平面直角坐标系知识梳理及经典题型(教师版)
专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。
(完整版)平面直角坐标系知识点归纳及例题

X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负点C、D的横坐标都等于n ;X7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,则习题1、在平面直角坐标系中,线段 BC// x 轴,则 A.点B 与C 的横坐标相等 BC •点B 与C 的横坐标与纵坐标分别相等D 2 •若点P (x, y)的坐标满足xy 0则点P 必在A.原点 B . x 轴上 C . y 轴上 D . x 轴或y 轴上 3.点P在x 轴上,且到y 轴的距离为5,则点P 的坐标是 (A. (5,0) B . (0,5) C . (5,0)或(-5,0) D . (0,5)或(0,-5) 4.平面上的点(2,-1)通过上下平移不能与之重合的是 (A . (2,-2)B . (-2,-1)C . (2,0)D . 2,-3)5. 将△ ABC 各顶点的横坐标分别减去3,纵坐标不变,得到的厶ABC 相应顶点的坐标,则 △ A 'B 'C '可以看成厶ABCi 卜y1 y匸y n P--------- —--•P2 • __ n P _ ___ 亠n -------- * P1m ;亠 1 11 ----- T P U f imII V 1 ""O ' XHm O ------------ X 1 1 O mn __ _ ▲1Rb-n关于x 轴对称 关于y 轴对称关于原点对称点P (m,n)关于y 轴的对称点为 b) 点P (m,n)关于原点的对称点为P 3( m, n),即横、纵坐标都互为相反数; c) XP 2( m,n),即纵坐标不变,横坐标互为相反数; a)点P (m, n)关于x 轴的对称点为 R(m, n),即横坐标不变,纵坐标互为相反数;m n ,即横、纵坐标相等;m n ,即横、纵坐标互为相反数;( •点B 与C 的纵坐标相等 •点B 与C 的横坐标、纵坐标都不相等 )) ) )y在第一、三象限的角平分线上在第二、四象限的角平分线上A.向左平移3个单位长度得到B .向右平移三个单位长度得到C•向上平移3个单位长度得到 D •向下平移3个单位长度得到6•线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是A . (2,9)B . (5,3)C . (1,2)D . (-9,-4)7•在坐标系内,点P (2, -2)和点Q(2,4 )之间的距离等于______________ 单位长度,线段PQ和中点坐标是____________8. 将点M(2,-3)向左平移2个单位长度,再向下平移1个单位长度,得到的点的坐标为9. 在直角坐标系中,若点P(a 2,b 5)在y轴上,则点P的坐标为___________________10. 已知点P( 2,a),Q(b,3),且PQ// x 轴,则a ___________ ,b ____________11. 将点P( 3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x, 1),则xy = _______12. 则坐标原点0( 0,0 ),A (-2,0 ) ,B(-2,3)三点围成的△ ABO勺面积为_______________13. 点P(a,b)在第四象限,则点Q(b, a)在第_________ 限14. 已知点P在第二象限两坐标轴所成角的平分线上,且到x轴的距离为3,则点P的坐标为 ____________15. 在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果在图形a中点A的坐标为(5, 3),则图形b中与A对应的点A'的坐标为______________16. 在平面直角坐标系中,将坐标为(0,0),(2,0),(3,4),(1,4) 的点用线段依次连接起来形成一个图像,并说明该图像是什么图形。
平面直角坐标系典型例题含标准答案

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a与b组成的数对,记作(a,b)。
注意a与b的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,有序实数对(a,b)叫做点A的坐标,其中a叫横坐标,b叫做纵坐标。
第二象限第一象限----------- o---------- 耳匕 ----------- :第二壕限第四象限"- -------------- S1——3.各象限内的点与坐标轴上的点的坐标特征:4.特殊位置点的特殊坐标5.对称点的坐标特征:关于芯轴对称关于¥轴对称关于原点对称6.点到坐标轴的距离:点P(x, y)到X轴距离为卜|,到y轴的距离为|x|7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2, 3)在第( )象限.A. 一B.XC.aD.四2.若点P(a,a -2)在第四象限,则a的取值范围是( )A. 一 2 < a < 0B. 0 < a < 2C. a > 2D. a < 03.在平面直角坐标系中,点P (-2, x2 +1 )所在的象限是( )A.第一象限B.第二象限仁第三象限 D.第四象限考点2:点在坐标轴上的特点1.点P(m + 3,m +1)在%轴上,则P点坐标为( )A. (0,-2)B. (2,0)C. (4,0)D. (0,-4)2.已知点P(m,2m-1)在y轴上,则P点的坐标是。
3.若点P (x, y)的坐标满足xy=0 (x/y),则点P必在( )A.原点上B. x轴上C. y轴上D. x轴上或y轴上(除原点)考点3:对称点的坐标1.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( )A. (-3,2)B. (3,-2)C. (-2,3)D. (2,3)2.已知点A的坐标为(-2, 3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点 C 关于x轴对称的点的坐标为( )A.(2, -3)B.(-2, 3)C.(2, 3)D.(-2, -3)3.若坐标平面上点P (a, 1)与点Q (-4, b)关于x轴对称,则( )A. a=4, b=-1B. a=-4, b=1C. a=-4, b=-1D. a=4, b=1考点4:点的平移1.已知点A (-2, 4),将点A往上平移2个单位长度,再往左平移3个单位长度得到点A’, 则点A’的坐标是( )A.(-5, 6)B.(1, 2)C.(1, 6)D.(-5, 2)2.已知A (2, 3),其关于x轴的对称点是B, B关于y轴对称点是C,那么相当于将A经过 ( )的平移到了 C.A.向左平移4个单位,再向上平移6个单位B.向左平移4个单位,再向下平移6个单位C.向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位3.如图,A, B的坐标为(2, 0), (0, 1),若将线段AB平移至A1B1,则a+b的值为( )A. 2B. 3C. 4D. 5考点5:点到坐标轴的距离1.点M (-3, -2)到y轴的距离是( )A. 3B. 2C. -3D. -22.点P到x轴的距离是5,到y轴的距离是6,且点P在x轴的上方,则P点的坐标为.3.已知P (2-x, 3x-4)到两坐标轴的距离相等,则x的值为( )3 3 3A. 3B. -1C. 3 或-1D.-或 12 2 2考点6:平行于x轴或y轴的直线的特点1.如图,八口〃8s乂轴,下列说法正确的是( )3 CA. A与D的横坐标相同B. C与D的横坐标相同C. B与C的纵坐标相同D. B与D的纵坐标相同2.已知点A (m+1, -2)和点B (3, m-1),若直线八8〃乂轴,则m的值为( )A. 2B. -4C. -1D. 33.已知点M (-2, 3),线段MN=3,且MN〃y轴,则点N的坐标是( )A. (-2, 0)B.(1, 3)C.(1, 3)或(-5, 3)D.(-2, 0)或(-2, 6)考点7:角平分线的理解 1.已知点A (3a+5, a-3)在二、四象限的角平分线上,则a=考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(-2, 3),棋子“马”的坐标为(1, 3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)考点9:面积的求法(割补法)1. (1)在平面直角坐标系中,描出下列3个点:A (-1, 0), B (3, -1), C (4, 3)(2)顺次连接A, B, C,组成AABC,求4ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0, 2)(1, 0)(6, 2)(2, 4),求四边形ABCD的面积.3.在图中A (2, -4)、B (4, -3)、C (5, 0),求四边形ABCO的面积考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a, 0)和B点(0, 10)两点,且AB与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0 或 4D. 4 或-42.如图,已知:A(—5,4)、B(—2,—2)、C(0,2)(1)求A ABC的面积;(2) y轴上是否存在点P,使得A PBC面积与A ABC的面积相等,若存在求出P点的坐标,若不存在,请说明理由。
7.5《平面直角坐标系》主要知识点及题型汇总

05、《平面直角坐标系》知识点和主要题型汇总01、有序数对:1、定义:有 的两个数a 与b 组成的数对。
2、练习:①已知(4,3)表示第三排,第四列,则第二列第五排记作 。
②下列关于有序数对的说法正确的是( )A 、(3,4)与(4,3)表示的位置相同B 、 有序数对(4,4)与(4,4)表示两个不同的位置C 、(3,5)与(5,3)表示不同位置的两个有序数对D 、(a ,b )与(b ,a )表示的位置肯定不同 02、平面直角坐标系1、构成坐标系的各种名称坐标系是有 条 的数轴组成的,有公共的 ,水平的数轴叫做 ,又叫做 ;竖直的数轴叫做 ,又叫做 ,原点的坐标为: 。
2、下列四个图中,是平面直角坐标系是( )03、点的坐标1、点的坐标的构成:点的坐标是有序数对,由 和 两部分组成,2、点的纵横坐标确定方法过P 点作PE ⊥x 轴,垂足为E,则 E 点表示的数叫做点P 的 坐标,过P 点作PF ⊥y 轴,垂足为F,则 F 点表示的数叫做点P 的 坐标.3、点的坐标的表示方法:横 纵 ,中间 ,两边 。
4、各种特殊点的坐标特征,设点P (x ,y )①当0>x ,0>y 时,点P 在 ;②当0<x ,0<y 时,点P 在 ;③当0>x ,0<y 时,点P 在 ;④当0=x 时,点P 在 ;⑤当0<x ,0>y 时,点P 在 ;⑥当0=y 时,点P 在 ;5、练习:①在直角坐标系中,点(2,-1)在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限②在直角坐标系中,点(-2,1)在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限③在直角坐标系中,点(0,-1)在( )A 、x 轴上B 、x 轴负半轴上C 、y 轴上D 、y 轴负半轴上 ④已知点M(a ,b ),且0<ab ,0>+b a ,则点M 在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限⑤若点A (1-x ,x 26+)在x 轴上,则点A 的坐标是⑥点Q (x ,y )在第四象限,且2,3==y x , 则点Q 的坐标是 。
平面直角坐标系(知识总结-试题和答案)

初中精品数学精选精讲学科:数学任课教师:授课时间:年月日(1)用坐标表示地理位置(2)用坐标表示平移13.平面直角坐标系其他公式(1)坐标平面内的点与有序实数一一对应。
(2) 一三象限角平分线上的点横纵坐标相等。
(3)二四象限角平分线上的点横纵坐标互为相反数。
(4)一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。
(5)y轴上的点,横坐标为0.(6)x轴上的点,纵坐标为0.(7)坐标轴上的点不属于任何象限。
二、经典例题讲解【例1】我们常用_________表示平面内某点的位置.在地理上,常用___________表示地理位置.【例2】下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b, a)表示的位置不同C.(3,+2)与(+2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置.【例3】P(x,y)满足xy=0,则点P在_____________-.例5.在平面直角坐标系中,顺次连接A(-3,4),B(-6,-2),C(6,-2), D(3,4)四点,所组成的图形是____.【例4】若线段AB平行于x轴,AB长为5,若A的坐标为(4,5),则B的坐标为_________【例5】若点P(m,1)在第二象限,则点Q(-m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上【例6】一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,如果A1求坐标为(3,0),求点 A5•的坐标。
【例7】如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为( )【例8】如图,面积为12cm2的△ABC向x轴正方向平移至△DEF的位置,相应的坐标如图所示(a,b为常数)(1)、求点D、E的坐标、(2)求四边形ACED的面积。
平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
平面直角坐标系知识梳理及经典题型(教师版)

平面直角坐标系知识结构图:一、知识要点:(一)有序数对:有顺序的两个数a与b组成的数对。
记作(a ,b)(二)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;a,)一一对应;其1、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b中,a为横坐标,b为纵坐标坐标;2、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限(三)四个象限的点的坐标具有如下特征:1、点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;2、点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零; (四)在平面直角坐标系中,已知点P ),(b a ,则 1、点P 到x 轴的距离为b ; 2、点P 到y 轴的距离为a ;3、点P 到原点O 的距离为PO = 22b a +(五)平行直线上的点的坐标特征:1、在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2、在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;(六)对称点的坐标特征:1、点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;象限 横坐标x纵坐标y第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负P (b a ,)abxy OXYA BmXYC Dn2、点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3、点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称(七)两条坐标轴夹角平分线上的点的坐标的特征:1、若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等;2、若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上(八)利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:1、建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;3、在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
平面直角坐标系知识点归纳及例题

平⾯直⾓坐标系知识点归纳及例题平⾯直⾓坐标系知识点归纳1、坐标平⾯上的任意⼀点P 的坐标,都和惟⼀的⼀对有序实数对(b a ,)⼀⼀对应;其中,a 为横坐标,b 为纵坐标坐标;3、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限; 4、四个象限的点的坐标具有如下特征:5、在平⾯直⾓坐标系中,已知点P ),(b a ,则(1)点P 到x 轴的距离为b ;(2)点P 到y 轴的距离为a ; 6、平⾏直线上的点的坐标特征:a) 在与x 轴平⾏的直线上,所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平⾏的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;7、对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为),(1n m P -,即横坐标不变,纵坐标互为相反数;b) 点P ),(n m 关于y 轴的对称点为),(2n m P -,即纵坐标不变,横坐标互为相反数;c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于y 轴对称关于原点对称象限横坐标x 纵坐标y 第⼀象限正正第⼆象限负正第三象限负负第四象限正负 -3 -2 -1 0 1 a b 1 -1 -2 -3 P(a,b)Y x XYA B mXY C D n X y P 1P n n - m O X y P 2P m m - n O Xy P 3P m m - n O n -b8、两条坐标轴夹⾓平分线上的点的坐标的特征:a) 若点P (n m ,)在第⼀、三象限的⾓平分线上,则n m =,即横、纵坐标相等;b) 若点P (n m ,)在第⼆、四象限的⾓平分线上,则n m -=,即横、纵坐标互为相反数;在第⼀、三象限的⾓平分线上在第⼆、四象限的⾓平分线上习题 1、在平⾯直⾓坐标系中,线段B C ∥x 轴,则()A .点B 与C 的横坐标相等 B .点B 与C 的纵坐标相等C .点B 与C 的横坐标与纵坐标分别相等D .点B 与C 的横坐标、纵坐标都不相等2.若点P ),(y x 的坐标满⾜0=xy 则点P 必在()A .原点B .x 轴上C .y 轴上D .x 轴或y 轴上3.点P 在x 轴上,且到y 轴的距离为5,则点P 的坐标是()A .(5,0)B .(0,5)C .(5,0)或(-5,0)D .(0,5)或(0,-5)4.平⾯上的点(2,-1)通过上下平移不能与之重合的是()A .(2,-2)B .(-2,-1)C .(2,0)D .2,-3)5.将△ABC 各顶点的横坐标分别减去3,纵坐标不变,得到的△A 'B 'C '相应顶点的坐标,则△A 'B 'C '可以看成△ABC ()A .向左平移3个单位长度得到B .向右平移三个单位长度得到C .向上平移3个单位长度得到D .向下平移3个单位长度得到6.线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标是A .(2,9)B .(5,3)C .(1,2)D .(-9,-4)8.将点M(2,-3)向左平移2个单位长度,再向下平移1个单位长度,得到的点的坐标为_______9.在直⾓坐标系中,若点P )5,2(+-b a 在y 轴上,则点P 的坐标为____________10.已知点P ),2(a -,Q )3,(b ,且PQ ∥x 轴,则=a _________,=b ___________11.将点P ),3(y -向下平移3个单位,并向左平移2个单位后得到点Q )1,(-x ,则X y P m n O y P m n O Xxy =_________12.则坐标原点O (0,0),A (-2,0),B(-2,3)三点围成的△ABO 的⾯积为____________13.点P ),(b a 在第四象限,则点Q ),(a b -在第______象限14.已知点P 在第⼆象限两坐标轴所成⾓的平分线上,且到x 轴的距离为3,则点P 的坐标为____________15.在同⼀坐标系中,图形a 是图形b 向上平移3个单位长度得到的,如果在图形a 中点A 的坐标为)3,5(-,则图形b 中与A 对应的点A '的坐标为__________平⾯直⾓坐标系的复习资料⼀、本章的主要知识点坐标⽅法的简单应⽤ 1、⽤坐标表⽰地理位置; 2、⽤坐标表⽰平移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系知识结构图:一、知识要点:(一)有序数对:有顺序的两个数a与b组成的数对。
记作(a ,b)(二)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;a,)一一对应;其1、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b中,a为横坐标,b为纵坐标坐标;2、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限(三)四个象限的点的坐标具有如下特征:1、点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;2、点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零; (四)在平面直角坐标系中,已知点P ),(b a ,则 1、点P 到x 轴的距离为b ; 2、点P 到y 轴的距离为a ;3、点P 到原点O 的距离为PO = 22b a +(五)平行直线上的点的坐标特征:1、在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2、在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;(六)对称点的坐标特征:1、点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;象限 横坐标x纵坐标y第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负P (b a ,)abxy OXYA BmXYC Dn2、点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3、点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称(七)两条坐标轴夹角平分线上的点的坐标的特征:1、若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等;2、若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上(八)利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:1、建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;3、在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
(九)用坐标表示平移:见下图二、题型分析:XyP1Pnn -mOXyP2Pmm -nOXyP3Pmm -nOn -XyPmnOyPmnOXP (x ,y )P (x ,y -a )P (x -a ,y ) P (x +a ,y )P (x ,y +a )向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位题型一: 代数式与点坐标象限判定此类问题通常与不等式(组)联系在一起,或由点所在的象限确定字母的取值范围,或由字母的取值范围确定点所在的象限.【例1】在平面直角坐标系中,点()32-,在( ) A.第一象限B.第二象限C.第三象限D.第四象限【解析】由各象限点的特征知,点()32-,在第四象限,故选D .【点评】解答这类问题所需的知识点是第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(-,+).【例2】若点P (12m m -,)的横坐标与纵坐标互为相反数,则点P 一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】由题意知120m m +-=,解得 1.m =于是点P 的坐标为(1,-1),于是点P 在第二象限.选B .【点评】本题设置了一个小小的障碍,即先根据横坐标与纵坐标互为相反数列出方程解出m ,然后才能根据会标特点确定象限.【例3】若点P (a ,b )在第四象限,则点M (b-a ,a-b )在 ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 答案:B分析:第四象限横坐标大于0,纵坐标小于0.【例4】如果a -b <0,且ab <0,那么点(a ,b)在 ( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.答案:B【例5】对任意实数x ,点P (x ,x 2-2x )一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:C【例7】点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
答案:(3,-2)【例8】若点M (1 – x ,x + 2 ) 在第二象限内,则x 的取值范围为 ;答案:x >2 习题演练:1、在平面直角坐标系中,点P (4,22-+m )一定在 象限。
2、点P (x -1,x +1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3、如果点M (a +b ,ab )在第二象限,那么点N (a ,b )在第________象限。
4、点Q (3 – a ,5 – a )在第二象限,则a 2 - 4a + 4 + a 2- 10a + 25= ;5、点M (a ,a -1)不可能在 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6、如果xy<0,那么点P (x ,y )在 ( ) A 、 第二象限 B 、第四象限 C 、第四象限或第二象限 D 、第一象限或第三象限题型二:用代数式求坐标轴上的点坐标例1:在平面直角坐标系中,已知点P (2,5-+m m )在x 轴上,则P 点坐标为 答案: (7,0)例2:已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 . 答案:(-2,2)或(2,2)习题演练:1、已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。
2、已知线段AB=3,AB ∥x 轴,若点A 的坐标为(1-,2),则B 点的坐标为 ;3、已知点P (x 2-3,1)在一、三象限夹角平分线上,则x= .题型三:求对称点的坐标解答此类问题所需知识点是:点(a,b )关于x 轴的对称点是(a,-b),关于y 轴的对称点是(-a,b),关于原点的对称点是(-a,-b ).【例1】在如图1所示的方格纸中,每个小正方形的边长为1,如果以MN 所在的直线为y 轴,以小正方形的边长为单位长度建立平面直角坐标系,使A 点与B 点关于原点对称,则这时C 点的坐标可能是( )A.(13), B.(21)-,C.(21),D.(31),【解析】根据题意,A 点与B 点关于原点对称,MN 所在直线为y 轴,于是可确定原点为图中O 点位置,即x 轴为过O 点的一条横线,于是C 点的坐标为(2,-1),即选B . 【点评】本题逆向考查了两点关于原点对称问题,求C 点坐标的关键是确定直角坐标系的原图1点所在.例1:点M (2,-3)关于x 轴的对称点N 的坐标为 ; 关于y 轴的对称点P的坐标为 ;关于原点的对称点Q 的坐标为 。
答案:(2,3) ; (-2,-3) ; (3,-2)例2 已知点A (a ,-5),B (8,b )根据下列要求,确定a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于原点对称;(3)AB ∥x 轴; (4)A ,B 两点在一,三象限两坐标轴夹角的平分线上.【分析】(1)两点关于y 轴对称时,它们的横坐标互为相反数,而纵坐标相同; (2)两点关于原点对称时,两点的横纵坐标都互为相反数; (3)两点连线平行于x 轴时,这两点纵坐标相同(但横坐标不同);(4)当两点位于一,三象限两坐标轴夹角的平分线上时,每个点的横纵坐标相同.【解答】(1)当点A (a ,-5),B (8,b )关于y 轴对称时有:85A B A Bx x a y y b =-=-⎧⎧∴⎨⎨==-⎩⎩(2)当点A (a ,-5),B (8,b )关于原点对称时有85A BA B x x a y y b =-=-⎧⎧∴⎨⎨=-=⎩⎩ (3)当AB ∥x 轴时,有85A B A B x x a y y b ≠≠⎧⎧∴⎨⎨==-⎩⎩ (4)当A ,B 两点位于一,三象限两坐标轴夹角平分线上时有:x A =y B 且x A =y B 即a=-5,b=8.【点评】运用对称点的坐标之间的关系是解答本题的关键.习题演练:1、点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;2、在平面直角坐标系下,下列各组中关于原点对称又关于y 轴对称的点是( )A 、(3,-2)(-3,-2)B 、(0,3)(0,-3)C 、(3,0)(-3,0)D 、(3,-2)(-3,2)题型四:根据坐标对称求代数式的值例1:已知点P (23,3)a -和点A )23,1(+-b 关于x 轴对称,那么b a += ; 答案:23- 习题演练:1、已知点A (2a+3b ,-2)和点B (8,3a+2b )关于x 轴对称,那么a+b=( ) A 、2 B 、-2 C 、0 D 、4 答案:A2、已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m ;答案:-3 ;12题型五:根据到坐标轴的距离求坐标例1:过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为 ( ).A 、(0,2)B 、(2,0)C 、(0,-3)D 、(-3,0) 答案:C例2:已知点M 到x 轴的距离为3,到y 轴的距离为2,则M 点的坐标为( ).A 、(3,2)B 、(-3,-2)C 、(3,-2)D 、(2,3),(2,-3),(-2,3),(-2,-3) 答案:D例3:若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( )A、1个 B、2个 C、3个 D、4个 答案:D习题演练:1、点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是 ( )A 、(4,2)B 、(-2,-4)C 、(-4,-2)D 、(2,4) 答案:B2、点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有 ( )A 、a=3, b=4B 、a=±3,b=±4C 、a=4, b=3D 、a=±4,b=±3 答案:D3、已知点P 的坐标为(2 – a ,3a + 6),且点P 到两坐标轴的距离相等,则点P 坐标是 ( )A 、(3,3)B 、(3,—3)C 、(6,一6)D 、(3,3)或(6,一6) 答案:D题型六:根据图形的其他顶点坐标求点坐标例1:在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限. 答案:一 习题演练:1、一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( )A 、(2,2)B 、(3,2)C 、(3,3)D 、(2,3) 答案:B题型七:根据点的坐标求图形的面积例1:已知点A (-2,0)B (4,0)C (-2,-3)。