高分子化学论文
高分子材料论文-高分子材料的循环利用研究 -化工

高分子材料论文:高分子材料的循环利用研究-化工高分子材料论文:高分子材料的循环利用研究摘要:随着社会的不断进步,高分子材料在我国的使用量也在逐年的上升,但是也正是因为如此,高分子所产生的废物也在逐年的增多。
同时经济的不断发展,能源的不断使用,使我国的资源走向匮乏,所以对于高分子材料的循环利用就显得更加的重要。
本文就是对高分子材料的循环利用进行详细的阐述。
关键词:高分子材料;循环利用;解决策略所谓高分子材料就是指以高分子为基础形成的材料,在现在的生活中,以高分子材料构成的材料较多,橡胶、塑料、纤维、涂料和高分子基复合材料等等。
高分子材料在生活的大量出现,使高分子材料废旧物也大量出现,所以对于高分子材料的循环利用也显得格外重要。
现在对高分子材料循环一般都是采用生物降解的方式,生物降解的方式大概分为三种:生物细胞的不断增长对物质产生机制性的破坏;微生物的对聚合物进行作用,在聚合物内产生新的物质;通过酶的作用使高聚物内的化学键产生断裂,从而实现降解。
高分子材料的生物降解主要经过两个过程:首先是微生物的水解酶与高分子材料中的化学键结合,将化学键断裂,这样化学键就从原来高分子转变为多个小分子化合物。
之后,被分解掉得化合物就会被微生物吞噬,最终转化为二氧化碳与水。
但是现在对生物降解技术的机理所了解的还不是特别清楚,生物降解技术不仅与材料的本身有关,还与材料所在的环境有关。
一、高分子分解材料可循環使用的类型(一)微生物生产型所谓微生物生产型就是各种微生物合成的一种高分子类型,这样的高分子材料的主要构成形式是生物聚酯、微生物多糖。
这样的类型材料更易于分解,而且分解后所产生的物质还不易对环境造成污染,所以微生物分解型材料更适用于制造可降解塑料袋。
(二)合成的高分子合成的高分子材料以脂肪族聚酯、芳香族聚酯以及聚酰胺为代表,这类聚酯更易于进行生物的降解。
但是,脂肪族聚酯在使用的过程中存在着一些问题,例如熔点低、强度与耐热性都不够。
浅谈高分子材料对环境保护的影响-高分子材料论文-化学论文

浅谈高分子材料对环境保护的影响-高分子材料论文-化学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:当前,在科学技术水平快速发展的推动下,高聚物材料不断融入市场。
其与传统材料相比有着明显的优势,即比强度高、耐腐蚀性强等。
这些特性使其在环保材料与设备中得到广泛应用,比如,在水处理中,可以借助高聚物絮凝剂。
然而任何事物均存在对立面,高聚物材料在促进环境保护的同时,在一定程度上也对环境造成破坏。
本文对高分子材料进行简单概述,并对其在环境保护中的应用进行阐述,同时对高分子材料造成的环境污染问题进行简单分析,并提出相应解决策略就高分子材料对环境保护的影响进行简单研究。
关键词:高分子材料,环境保护,影响研究,治理措施对于高分子材料,其具有性能优良、小型化等特点,自20世纪产诞生以来一直被各个行业所青睐。
在环保中由于其具有价格低、易加工、耐腐蚀、重量轻以及比强度高等特点,在一些加工设备中有着广泛应用。
然而,随着高分子材料的不断应用,造成的环保问题也日益严重。
也就是说,高分子材料在改善人们生活条件的同时,对自然环境造成严重破坏,这种矛盾在我国现阶段发展中十分突出。
需要了解高分子材料与环境保护的关系,根据彼此情况,合理制定发展措施以促进社会与自然和谐发展。
1 高分子材料概述高分子材料主要是由分子质量较高的化合物,经加工制成的材料,在人们日常生活中所接触到的一些天然材料,基本上由高分子材料构成。
比如人体器官、棉花以及天然橡胶等。
高分子材料性能主要由其结构决定,对结构进行改性以及控制,即可获得特性不同的材料[1]。
由于其易加工以及易改性等特点,使其性能更加优异,进而在国民经济、科学技术以及国防建设等方面均获得良好发展,并为人们的衣食住行等方面提供保障。
高分子主要是指分子质量较大能够达到上百万的有机化合物,其在结构方面是由相同、简单的单体结构单元,借助化学键不断重复连接而成,另外,其又被称为聚合物或是高聚物。
高分子化学论文

高分子材料阻燃技术的研究摘要:本文从高分子材料的阻燃机理入手,阐述了高分子材料阻燃剂的分类,研究了高分子材料阻燃技术的进展情况。
关键词:高分子材料;阻燃机理;阻燃剂;进展前言高分子材料因其性能优异、价格低廉而被广泛地应用于各类建筑和人民生活的各个领域,但是大多数高分子材料属于易燃、可燃材料,在燃烧时热释放速率大,热值高,火焰传播速度快,不易熄灭,有时还产生浓烟和有毒气体,对人们生命安全和环境造成巨大的危害。
因此,如何提高高分子材料的阻燃性,已经成为当前消防工作一个急需解决的问题。
1高分子材料的燃烧及阻燃机理高分子材料在空气中受热时,会分解生成挥发性可燃物,当可燃物浓度和体系温度足够高时,即可燃烧。
所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应场及气相中的链式燃烧反应等一系列环节。
当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。
而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。
当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。
从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。
其中包括六个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。
目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。
一般阻燃机理分为气相阻燃机理、凝聚相阻燃机理和中断热交换阻燃机理。
燃烧和阻燃都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,一种阻燃体系往往是几种阻燃机理同时起作用。
2高分子材料阻燃剂的分类阻燃剂是用于提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。
(高分子化学与物理专业论文)0酰化壳聚糖聚乳酸共混膜的氢键、相容性及细..

摘要摘要壳聚糖和聚乳酸(PLLA)是两类性能优良的生物材料,在生物医药领域均显示其优越性。
利用组分间氢键相互作用,制备出结合两者优良性能的“共混型”组织工程支架材料具有重要的意义。
本文采用甲烷磺酸保护,壳聚糖与酰氯反应合成了不同分子量和不同酰基侧链长度的O-酰化壳聚糖衍生物(OCS),用红外光谱及核磁共振谱证明产物为目标产物。
以氯仿为共溶剂,通过流延成膜法制备OCS/ PLLA共混膜,重点研究酰基侧链长度及壳聚糖分子量对共混膜组分间氢键、相容性及细胞亲和性的影响,为其在组织工程支架材料的应用提供理论基础。
合成了三种不同酰基侧链长度的O-酰化壳聚糖(O-辛酰基壳聚糖、O-十二酰基壳聚糖和O-棕榈酰基壳聚糖)(分子量均为3.0×103Da)和三种不同壳聚糖分子量的O-十二酰基壳聚糖(分子量分别为3.0×103Da、1.0×104Da和5.0×105Da)。
O-酰基化改性破坏了壳聚糖的氢键结构,提高了壳聚糖的脂溶性,OCS产物能溶解在氯仿中,为采用氯仿为共溶剂,通过溶液共混法制备OCS/PLLA共混膜提供方便。
采用FTIR、TG/DSC、WAXD和SEM等方法,研究了共混膜中的氢键作用情况。
结果表明,OCS/PLLA共混膜组分间存在较强的氢键相互作用;氢键作用主要发生在O-酰化壳聚糖的氨基和聚乳酸的羰基之间;组分间的氢键作用受到壳聚糖分子量和酰基侧链长度的影响,壳聚糖分子量越小,与聚乳酸分子间的氢键相互作用越强;酰基侧链越短,O-酰化壳聚糖与聚乳酸之间的氢键作用越强,共混膜中两组分的相容性越好。
SEM观察结果表明,酰基侧链较短的3k-OOCS/PLLA和3k-LOCS/PLLA共混膜具有较好的相容性,而侧链较长的3k-POCS/PLLA共混膜存在一定的相分离结构。
生物学研究结果表明: O-酰化壳聚糖/聚乳酸共混膜生物相容性良好,具有无毒、对动物组织无排斥性及生物可降解等特点;O-酰化壳聚糖有利于提高聚乳酸的细胞亲和性。
高分子材料论文3000字

高分子材料论文3000字近年来,高分子材料处于不断变化发展中,并且随着它的不断发展,已经渗透到人类生活中的方方面面。
因此,高分子材料在日常生活中的生产和生活活动中发挥着重要作用。
高分子材料又称之为聚合物材料,主要是由无数个小分子化合物通过化学键,进而形成的大分子化合物,称之为聚合物材料。
在日常的生产生活中常见的高分子材料主要有合成橡胶、合成纤维、合成塑料等,并且在新中国成立之后,上述高分子材料在日常生活中得到了广泛应用,例如服装业、日用品,以及各种工业材料中,满足了各行业对高分子材料的需求。
此外,在未来高分子材料将会运用于纳米高分子材料复合应用、生物可降解高分子材料、高分子材料功能化,以及航空航天领域。
二、高分子材料的发展高分子材料是一种聚合物大分子化学品,其组成主要是由半人工和人工合成的高分子材料,与其他化合物的主要区别是高分子材料在化学性质和物理性质上均能发生较大变化,可以有一些特殊功能,例如光学、电学等功能。
此外,随着科学技术的不断进步,新能源开发、微电子和生物医药的不断发展,高分子材料得到了更广泛的应用,其作用主要表现在以下结果方面。
其一,使用高分子材料设计合成新能物质,并且具有新功能,例如研制出的新型非晶质光盘,具有较好的耐腐蚀性,几乎不会被腐蚀,这一特性主要是来自于非晶质合金表面生成的耐腐性保护膜。
其二,高分子材料利用特别的加工方式来增加磁疗的特殊功能,如利用高分子膜和塑料光纤使高分子材料更加容易加工成型,并且降低其加工成本。
其三,使用两种或者两种以上性能不同的高分子材料,经过复合化学反应形成新的高分子材料,如屏蔽导电、塑料以及复合层的复合填料。
当前,随着高分子材料在生产生活中的应用日益加深,其与众不同之处逐渐凸显出来,它可以代替日常生产生活中的许多材料,并且可以通过高分子材料来改善其他材料的功能和性能,使他们成为一种全新材料,进而更好的发挥他们的功能。
进而,我国也对高分子材料这一领域的研究较为重视,在自我研发的基础上,不断加强了国际研究领域的沟通交流。
高分子化学教学改革对策论文

高分子化学教学改革对策论文高分子化学教学改革对策论文【摘要】该文针对高分子化学课程的教学现状,提出了通过让本科生和任课教师在思想和行动上重视高分子化学课程的重要性,在教学内容上增加高分子化学领域的最新研究进展,做到重视高分子化学的基本理论与最新发展,提高高分子化学的教学效果。
【关键词】高分子化学;教学改革;思考与对策《高分子化学》是一门化学类重要专业基础课,是高分子学科的入门课程,它以无机化学、有机化学、物理化学和分析化学四大化学为基础,同时也为后继的专业课程打下必要的理论基础。
它不同于其它化学类专业课程偏重于理论本身,该课程理论与实践并重。
该课程主要解决的是聚合物的结构、合成原理及其化学反应等问题.并且高分子化学研究过程中,不仅涉及到化学问题,很多理论都与物理有关,因此又是一门综合性的课程。
本课程学习的主要目的是,打好学生“高分子大厦”的基座,使学生在从事高分子相关领域的科学研究、教学和其他技术工作中能够运用高分子的基础知识,进一步提高分析问题和解决问题的能力。
针对《高分子化学》课程教学中存在的相关问题,笔者认为应该在以下五个方面进行改革,以提高教学的效果。
1重视课程内容发展目前高分子化学课程多采用浙江大学潘祖仁教授编写的《高分子化学》(第五版)。
该教材荣获国家级优秀教材,国家级精品课程建设教材和“十二五”普通高等教育本科国家规划教材等多项荣誉称号,因此被许多学校理工科相关专业广泛使用。
但是随着近80年来高分子化学研究内容和合成技术的飞速发展,尤其是新的聚合反应及聚合方法不断涌现。
这需要任课教师在讲解高分子化学课程中,要能与时俱进,以有所为和有所不为的原则,认真研究教材,依据教学大纲,不断充实和调整教学内容,即要注重对高分子基本理论知识的重组和精炼,又要重视高分子化学最新研究进展,从而做到重点突出,主次分明,以达到有针对性和侧重点的讲解的目的。
在教学中要对研究得比较成熟的内容进行着重讲授,如高分子的基本概念、逐步聚合反应、自由基聚合、自由基共聚合以及聚合方法,而对于离子聚合、配位聚合和开环聚合。
高分子化学结课论文

可控阳离子聚合(北京化工大学材料科学与工程学院,北京,100029)摘要:传统的阳离子聚合由于阳离子活性种的活性特高、反应速度极快,聚合反应和产品质量都不易控制。
20世纪80年代Kennedy、Sawamoto等经过长期研究提出了可控阳离子聚合的概念,主要是通过改进主引发剂/共引发剂体系、添加络合剂、引入亲核试剂或调整溶剂等来降低增长碳阳离子的活性(即使C+稳定化)、抑制转移终止使各基元反应均得到控制,从而可合成出预定结构、分子参数和性能的聚合物。
[1]关键字:活性稳定阳离子可控阳离子活性聚合的开发经过了几个反复过程。
在Szwarc 开发出活性阴离子聚合后,人们认为阳离子聚合也属于离子聚合,与阴离子聚合机理相似,实现活性化应该极易.但经过大量实验后发现阳离子聚合副反应多.不像阴离子聚合那样易于控制,人们甚至对开发活性阳离子聚合失去了信心,认为乙烯基类单体不可能实现活性阳离子聚合。
在此期间,由于受阴离子聚合的影响,人们的着眼点主要在如何使碳阳离子活性中心与反离子远离,形成松散离子对甚至裸阳离子,从而提高其活性。
但乙烯基类单体的活性阳离子聚合却恰恰是通过使生长着的碳阳离子安定化而实现的。
从活性阴离子聚合到实现活性阳离子聚合经过了近30年。
[2]传统的阳离子聚合由于自由阳离子活性太高,其总反应活化能一般在-40~~60KJ/mol.由于阳离子的活性种活性高,在链增长反应中还有一种较特殊的反应,就是异构化聚合,其结果得到的聚合链与原来单体的结构迥异。
由于活性太高,导致反应速率太快,给化学工艺、工程上带来难于控制的问题。
以丁基橡胶生产为例,由于反应速率太快,聚合放热过于集中,在化学工程上会带来一个传热问题,使得聚合反应器的设计从宏观和微观上要求聚合系统的温度均能保持尽可能的均匀,出于聚合反应速率太快,放热过于集中,还带来一个微观局部温度例如聚合物颗粒表面温度不易均匀控制的问题.结果导致聚合产物质量不均匀,并给工艺上带来严重的结块、堵塞等后果。
高分子专业前沿论文1

功能高分子材料的发展现状和趋势随着科学技术和国民经济的发展 ,高分子材料已经渗透到各个领域。
各种塑料制品、薄膜、人造皮革、合成橡胶、合成纤维等已成为人们生活中不可缺少的材料。
但对于功能高分子材料人们一般还不太了解,它是上世纪 60 年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。
近年来,功能高分子材料的年增长率一般都在10%以上 ,其中高分子分离膜和生物医用高分子的增长率高达50%。
近30年来,高分子化学与高分子材料工业发展迅猛,功能高分子材料也得到了蓬勃发展。
所谓“功能”是指这类高分子除了机械特性外,另有其他功能。
例如: 光、电、磁性能, 对特定金属离子的选择螯合性,以及生物活性等,这些都与高分子材料中具有特殊结构的官能团密切相关。
功能高分子的独特性使其在诸多领域得到了广泛应用并具有巨大的发展潜力,引起了人们的广泛关注。
国内外功能高分子材料发展现状功能高分子在新材料领域中占有重要的地位,据日本通产省产业结构研究会估计,到本世到本世纪末,日本功能高分子材料的市场将达到2万亿日元,占整个新材料市场的五分之一,比1987年增长2 . 6倍,比1981年增长10倍。
功能高分子近20年的年均增长率达到10%以上。
自1935年合成离子交换树脂以来,高分子的各种特殊性能不断被发现,50年代初美国开发的感光树脂印刷板,1957年发现聚乙烯基咔唑的光电导性,1966年塑料光导纤维问世,同年L it t le 提出了超导高分子模型,随后1975年发现聚氮化硫的超导性,80年代,高分子传感器,人工脏器,分离膜技术得到快速发展, 1991年发现尼龙11的铁电性,1994年塑料柔性太阳能电池在美国阿尔贡实验室后院启用。
这一切反映了功能高分子发展的日新月异。
在世界各国功能高分子的发展中,日本处于领先地位,形成了“官产学”的联合体制,从规划、立题到应用开发都作了周密的部署。
日本高分子学会进行了21世纪高分子科学和技术的咨询调查,对50个重要课题进行了评价,其中涉及生物高分子和功能高分子的26个课题预计将在本世纪末至下世纪初完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1试剂
合成主料:甲醛,分析纯,37%~38%;苯酚,分析纯;催化剂及蒸馏水,自制。测试试剂:氯化铵、铁氰化钾、氨水(25%)、4-氨基安替比林(均为分析纯)。
3.2合成方法
将94 . 0 g苯酚加入带冷凝回流装置的250 mL三口烧瓶中,在搅拌下加入适量催化剂及64 . 9 g甲醛溶液(浓度以37%计),加热至指定温度,开始计时。2 h后加入剩余甲醛,维持反应温度,反应到指定时间后,静置冷却。冷却后,树脂与废液分层,收集分出的废液,测试废液中游离酚含量C(mg /L)。每次取100 m L蒸馏水,水洗所得树脂。将水洗好的树脂在(120±5)℃减压脱水,得无色透明固体热塑性酚醛树脂。以催化剂量、反应物配比、反应温度、反应时间作为因子,选用4因素四水平的正交实验,如表1所示[ 11],采用L16(45)正交实验表。
2热塑性酚醛树脂生产中存在的问题及解决方案
常规方法生产PN时都是在苯酚大大过量的情况下(苯酚和甲醛的摩尔比为6:5或7:6)进行的。因此不可避免地使反应结束后所排放的废水中的游离的苯酚的含量很高。据统计,每平均生产1t热塑性酚醛树脂可得高浓度含酚废水650千克左右。其中苯酚浓度高达16000到440000ppm.含酚废水不经处理就任意排放,不仅造成原料上的浪费,而且严重污染了生态环境。
Abstract…………………………………………………………………………………1
Keywords………………………………………………………………………………1
引言………………………………………………………………………………………1
1热塑性酚醛树脂的现有生产工艺…………………………………………………1
《高分子化学》课程论文
学 院: 化 学 化 工 学 院
专 业: 应 用 化 学
年 级:
姓 名:
论文(设计)题目: 热塑性酚醛树脂的环保合成方法
指导教师:职称:
成 绩:
2015 年 1 月 3 日
摘要…………………………………………………………………………………1
关键词……………………………………………………………………………………1
Keywords:Thermoplastic phenolic resin; The existing production process; Green synthesis; Waste water containing phenol; Characterization of
引言
酚醛树脂( PF )是世界上最早实现工业化的合成树脂,从酚醛树脂开始大规模生产并制成产品,它一直以耐热、难燃、电气绝缘性能、机械性能、耐高温蠕变性能和尺寸稳定性优良等优点在复合材料、胶黏剂、涂料、纤维和泡沫塑料等多个领域应用,而在航空航天及其他尖端技术领域的应用尤其引人注目。通过控制不同酚与醛的物质量的比及酚的官能度,以及催化剂的类型(酸性或碱性),可制得不同性质和用途的热塑性酚醛树脂。近年来热塑性酚醛树脂的环保合成成为研究的热门话题。
Tab . 4 Percents o f various struc ture type in synthes ized res in
表4所合成树脂中各结构百分数
5总结
从节约成本、提高生产效率角度考虑,最佳合成工艺为:催化剂用量为2. 0%,物料配比为n(甲醛)∶n(苯酚) =1 . 15∶1,反应温度为85℃,反应时间为4 h,产率为110. 3%(按苯酚质量计),产生的废液中游离酚含量为58 mg /L,与传统合成方法相比,废液中游离酚含量大幅下降。
3.413C-NMR对结构的分析……………………………..…………………3
4结果与讨论………….……………….…….……………………………………4
4.1正交实验分析………………………....………………………………4
4.2表征……………………………………………..……………………5
5总结…………………………………………………….…………….…...…………5
4结果与讨论
4.1正交实验分析
Tab. 2 Experm i ent results and range ana lysis table
表2实验结果及极差分析表
Tab. 3 Analysis table of variance
表3方差分析表
严格按照正交实验的要求进行实验,结果如表2所示。对实验结果进行方差分析,结果见表3。在通常合成热塑性酚醛的过程中,合成产生的废水含有大量的游离酚。而通过改进,本实验合成产生的废水中游离酚含量大幅下降。依据统计方法,计算每一因子在各水平上的均值和极差。极差( R值)是因素变化时实验指标的变化幅度,所以因素的极差越大,就说明该因素对指标的影响越大,它就越重要,反之亦然。对实验结果进行极差分析可知,对废液中游离酚的影响顺序为:催化剂用量( A)( R =56) >物料配比( B) ( R =54) >反应温度( C) ( R =17) >反应时间( D)( R =14)。从表3可知,因子A和因子B对降低废液中游离酚具有非常显著的影响,而因子C有一定影响,因子D影响不大。所以从提高生产效率考虑,可用因子D的水平1来代替水平4。故由此得出最佳工艺条件为A4B4C4D1,即催化剂用量为=2. 0 %,F/P =1. 15∶1,T =85℃,t =4 h。
Tab. 1 O rthogonal experm i ent des ign tab le
表1正交实验设计表
3.3废水中游离酚含量的测试
依据4 -氨基安替比林直接光度法[ 12, 13],分别配制质量分数为0.5×10-6,1×10-6,2×10-6,3×10-6,4×10-6,5×10-6的苯酚标准溶液,用722S可见分光光度计测试其吸光度,得到吸光度-质量分数曲线,并得到标准方程为:
酚类化合物是原型质毒物,毒性大,它能使蛋白质降解。酚可通过皮肤,粘膜的接触,吸入或经口而侵入人体内部,与细胞原浆中蛋白质接触时,可发生化学反应,形成不溶性蛋白质而使细胞失去活力。 酚能使人的神经,肝肾,受到损害,长期饮用被酚污染的水会引起头晕,脱发失眠,水体遭受含酚废水污染后,水体氧的平衡将受到严重破坏。水中含酚量即使在0.01mg/L以下,苯酚溶在加过氯的水中也会导致氯酚恶臭,造成水质有气味而影响饮用水源。水体含酚0.1-0.2mg/L时鱼肉有酚味儿,浓度高时,引起鱼类大量死亡。用未经处理的含酚废水直接灌溉农田,会使农作物枯死和减产,我国的许多江湖及地下水,也受到含酚废水的污染,含酚废水已被列为重点治理的项目。
目前常采用的几种含酚废水的回收和净化处理技术有生物氧化法[1]、有机溶剂萃取法[2]、物理化学吸附法[3]、化学沉淀法[4]、化学氧化法[5~7]、电催化氧化法[8]、汽提法等。近几年来又发展了大孔径吸附树脂[9]和液态膜法等新技术[10]。这些措施虽不同程度地收到了一定的效果,但同时却带来原料利用率低(过量苯酚流失)以及生产成本增加(回收处理消耗能源、人力、物力)的问题,仍不是根本解决方法。因此,寻找一种从根本上解决含酚废水污染的方法保证酚醛树脂工业健康快速的发展是一项具有重要意义的工作。
关键词:热塑性酚醛树脂;现有生产工艺;环保合成;含酚废水;表征
Abstract:Thermoplastic phenolic resin in recent years become a hot topic in the research of green synthesis. Conventional thermoplastic phenolic resin production yield is low, and produces a large number of high concentration phenol wastewater, pollute the environment. Using a new type of catalyst, catalyst are studied by orthogonal experiment method, the ratio of formaldehyde and phenol, reaction temperature and reaction time on the free phenol content of waste liquor, optimized formula, significantly reduce the free phenol content in the synthetic wastewater.
4.2表征
在通常制备热塑性酚醛树脂的生产中,当醛酚比在0. 87∶1以上时,随着聚合反应的进行,内取代反应发生,从而致支化和交联[10]。该催化剂就很好地克服了这一难题,即使醛酚比超过1∶1,反应仍能得到热塑性酚醛树脂。采用DSC和13C- NM R对所合成的树脂进行分析表征。树脂受热后(室温至300℃)并没有在DSC曲线上出现固化反应放热峰,只有树脂逐渐由固态变为液态的熔融吸热的变化过程。参照文献[14,15]对所合成的树脂的核磁谱图中的各峰进行了归属并积分,计算各种结构百分数,结果见表4。由结果可以说明所合成的树脂为热塑性酚醛树脂。
参考文献…………………………………………………………….……………..….6
热塑性酚醛树脂的环保合成方法学生姓名:Biblioteka 号:化学化工学院应用化学专业
指导教师:职称:
摘要:近年来热塑性酚醛树脂的环保合成成为研究的热门话题。常规热塑性酚醛树脂生产的产率较低,且产生大量高浓度含酚废水,污染环境。采用一种新型催化剂,用正交实验方法研究了催化剂用量、甲醛与苯酚配比、反应温度和反应时间等对废液中游离酚含量的影响,优化了配方,显著降低了合成废液中游离酚含量。
Y =6. 732 9X -0. 036 43
其中Y代表苯酚的质量分数;X代表吸光度。将合成中产生的含酚废水样品经722S可见分光光度计测试得到的吸光度代入上面的标准方程,即可得到废水中游离酚的质量浓度。