中与泥渣层相对较大的泥渣接触碰撞就被吸附在泥渣颗粒表面而迅速除去,使水获得澄清;清水经由澄清池上部的清水槽被收集排出。

因此,保持悬浮状态的、浓度稳定且均匀分布的泥渣区是保证澄清池处理效果的要害。

机械加速澄清池属于泥渣循环分离型,它是借助机械抽升作用,使泥渣在垂直方向不断循环,捕捉原水中形成的絮凝体,并在分离区加以分离。

其特点是充分利用已形成泥渣的活性,增加碰撞机会,强化碰撞几率,提高处理设备的功能。

在机械加速澄清池中心安装有机械搅拌设备,上部为提升叶轮,下部为搅拌浆,两者安装在同一轴上;提升叶轮将混合泥水提升至第二反应室,而搅拌浆使第一混合反应室的泥渣循环流动与拟处理原水进行混合和反应。

投药后的原水经进水管、配水槽进入第一混合反应室中,与回流泥渣混合并完成药剂与水的混合和反应过程;混合泥水从池中心提升至第二反应室,继续完成混凝过程;然后经由导流筒进入分离室完成泥水分离过程。

2、工艺参数项目设计参数备注机械搅拌澄清设备位号数量 2单池设计能力1330m3/h主体材质碳钢防腐尺寸Φ25000×H7500mm 池体直段高度1500mm停留时间(1.2~1.5)h总容积2095m3第一反应室回流量(3~5)Q第一反应室回流缝流速(0.10~0.20) m/s第一反应室直径15600mm第二反应室计算流量(3~5)Q第二反应室内流速(0.04~0.07) m/s第二反应室直径7800mm导流室内流速(0.04~0.07) m/s分离室上升流速(0.0008~0.0011) m/s 配水方式三角配水槽缝隙配水集水方式环形集水槽排泥方式定时周期排泥排泥斗数3个管口表进水管700mm出水管700mm排泥管100mm放空管250mm搅拌刮泥机设备位号数量 2搅拌机叶轮直径4.5m开启度110mm叶轮外缘线速度0.5-1.5m/s搅拌机外缘线速度0.3-1.0m/s转速125-1250rom配套电机型号YCT160-4B电机功率4.5KW电机转速1450RPM刮泥机S craper刮泥机直径15m刮泥机外缘线速度 1.5-2.0m/s配套电机型号Y型电机功率 1.5KW减速机型号BWEY2715-1.50生产厂家江苏集成二. 阀门仪表配置每套机械搅拌澄清池配套的阀门1 阀门型式及规格数量1.1 进水阀闸阀/DN700 1只1.2 出水阀闸阀/DN700 1只1.3 排泥阀气动蝶阀/DN150 3只1.6 放空阀闸阀 /DN150 1只1.7 管道放空阀闸阀/DN25 3只三、通用操作步骤1、制水:启动搅拌机、刮泥机启动加药泵启动原水泵打开进水阀,并调节流量,使3台机械搅拌澄清池的进水流量一致打开出水阀2、排泥排泥自动运行,每运行4小时,打开排泥阀,历时1分钟。

(具体时间需根据实际运行工况确定)。

当气动排气阀发生故障时,人工打开排泥阀。

3、停止:停止原水泵。

停止加药泵。

停止搅拌机、刮泥机。

关闭进水阀、出水阀。

4、设备切换:共有三台机械搅拌澄清池,可以同时运行,也可以二用或一用等组合,此时,需人工来关闭进水阀5、停池后重新运行当停止运转8-24小时后,泥渣成压实状态,重新运转时,宜先开启底部放空管阀门,排出池底少量泥渣,并控制较大的进水量和适当加大投药量,使底部泥渣松动,然后调整到正常水量的2/3左右运转,待出水水水质稳定后,再逐渐降低加药量,增大进水量。

四、运行说明1、运行前的准备工作1)检查池内机械设备的空池运行情况。

2)电气控制系统应操作安全,动作灵活。

3)进行原水的烧杯试验,确定各各种药剂的最佳剂量及最佳PH值。

2、初次运行1)为尽快形成所需泥渣浓度:可减少进水量,增加投药量,进水量为设计流量的2/3~1/2。

适当加大投药量(为试药剂量的2-5倍),并减少叶轮提升量。

启动搅拌器和加药系统,控制涡轮转速为50rpm、刮泥板转速为40rpm,硫酸亚铁、聚丙烯酰胺药量以及石灰的加药量为试验结果的5倍,石灰的加入量以出水的PH控制在10.5。

向澄清池加水至反应室与导流室能形成循环。

2)逐步提高转速,加强搅拌。

如泥渣松散,絮粒较小或水温、进水浊度低时,可将溶解好的黄泥水倒入反应室中,增加活性污泥的生成量,以缩短泥渣形成时间。

3)在泥渣形成过程中,进行转速和开启度的调整,在不扰动澄清区的情况下尽量加大转速和开启度,找出开启度和转速的最佳组合。

4)在形成过程中,应经常取样测定池内各部分的泥渣沉降比,若第一反应室及池子底部泥渣沉降比开始逐步提高,则表明泥渣在形成(一般2~3后泥渣即可形成),此时运行已趋于正常。

泥渣形成后,出水浊度达到设计要求(浊度<10NTU)时,可逐步减少药量至正常加注量,然后逐步增大进水量,每次增加水量不宜超过设计水量的20%,水量增加间隔不小于1小时,待水量增至设计负荷后,应稳定运行不小于48小时。

5)当泥渣面高度接近导流室出口时开始排泥,用排泥来控制泥渣面在导流室出口以下,一般二反应室5分钟泥渣沉降比在10~20%左右。

按不同进水浊度确定排泥周期和历时,用以保持泥渣面的高度。

1、停池后重新运行当停止运转8-24小时后,泥渣成压实状态,重新运转时,宜先开启底部放空管阀门,排出池底少量泥渣,并控制较大的进水量和适当加大投药量,使底部泥渣松动,然后调整到正常水量的2/3左右运转,待出水水水质稳定后,再逐渐降低加药量,增大进水量。

4、运行调整在运行过程中,若出水水质达不到设计要求,需及时调整加药量、提升水量、叶轮提升高度等运行参数来解决。

5、连续运行机械搅拌澄清池适用于连续运行场合,当处理水量大于用水量时,减少每台机械搅拌澄清池的处理水量,最好不要停运设备。

五、电气操作每台机械搅拌澄清池设就地操作按扭柱,操作按扭柱上设有运行、停止的操作按扭以及运行(绿色)、停止(红色)、故障(黄色)指示灯。

就地操作按扭柱设有就地/远控的转换开关。

1、当切换至就地时,远程不能启动搅拌机、刮泥机及排泥阀,现场开始开停各机电设备。

2、当切换至远控时,由PLC自动控制。

1)机械搅拌澄清池的运行与原水泵连动,在启动水泵时,必须先将搅拌机、刮泥机、加药装置启动正常。

2)当原水泵停止后,历时1分钟后,才关闭机械搅拌机和刮泥机。

3)排泥由时间控制排泥。

4)每个机械搅拌澄清池就地控制柜将综合运行信号和综合故障信号进入PLC,当出现故障时,PLC进行报警。

5)排泥阀的运行信号进入PLC。

六、设备维护1、运行操作人员应观察并记录第一反应室、第二反应室的“矾花”生长情况,并将之与以往记录资料比较。

如发现异常应及时分析原因,并采取相应对策。

(1)第二反应室末端矾花颗粒细小,水体浑浊,且不易沉淀则说明混凝剂投药是不够。

(2)第二反应室末端矾花颗粒较大但很松散,澄清池出水异常清澈,但是出水中还夹带大量矾花,这说明混凝剂投药量过大,使矾花颗粒异常长大,但不密实,不易沉淀。

2、运行管理人员加强对入流原水水质的检验,并定期进行烧杯搅拌试验。

通过改变各种药剂种类,改变投药量,改变搅拌机的搅拌强度等,来确定最佳混凝条件。

(1)当水量或水中SS浓度发生变化时,应适当调整混凝剂投药量;(2)当入流水温或PH值发生变化,可改变石灰或助凝剂来提高混凝效果;(3)当入水中有机性胶体颗粒含量变化,应及时调整次氯酸钠用量。

2、静态混合器混合时,由于流量减少,流速降低,会导致混合强度不足。

此时应加强运行的合理调度,尽量保证混合区内有充足的流速。

3、定期清除澄清池的污泥,避免澄清池容积减少,池内流速增加使停留时间缩短,导致沉淀效果下降。

4、澄清池合理确定排泥次数和排泥时间,操作人员应及时准确排泥。

否则澄清池内积存大量污泥,会降低有效池容,使澄清池内流速过大。

5、应加强巡查,确保澄清池出水堰的平整。

否则澄清池出水不均匀造成池内短流,将破坏矾花的沉淀效果。

6、应经常观察澄清池搅拌机、刮泥机或投药设备的运行状况,及时进行维护,发生故障则及时更换报修。

七、机械设备的维修1、安全注意事项维修保养前应切断所有电源,否则会导致严重的人员伤害。

维修人员应按以下步骤断电维修:1)警告操作人员及管理人员。

2)找出所有的残余电源。

3)在开始工作前,将开关操纵杆、闸板加上挂锁,把它们锁在“关”的位置,并在这些位置处装上标识牌,说明正在进行设备的维护工作。

4)确保所有电源都已切断,并要“释放”所有的水压、气压及电流(电容),保证机械部件不会突然动作。

2、检查操作工的控制。

检修完成后,所有以上拆除的防护设施都要重新安装固定好,查看它们是否能正常工作。

在确实查明机器能安全运行后,才能去掉挂锁,清理机器,准备运行。

尽管已切断主电源,扭矩过载控制箱处的电路也可能有电,在箱内进行调整操作前一定要做有电触点的检查。

搅拌机、刮泥机有几处防护设施是为了防止人们受运动部件损害而设置的。

如果在维护中必须拆除防护设备,在运行设备时要格外小心,并在维修完成后重新安好防护设施。

通常暴露在自然环境中,桥与其它出入口在潮湿及冰冻的条件下会变得很滑。

在设备上工作时,护栏和其它防护设施必须到位。

当通过时要小心,不要在护栏外操作,抹干净溢出的油和润滑剂。

3、润滑规定传动装置的蜗轮部分换油量为4.7L/次,下部箱(主传动装置的终极部分)换油量为8L/次。

轴承用油:3#锂基质润滑脂。

4、日常维护4.1、蜗轮部件(1)每天进行:从蜗轮箱一侧的油观察孔检查油位。

如果油位低了,检查链轮附近的蜗轮轴密封是否漏油或拆下扭矩过载箱盖,从里面对油进行检查。

如有必要,更换密封,并将油加至正常水平。

如果油位高了,检查油中是否有冷凝水,从箱中排出少量油进行检查。

如有清水存在,排干直至油流出,并用同型号的油加油至观察孔。

检查损坏的垫片、空气孔以及松动或丢失的外螺栓。

(2)每月进行:检查及清理外毂透气孔。

给轴承添加3#锂基质润滑脂,在外毂顶上有两个加油咀,清理后,用油枪大约泵打两下。

检查润滑油中是否有凝结水或其他污染物,排少量然后目侧。

如肯定带水,排出至见油,后添加至适当油位。

检查有否损坏的垫片、排气孔以及松动或丢失的螺塞。

如油变乳白,全部排空后加新油。

如发现有金属外物,移开链带护罩,链带,初级减速齿轮及蜗轮毂,检查损坏及已磨损部件。

冲洗毂体及替换所需部件。

相关文档
最新文档