半导体和超导体的概念

合集下载

半导体 超导体

半导体 超导体

半导体超导体半导体和超导体是现代电子学和物理学中非常重要的两个概念。

它们分别代表了电子材料中的两种不同的电子行为,即半导体中的电子是部分导体、部分绝缘体,而超导体中的电子则可以在零电阻下流动。

本文将从半导体和超导体的基本概念、性质、应用以及未来发展等方面进行探讨。

一、半导体半导体是介于导体和绝缘体之间的一类电子材料,其电导率介于导体和绝缘体之间。

半导体中的电子主要是由价带和导带组成的,其中价带是指最高的占据态能级,导带是指最低的未占据态能级。

在半导体中,电子的能量不足以跨越带隙,因此不能自由地流动,但是当半导体受到外部激励(如温度、光照、电场等)时,电子就会跃迁到导带中,从而形成了电流。

半导体的性质和应用非常广泛。

首先,半导体可以用于制作各种电子器件,如晶体管、光电二极管、太阳能电池等。

其次,半导体的导电性质可以通过掺杂来改变,即将一些杂质原子引入半导体中,从而改变电子的能带结构。

这种过程被称为掺杂,掺杂后的半导体被称为杂质半导体,其导电性质可以被有效地控制。

最后,半导体的热电性质也非常重要,即在温度差的作用下,半导体可以产生电势差,这种现象被称为热电效应。

热电材料广泛应用于温度测量、能量转换等领域。

二、超导体超导体是一类在低温下具有零电阻和完全反射磁场的电子材料。

超导体的电子行为是由库珀对(即由两个电子组成的复合粒子)的相互作用引起的。

当超导体的温度降低到临界温度以下时,库珀对开始形成,电子可以在不受阻碍地流动,形成零电阻。

此外,超导体还具有完全反射磁场的性质,即当磁场作用于超导体时,其内部电流可以产生反向磁场,从而抵消外部磁场的影响。

超导体的性质和应用也非常广泛。

首先,超导体可以用于制造高灵敏度的磁场传感器和磁共振成像设备等。

其次,超导体的零电阻性质可以用于制造高效率的电力输送线路和超导电动机等。

此外,超导体还可以用于制造高能物理实验设备、量子计算机等。

尽管超导体的应用领域非常广泛,但是由于其需要低温环境的限制,其实用性还存在一定的局限性。

影响导体电阻因素、半导体、超导体

影响导体电阻因素、半导体、超导体

2、我们现在的生活中,常用电子体温计,通过流过半导体制成的感温头来反映
C 人的体温,这是利用了半导体的( ) A、良好的导电性 B、良好的绝缘性 C、电阻随温度变化而变化的特性 D、电阻随光照变化而变化的特性
3、下图所示是一种调节收音机音量兼开关的调节器,
它实际上是一个旋钮型变阻器.若接线片A、B巳接
应用:光敏电阻、热敏电阻、压敏电阻、二极管等 识记:发光二极管也叫LED,具有单向导电的特点。电流从 正极流入负极流出
知识点三、超导体
某些物质在温度降到一定程度时,电阻会突然消失, 变为零,这种现象叫超导现象。能够发生超导现象的 物体叫超导体。
应用:输电,磁悬浮列车等 利用超导体可以降低由于电阻引起的电能损耗!
金属丝的长度变长了,横截面积变小了 。
6、某些物质在很低的温度时,电阻变为零,这就是超导现象。如果把 超导现象用于实际,电烤箱的电阻丝不能 选填能或者不能选用超导体
7、在做“研究电阻大小的因素”的实验时,为了便于研究,采用 控制变量的方法,每次需挑选两根合适的导线,测出通过它们的
电流,然后进行比较,最后得出结论。 (1)为了研究电阻与 横截面积 的关系,应选用导线A和导线D
入了电路,则顺时针转动旋钮触片时,收音机的音
量将变
小.
4、家庭用的白炽灯的灯丝断了,有时适当动一动灯泡可以将灯丝搭 上。接上电路后,灯泡的亮度将变 亮 些(选填“亮”或 “暗”),原因是灯丝的电阻变 小。(选填“大”或“小”)
5、若将一根金属丝均匀拉长时,金属丝的电阻会变 大(选填 “大”或“小”)。原因是:
3、小芳同学在探究“决定导体电阻大小的因素”时,做出了如下猜想: 猜想①:在温度不变时,导体的电阻与导体的材料有关; 猜想②:在温度不变时,导体的电阻与导体的长度有关; 猜想③:在温度不变时,导体的电阻与导体的横截面积有关. 供她选择的导体如下表所示:

半导体与超导体的区别

半导体与超导体的区别

半导体与超导体的区别半导体是指常温下导电性介于导体和绝缘体之间的材料。

主要的半导体材料有硅、锗、砷化镓、硅锗覆合材料等。

半导体通过电子传导或空穴(电洞)传导的方式传输电流。

其中空穴是为方便理解而假想出来的粒子,实际并不存在。

超导体是在一定温度下电阻几乎完全消失的物体。

导体的电阻消失(在仪器测量的精度内,电阻为零)的现象被称为超导现象。

具有超导现象的材料被称为超导体,而对应于某一超导体电阻突然消失的温度被称为该材料的超导临界转变温度,一般用tc来表示。

超导体有两个基本特性。

超导体的基本特性之一是零电阻;超导体的另一个基本特性是完全抗磁性。

也就是说超导体在处于超导状态时,可以完全排除磁力线的进入。

即迈斯纳效应。

导体是能电离的物体,半导体是在一定条件下能电离的物体,绝缘体是不能被电离的物体,超导体是能被完全电离的物体。

在超低温之下,物体电荷之间的吸力骤减,电子更容易被电离,有的物体甚至能被完全电离,这就是超导了。

在高温条件下,许多物质电荷之间的吸力减弱,就像磁铁在高温下吸力减弱一样,能不能在高温区寻找超导呢?也许比较困难,温度低了电子不能被完全电离,温度高了导线就熔化了,当然液体也可以作为导体。

从理论上来说,常温下质子与电子结合最紧密,不可能存在超导,否则以原子为基础的物质就不能形成。

在超低温和超高温,质子与电子的结合都比较松散,这是形成超导的条件。

不过在超高温条件下电流能否形成,这是需要实验进行验证的,不妨让电流通过液态铁试试。

半导体有,做成二极管,三极管,然后组成逻辑电路,好象有一个逻辑电路叫什么的,给忘了,然后那个电路有记忆功能。

超导就不清楚了,因为维持那东西,现在一般都是在低温,技术还不成熟。

不过就只知道,如果把他组成环行,通电,电流不做工的话,可以保存在里面,这也算记忆吧。

半导体和超导体都是物质的两种不同状态,它们的主要区别如下:定义范围。

半导体是指常温下导电性能介于导体与绝缘体之间的材料。

第14讲电阻-2024年新九年级暑假自学课(人教版)

第14讲电阻-2024年新九年级暑假自学课(人教版)

第14讲电阻1.了解常见的电阻器的阻值、单位及换算;2.理解电阻是导体对电流的阻碍作用;3.理解影响电阻大小的因素;4.了解半导体材料和超导现象。

一、电阻1.探究导体对电流的阻碍作用【实验过程】如图所示,把长短、粗细相同的铜丝(或锰铜合金丝)和镍铬合金丝分别接入电路,闭合开关,观察电路中小灯泡的亮度和电流表示数。

【实验现象】当把铜丝接入电路时,闭合开关,电流表示数较大,小灯泡较亮;当把镍铬合金丝接入电路时,闭合开关,电流表示数较小,小灯泡较暗。

【实验分析】在相同电压下,通过铜丝的电流较大,表明铜丝对电流的阻碍作用较小;通过镍铬合金丝的电流较小,表明镍铬合金丝对电流的阻碍作用较大。

【实验结论】导体在导电的同时,对电流也有一定的阻碍作用,且不同导体对电流阻碍作用不同。

2.电阻(1)概念:在物理学中,用“电阻”来表示导体对电流的阻碍作用的大小;(2)符号:通常用“R”表示电阻;(3)单位及换算关系:在国际单位制中,电阻的单位是“欧姆”,简称“欧”,符号是“Ω”。

常用单位有千欧(kΩ)、兆欧(MΩ)。

换算关系:1MΩ=103kΩ,1kΩ=103Ω。

(4)常见物品的电阻值(5具有一定电阻值的元件叫做电阻器,也叫定值电阻,简称电阻。

在电路中的符号是“”。

(6)对电阻的理解【特别提醒】从电流的形成理解导体的电阻导体一方面由于内部有大量的可自由移动的电荷二具备导电能力,另一方面由由于自身结构及电荷间的相互作用二对电流产生一定的阻碍作用。

由此可知,导体具有两面性-既能导电,又对电流有一定的阻碍作用。

从这个意义上说,导体和绝缘体的区别实际上就是电阻大小的不同。

二、影响电阻大小的因素(1)探究电阻的大小与导体的材料、长度、横截面积是否有关,涉及的因素较多,应采用控制变量法涉及实验过程。

①选取材料、粗细相同,而长度不同的镍铬合金丝,分别接入电路中(如图所示),观察电流表示数的变化情况,探究电阻大小与导体长度的关系。

②选取材料、长度相同而粗细不同的镍铬合金丝,分别接入电路中,观察电流表示数的变化情况,探究电阻大小与导体横截面积的关系。

半导体与超导体

半导体与超导体
阳光满天时,母亲喜欢看云,喜欢看落在阳台上的麻雀,喜欢看楼下忙碌的人影;下雨天,阳台上的母亲叨唠更多了,我想母亲此时更落寞,一定在回想着她青春的往事。 每次上班,当我落锁的那一刻,母亲便走向了阳台,她会准时地守候在阳台边。她目送着我的离去,搜寻着我渐行渐远的轨迹。 我狠心地,有时是快速地逃离楼外那块平地。当我走入石楠树下时,我闭着眼,静静地站一会,我轻轻地说: “母亲,我会很快回来的” 有一种记忆可以很久,有一种思念可以很长,有一双手那手心的舒适和温暖,让我一生无法忘怀。 --题记
二、半导体的微观结构特征
半导体一般是四价的,如果在半导体掺 入三价元素,共价键中将形成电子缺乏的局 面,使“空穴”载流子显著增多,形成P型 半导体。典型的P型半导体是硅中掺入微量 的硼。如果掺入五价元素,共价键中将形成 电子多余的局面,使电子载流子显著增多, 形成N型半导体。典型的N型半导体是硅中掺 入微量的磷。 如果将P型半导体和N型半导体烧结,由于它 们导电的载流子类型不同,将会随着组合形 式的不同而出现一些非常独特的物理性质。
我以为,我已经把您藏好了,藏在那样深,那样蜿蜒的,曾经的心底。我以为,只要绝口不提,只要让日子静静地过去,那样我就不会悲伤,所以我努力地告诉自己,这个六月,我微笑着面对天国--您生活的地方:我很好,您好吗? 鬓角的白发,脸上的皱纹,山样的身影,仿若昨天。我知道,那不单单的是一道背影,而是一种恒久的爱。窗台上,滴落的雨滴,轻轻敲击着我的心,可以不再有雨吗?
有一次和父亲去供销社,突然发现椅子上有一个包包,打开一看,有一个工作证,还有一张介绍信,里面还有五十元钱。我悄悄地问父亲:要等丢失钱包的人回来吗?父亲看了我一眼:孩子,东西是别人的,那个人丢了东西不知道有多着急,不可以占为己有,知道吗?我留恋地看着,那笔五十元的巨款,口水都流出来了。要知道,平时向父母要五分钱都是一件困难的事情,如今是多少个五分钱呀! 记得七八岁的时候,邻家院子里一颗杏子树,一到夏天的时候,树上结满了杏子。于是,我和一个邻家的玩伴,爬上了树,一边摘着一边吃。正吃的欢的时候,玩伴一不留神,从树上摔了下来,我吓坏了,赶紧溜下来,叫了父亲去看。父亲瞪了我一眼:小子,等下找你算账!于是,弯腰抱起邻家的孩子,向圩上跑去。医生检查完后,告诉父亲幸亏送的及时,不然小腿就保不住了。父亲垫资了药费,当孩子的父母赶到时,孩子已经躺在父亲的怀里睡着了。父亲常说:相邻相亲,遇着事帮一把,给了别人一点温暖,相信这种温暖会传承下去,那么这个社会就是温暖的。为此事,父亲狠狠地揍了我一顿,我好冤枉啊。

高三物理 欧姆定律、电阻定律、半导体、超导体及应用 知识精讲 通用版

高三物理 欧姆定律、电阻定律、半导体、超导体及应用 知识精讲 通用版

高三物理 欧姆定律、电阻定律、半导体、超导体及应用 知识精讲 通用版【本讲主要内容】欧姆定律、电阻定律、半导体、超导体及应用1. 知道形成电流的条件,理解电流的概念。

2. 理解欧姆定律的内容和适用条件。

3. 理解电阻定律的内容、公式,电阻率的意义、线性元件及非线性元件。

4. 知道半导体、超导体及其应用。

【知识掌握】【知识点精析】1. 电流(1)定义:电荷的定向移动形成电流。

电荷指自由电荷,金属导体中指自由电子的定向移动,电解质溶液中指正负离子同时向相反方向的运动。

(2)形成电流的条件:导体两端存在电压。

其一要有自由电荷;其二要有电场。

电源的作用就是保持导体两端的持续的电压,形成持续的电流。

(3)电流的方向:规定正电荷定向移动的方向为电流的方向。

如果电流是靠自由电子的定向移动形成的,则电流的方向和自由电子的定向移动方向相反。

(4)电流强度:通过导体某横截面的电荷量Q 跟通过这些电荷量所用时间t 的比值叫电流强度,简称电流。

定义式tQ I =,其中Q 是通过导体横截面的电量 。

(5)单位:安培(A )是国际单位制的基本单位之一 A 10mA 10A 163μ==。

(6)方向不随时间改变的电流叫直流;方向和强弱都不随时间改变的电流叫恒定电流。

(7)电流的微观本质:如图是粗细均匀的一段长为L 的导体,两端加上一定的电压,导体中的自由电荷沿导体定向移动的速率为V ,设导体的横截面积为S ,导体每单位体积内的电荷数为N ,每个自由电荷的电荷量为q 。

导体中的自由电荷总数为N =nSL总电荷量为Q=Nq=nLSq所有这些电荷通过横截面D 所需的时间为v L t =所以导体中的电流nqSv vL nLSq t Q I === 由此可见,从微观上讲,电流决定于导体中单位体积中的自由电荷数目,电荷量,定向移动速度,还与导体的横截面积有关。

2. 欧姆定律(1)内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比,即RU I =。

微电子技术基础-半导体及其基本特性

微电子技术基础-半导体及其基本特性

半导体材料的分类
3.半导体材料的分类
对半导体材料可从不同的角度进行分类。 根据其性能可分为高温半导体、磁性半导体、热电半导 体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型 、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶 半导体。 比较通用且覆盖面较全的则是按其化学组成的分类,依 此可分为:元素半导体、化合物半导体和固溶半导体三大 类。
载流子
9. 非本征半导体的载流子
热平衡时: 在非本征情形:
np n
2 i
n p
n大于p
p大于n
N型半导体:
P型半导体:
载流子
多子:多数载流子
n型半导体:电子 p型半导体:空穴
少子:少数载流子
n型半导体:空穴 p型半导体:电子
载流子
电中性条件: 正负电荷之和为0
p + Nd – n – Na = 0
原子能级 能带
量子态和能级 固体的能带结构
半导体的能带
半导体的能带结构
导 带
Eg
价 带
价带:0K条件下被电子填充的能量最高的能带; 导带: 0K条件下未被电子填充的能量最低的能带; 禁带:导带底与价带顶之间能带; 带隙:导带底与价带顶之间的能量差。
半导体的能带
电子和空穴的有效质量m*
半导体中载流子的行为可以等效为自由粒子, 但与真空中的自由粒子不同,考虑了晶格作用后的
基本方程
方程的形式1
x, t s 0
2
特例: 方程的形式2
E
1
s 0
x dx
s
均匀Si中,无 外加偏压时,
方程RHS=0, 静电势为常数
电荷 密度

超导体和半导体材料

超导体和半导体材料

超导体和半导体材料超导体和半导体材料是现代科技中非常重要的两类材料。

它们在电子学、电磁学和能源等领域都有着广泛的应用。

本文将分别介绍超导体和半导体材料的特性、应用和未来发展。

1. 超导体超导体是指在低温下具有零电阻和完全抗磁性的材料。

超导体的发现远在1911年,自此之后,科学家们不断研究并发现了许多种类的超导体材料。

1.1 特性超导体的最显著特性是其低温下的零电阻。

在超导态下,电流可以在材料内部无损耗地传输,极大地提高了电流传输效率。

此外,超导体还具有完全抗磁性,即可以屏蔽外界的磁场。

1.2 应用超导体在能源传输、磁共振成像、粒子加速器、磁浮交通等方面具有广泛应用。

例如,在能源传输方面,超导体可以用于电力输送线路,提高能源传输的效率。

在磁共振成像中,超导体用于制造高磁场强度的磁体,提高成像的分辨率和灵敏度。

此外,超导体还在科学研究领域扮演着重要角色,如用于粒子加速器和核磁共振实验。

1.3 未来发展虽然超导体在一些特定应用上取得了成功,但其低温运行条件限制了其广泛应用。

因此,科学家们正在寻找高温超导体,以便将其运用到更多领域。

高温超导体能够在接近室温的条件下实现超导态,为超导体应用带来了更多的可能性。

2. 半导体材料半导体材料是指在温度条件下具有介乎于导体和绝缘体之间电导率的材料。

半导体材料的研究和应用可以追溯到20世纪初。

2.1 特性半导体材料的最显著特性是其电导率介于导体和绝缘体之间。

这种特性使得半导体材料可以根据外界条件(如温度、压力)进行控制和调节。

此外,半导体材料还具有光电效应,即光照射时可以发生电子激发和电流流动。

2.2 应用半导体材料在电子学和光电子学领域具有广泛应用。

晶体管是半导体材料最重要的应用之一,它作为电子器件的基本构件,广泛应用于计算机、手机和其他电子设备中。

此外,半导体材料还能够产生光电效应,用于激光器、光电二极管等光电子器件。

2.3 未来发展随着科技的不断进步,半导体材料的研究和应用也在不断发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体和超导体的概念
半导体和超导体是现代电子学中至关重要的两大概念。

半导体是指在一定温度下,其导电性能介于导体和绝缘体之间的一类材料;而超导体则是指在低温下,其电阻为零的一类材料。

这两个概念的诞生和发展,对于现代电子技术的发展和应用产生了深远的影响。

一、半导体的概念和特点
半导体是指在一定温度下,其导电性能介于导体和绝缘体之间的一类材料。

它的导电性能介于导体和绝缘体之间,因此被称为半导体。

半导体具有以下几个特点:
1. 导电性能介于导体和绝缘体之间。

在半导体中,电子的能带结构介于导体和绝缘体之间。

当半导体的温度上升时,其导电性能逐渐增强。

2. 具有PN结的特性。

PN结是半导体器件中最基本的元件之一。

PN结是由P型半导体和N型半导体组成的,它具有单向导电性,可以用于制造二极管、三极管等器件。

3. 可以被掺杂。

掺杂是指在半导体中加入少量的杂质,从而改变半导体的导电性能。

掺杂可以将半导体分为P型半导体和N型半导体。

4. 具有光电效应。

半导体材料具有光电效应,即当光照射在半导体上时,会产生电子和空穴对,从而产生电流。

这种效应被广泛应用于太阳能电池、LED等器件中。

二、超导体的概念和特点
超导体是指在低温下,其电阻为零的一类材料。

超导体的发现是在1911年,当时荷兰物理学家海克·卡迈伦斯发现在低温下,汞的电阻为零。

这一发现引起了科学界的广泛关注,随后在研究中发现了更多的超导体材料。

超导体具有以下几个特点:
1. 电阻为零。

在超导体中,电流可以无阻力地流动,因此电阻为零。

这种特性被广泛应用于制造超导磁体、超导电缆等器件。

2. 低温要求高。

超导体的电阻为零要求材料处于低温状态,通常需要将其冷却到接近绝对零度的温度。

3. 磁场排斥。

在超导体中,磁场会被排斥出材料,这种现象被称为迈斯纳效应。

这种效应被广泛应用于制造磁浮列车、MRI等器件。

4. 超导态可以被磁场破坏。

当超导体处于强磁场中时,其超导态可以被破坏,从而导致电阻出现。

这种现象被称为磁通量量子化现象。

三、半导体和超导体的应用
半导体和超导体的应用范围非常广泛,以下列举其中的一些:
1. 半导体的应用
(1)集成电路。

集成电路是半导体器件中的一种,它将多个电子器件集成在一个芯片中,从而实现高度集成化。

(2)太阳能电池。

太阳能电池是利用光电效应将太阳能转化为电能的一种器件,其中的光电转换材料就是半导体材料。

(3)LED。

LED是利用半导体材料的光电效应发光的一种器件,
它具有高效、长寿命、低功耗等优点。

2. 超导体的应用
(1)超导磁体。

超导磁体是利用超导体的电阻为零特性制造的磁体,它具有强磁场、节能、环保等优点,被广泛应用于医学、工业、科研等领域。

(2)磁浮列车。

磁浮列车利用超导体的磁场排斥特性,实现列车悬浮在磁轨上运行,具有高速、低噪音等优点。

(3)MRI。

MRI是一种医学成像技术,它利用超导体的磁场排斥特性制造的磁体产生强磁场,从而实现对人体进行非侵入性的成像。

总之,半导体和超导体是现代电子学中至关重要的两大概念。

它们的诞生和发展,极大地推动了现代电子技术的发展和应用。

随着科技的不断进步,半导体和超导体的应用前景将更加广阔。

相关文档
最新文档