基本割集找法
4.1.4 割和环

qi G
定理1:任何一个平面图都包括一个或多个内区域和一个
外区域。
定理2:对于有 n 个顶点,b 条边和q 个区域(包括外区
域)的连通平面图,都满足欧拉公式:即 n −b + q = 2。
推论2:一个节点数为n(n≥3), 且不含并联边和自回路的
平面图,其边数b的上限是3n-6。即:b≤3n-6;
这个定理描述了最短主树的特征。 最短主树是一个网G中主树节点之间路径总和最小问题; 寻找最短主树的问题可分为无限制条件的Prim和Kruska算 法;有限制条件的穷举法、调整法(厄斯威廉E-W)算法 等。 (1) 无限制条件的情况 从图中选取一定数量的边,使其组成一主树,要求该主树 各条树枝之和最小。选择树枝时,对树枝的选取无限制条 件;但是选取的各边,一定是组成主树。先介绍顺序取端 的普列姆(Prim)算法,简称P算法。 基本思想:从图的某一端开始,依次向目的地址方向的端 搜索,只要是选择最短路径的下一端即可,(条件:在不 形成环的情况下),最后形成主树。其步骤如下: P0:起始:置邻接阵为全零阵(假设主树尚未连接,各元 素定为0);任取一端vj1,组成第一个子图:G1={vj1} 第一个子图含一个端;比较:G1到G中除G1外各端,即 (G- G1)中各边的长度,取其中的最小值;
一、关联矩阵
1. 节点–边关联矩阵(Aa) , 又称关联矩阵或完备关联矩阵 定义:用矩阵来表示图的节点与边关联关系。 A0 | aij |nb 对无向图来 1 若e j与vi关联 aij 0 若e j与vi不关联 对有向图,
1 若e j与vi的射出边(流出vi) aij -1 若e j与vi的射入边(流入vi) 0 若e j与vi不关联
图论 第四章 割集

定理5.2.1 图G 关于生成树的基本圈
C1, C2 , , Cq p1 是线性无关的。
定理5.2.2 连通图G的任一环路均可表示成 若干个基本圈的环和。
定理5.2.3 连通(p,q)图G的所有环路和空图 的集合构成一个q-p+1维空间,记作 (G)称为圈 空间。
定理5.2.4 连通(p,q)图G的圈空间中元素的 个数为2 q-p+1。
第四章 割 集
4.1 割集与断集
我们定义连通图G的顶点数减1为图G的秩,记作 R(G),即R(G)=p-1 如果G有k个连通分支,则R(G)=p-k
定义4.1.1 设S E(G),如果
1.R(G-S)=p-2
2.对S S,R(G-S)=p-1 则称边集S为图G的的一个割集(cut set)。
割集是指一个边集S,在G中去掉S的所有边后G变 为具有两个分支的分离图,但是去掉S中的部分边时 图仍然是连通的。
2
a
c
b
1
d
e
4
3
g f
5
1 2
1
d
e 3
f
g
5
2
a
4
e
3
g
5
2
a
c
b
2
1
d
e
4
3
2
a
1 f
e
4
3
g
g f
5
a b
1
4
3
d
5
2
a
b
5
1
d
4
3
f
5
1
3 2
a
b
c
d
e
f
割集分析法

i4
2V I
i4 = i1 + i2 = – 0.25 + 0.85 = 0.6A
II
i5 = 3A(已知), i7 = i1 = – 0.25A
以上各式中,u1、u2、u3分别为支路 1、支路 2 和支路 3 的 电压。
电路分析基础——第一部分:2-5
例2-16 电路如图2-37(a),试求ux。
致,则互电导为正,否则为负;
电流输送:is11、is22、is33 。该基本割集上电流源输 送电流的代数和,电流源电流方向与割
集方向相反者为正,否则为负。
ut1、…、uti、…、ut(n-1):在确定基本割集顺序后, 每个基本割集上的树支电压;
电路分析基础——第一部分:2-5
17/23
注意:在用割集分析时,往往把感兴趣的支路选为树支,使其 电压成为直接求解对象。电路中的电压源支路都应尽量选为树 支,因为电压源是已知的,可以减少未知独立变量的个数。
例如:在图(b)中,切割用虚线表
1
2
示,例如切割II使节点1、3与节点2、 I
3
4分为两个分离部分,所切割的支路 G3、G4、G1和电流源支路的集合就 是割集II。
割集的多样性:一个连通图可以有许
II
4
III
1
2
3
多不同的割集,图(b)中就表明了
三种不同的割集。
4
电路分析基础——第一部分:2-5
7/23
电路分析基础——第一部分:2-5
21/23
i2 =
u2 0.5
=
– ut6 – ut5 – ut4 0.5
= – 2(2–2.75+ 0.326) = 0.85A
找基本割集的简单方法

找基本割集的简单方法一、背景介绍基本割集是图论中的一个重要概念,它是指在一个连通图中,删去某个边或节点后使得原来的图不再连通的最小集合。
找到基本割集可以帮助我们更好地理解图的结构和性质,因此在实际应用中具有广泛的应用价值。
二、定义及性质1. 定义:在一个连通图G=(V,E)中,如果删去某个边或节点后使得原来的图不再连通,则这个边或节点被称为该图的割点或割边;如果这个割点或割边所组成的集合是该图不同联通分量之间唯一的,则称这个集合为该图的基本割集。
2. 性质:(1)每个基本割集都至少包含一个割点或者一条割边;(2)对于任意两个不同联通分量之间只有唯一一条路径;(3)将任意一个基本割集划分成两部分,则这两部分所对应的子图均为联通图。
三、找基本割集方法1. 基于DFS算法深度优先搜索算法(DFS)可以遍历整张连通图,并根据遍历顺序来确定每个节点的遍历顺序。
在DFS遍历的过程中,如果我们发现某个节点的子节点不再与该节点相连,则说明该节点是一个割点,而该节点所连接的两个子图就是一个基本割集。
具体步骤如下:(1)从任意一个节点开始进行DFS遍历;(2)记录每个节点的遍历顺序和最早访问时间;(3)对于每个非根节点v,如果存在一个子节点w,满足dfn[w]<low[v],则说明v是一个割点;(4)对于每个连通分量,将其所有割点和相应子图组成的集合作为一个基本割集。
2. 基于BFS算法广度优先搜索算法(BFS)也可以用来找到基本割集。
具体步骤如下:(1)从任意一个节点开始进行BFS遍历;(2)记录每个节点的层数和最早访问时间;(3)对于每个非根节点v,如果存在一个子节点w且dfn[w]>=depth[v],则说明v是一个割点;(4)对于每个连通分量,将其所有割点和相应子图组成的集合作为一个基本割集。
3. 基于Tarjan算法Tarjan算法是一种高效的寻找强连通分量的算法,在寻找强连通分量的过程中可以顺带找到基本割集。
离散数学第四版课后答案(第9章)

第9章 习题解答9.1 有5片树叶.分析 设T 有x 个1度顶点(即树叶).则T 的顶点数Tx x n ,523+=++=的边数.41x n m +=-=由握手定理得方程.∑=+=⋅+⨯+⨯==+=ni ix x vd x m 1.1312233)()4(22由方程解出.5=x所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.分析 设T 中有x 个3度顶点,则T 中的顶点数,7x n +=边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122由方程解出x=5.所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.要析 设T 中有x 个3度顶点,则T 中的顶点数x n +=7,边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122.由此解出5=x ,即T 中有5个3度顶.T 的度数列为1,1,1,1,1,1,1,3,3,3,3,3.由于T 中只有树叶和3度顶点,因而3度顶点可依次相邻,见图9.7所示. 还有一棵与它非同构的树,请读者自己画出.9.3 加1-k 条新边才能使所得图为无向树.分析 设具有k 个连通分支的森林为G,则G 有k 个连通分支i K T T TT ,,,21全为树,.,,2,1k i =加新边不能在i T 内部加,否则必产生回路.因而必须在不同的小树之间加新边. 每加一条新边后,所得到的森林就减少一个连通分支. 恰好加1-k 条新边,就使得图连通且无回路,因而是树.在加边过程中,只需注意,不在同一人连通分支中加边. 下面给出一种加边方法,取iv 为iT 中顶点,加新边1,,2,1),(1-=+k i vv i i,则所得图为树,见图9.8 给出的一个特例.图中虚线边为新加的边.9.4 不一定.分析 n 阶无向树T 具有1-n 条边,这是无向树T 的必要条件,但不是充公条件.例如, 阶圈(即1-n 个顶点的初级回路)和一个孤立点组成无向简单图具有1-n 条边, 但它显然不是树.9.5 非同构的无向树共有2棵,如图 9.9所示.分析由度数列1,1,1,1,2,2,4不难看出,唯一的4度顶点必须与2度顶点相邻,它与1个2度顶点相邻,还是与两个2度顶点都相邻,所得树是非同构的,再没有其他情况.因而是两棵非同构的树.9.6 有两棵非同构的生成树,见图9.10所示.分析图9.10 是5阶图(5个顶点的图), 5阶非同构的无向树只有3棵,理由如下. 5阶无向树中,顶点数5=n,边数4=m,各顶点度数之和为8,度数分配方案有3种,分别为①1,1,1,1,4;②1,1,1,2,3;③1,1,2,2.2.每种方案只有一棵非同构的树.图9.10所示的5阶图的非同构的生成树的度数列不能超出以上3种,也就是说,它至多有3棵非同构的生成树, 但由于图中无4度顶点,所示,不可能有度数列为①的生成树,于是该图最多有两棵非同构的生成树. 但在图9.10 中已经找出了两个非同构的生成树,其中(1)的度数列为③,(2) 的度数列为②,因而该图准确地有两棵非同构的生成树.9.7 基本回路为: .,,,hfab C gfa C ead C cbad C h g e c====基本回路系统为}.,,,{h g e cC C C C基本割集为:},,{},,{},,,{},,,,,{h g f Sc ed S h c b S h g ce a S fd b a ====基本回路系统为},,,{f d b aS S S S.分析 1°注意基本回路用边的序列表示,而基本割集用边的集合表示.2° 基本回路中,只含一条弦,其余的边全为树枝,其求法是这样的: 设弦),(j iv ve =,则jiv v,在生成树T 中,且在T 中,ji v v ,之间存在唯一的路径ji ,Γ与),(j iv ve =组成的回路为G 中对应弦e 的基本回路.3° 基本割集中,只含一条树枝,其余的边都是弦,其求法是这样的:设树枝),(j iv ve =,则e 为T 中桥,于是eT-(将e 从T中支掉),产生两棵小树1T 和2T ,则}|{21'''中和的两端点分别在中且在T T e G e e S e =e S 为树枝e 对应的基本割集. 显然ee S S e ,∈中另外的边全是弦. 注意,两棵小树1T 和2T ,中很可能有平凡的树(一个顶点).aT -得两棵小树如图9.11中(1) 所示. G 中一个端点在i T 中,另一个端点在2T 中的边为a(树枝), h g c e ,,,,它们全是弦,于是},,,,{h g c e a Sa=bT - 得两棵小树如图9.11中(2) 所示, 其中有一棵为平凡树. G 中一个端点在1T 中,另一个端点在2T 中的边数除树枝b 外,还有弦,,h c 所以, },,{h c b Sb=dT -产生的两棵小树如图9.11中(3) 所示 . G 中一个端点在1T 中,另中一个端点在2T 中的边,除树枝d 外,还有两条弦e c ,,所示, },,{e c d Sd=fT -产生的两棵小树如图9.11中(4) 所示. 由它产生的基本割集为},,{h g f Sf=9.8 按Kruskal 求最小生成树的算法,求出的图9.3(1)的最小生成树T 为图9.12中(1) 所示, 其7)(=T W .(2) 的最小生成树T 为图9.12中(2)所示,其.11)(=T W9.9 421,,B B B为前缀码.分析 在421,,B B B中任何符号串都不是另外符号串的前串,因而它们都是前缀码.而在3B 中, 1是11,101的前缀,因而3B不是前缀码. 在5B 中,,a 是ac aa ,等的前缀,因而5B 也不是前缀码.9.10 由图9.4 (1) 给出的2元前缀码.}11,011,01010,0100,00{1=B由(2) 给出的3元前缀码为.}.2,1,022,0202,0201,0200,01,00{2=B分析 1B 是2元树产生的2元前缀码(因为码中的符号串由两个符号0,1组成),类似地,2B 是由3元树产生的3元前缀码(因为码中符号串由3个符号0,1,2组成).一般地,由r 元树产生r 元前缀码.9.11 (1) 算式的表达式为ji h g f e d c b a *)*()()*)*((((++÷-+.由于使其成为因而可以省去一些括号优先于,,,*,-+÷ji h g f e d c b a **)()*)*((++÷-+.(2) 算式的波兰符号法表达式为.****hij fg bcde a ++-÷+(3) 算式的逆波兰符号法表达式为.****+÷+-+jI hi fg e d abc9.12 答案 A:①; B ②; C:④; D:⑨.分析 对于每种情况都先求出非同构的无向树,然后求出每棵非同构的无向树派生出来的所有非同构的根树.图9.13 中,(1),(2),(3),(4)分别画出了2阶,3阶,4阶,5阶所有非同构的无向树,分别为1棵,1棵,2棵和3棵无向树.2阶无向树只有1棵,它有两个1度顶点,见图9.13中(1)所示,以1个顶点为树根,1个顶点为树叶,得到1棵根树.3阶非同的无向树也只有1棵,见图9.13中(2)所示.它有两个1度顶点,1个2度顶点,以1度顶点为根的根树与以2度顶点为根的树显然是非同构的根树,所以2个阶非同构的根树有两棵.4阶非同构的无向树有两棵,见图9.13中(3)所示. 第一棵树有3片树叶,1个3度顶点, 以树叶为根的根树与以3度顶点为根的树非同构.所以,由第一棵树能生成两个非同构的根树, 见图9.14 中(1)所示. 第二棵树有两片树叶,两个2度顶点,由对称性,以树叶为根的根树与2度顶点为根的根树非同构,见图9.14中(2) 所示. 所以,4阶非同构的根树有4棵.5阶非同构的无向树有3棵,见图9.13中(4)所示. 由第一棵能派生两棵非同构的根树, 由第二棵能派生4棵非同构的根树,由第三棵能派生3棵非同构的根树,所以,5阶非同构的根树共有9棵,请读者将它们都画出来.9.13 答案 A:②; B:②; C:③; D:③; E:③;F:④; G: ④; H:③.分析 将所有频率都乘100,所得结果按从小到大顺序排列:.35,20,15,10,10,5,5=======a b c d e f g w w w w w w w以以上各数为权,用Huffman 算法求一棵最优树,见图9.15所示.对照各个权可知各字母的前缀码如下:a ——10,b ——01,c ——111,d ——110,e ——001,f ——0001,g ——0000.于是,a,b 的码长为e d c ,,,2的码长为g f ,,3的码长为4. W(T)=255(各分支点的权之和),W(T)是传输100按给定频率出现的字母所用的二进制数字,因则传输104个按上述频率出现的字母要用25500⨯个二进制数字..24=1055最后还应指出一点,在画最优树叶, 由于顶点位置的不同,所得缀码可能不同,即有些字母的码子在不同的最优树中可能不同,但一般说来码长不改变.特别是,不同的最优树,它们的权是固定不变的.9.14 答案 A:②; B:④分析用2元有序正则树表示算式,树叶表示参加运算的数,分支点上放运算符,并将被减数(被除数)放在左子树上,所得2元树如图9.16所示.用前序行遍法访问此树,得波兰符号表示法为abc-++de-*.**ghf用后序行遍法访问此树,得逆波兰符号表示法为dec*fghab--++**。
第015章_电路方程的矩阵形式

u1 u2
6 1 3 6 31
i
i1 i2 i3 i4 i5 i6
i
这正是回路电流 法的基本思想。
i B T il
i i i
i i
i i i
即为用B表示 KCL的矩阵形式。
17
五、割集矩阵:
1、割集矩阵: 即独立割集矩阵,它反映电路的支 Q1 路与所取的独立割集的关联性。 矩阵元素的取值:
(2)某些列仅有一个非零元素,表示该支路与参考结点相关联。 ②A的物理意义:反映电路的拓扑结构
支路与结点的关联性。
11
3、用A表示的KL的矩阵形式: ①KCL:
i1 i
2 3 4 5 6
证明: G
T1
l1 l2 l3
bt
T2
而且,每一条树支与相应的连支都会构成一个单树支割集。 这种单树支割集又称为基本割集。对于一个G,树支数为 n -1, ∴有n -1个基本割集,称为对一个树的基本割集组。 基本割集组必是独立割集组,但独立割集组不一定是单树 支割集组,因树是一个相对概念,人家可以先(用树)定义一 组独立割集,而后又可以重新定义树。
② 4 6 5 ④ ③
0 k支路与 j 结点不关联 关联,且方向背离该结点 a jk 1 1 关联,但方向为指向结点
② 0 Aa ③ 1 ④ 0
1 ① -1 2 -1 0 3 1 4 0
第十五章 电路方程的矩阵形式

u (支路方向与回路绕向一致为正,反之为负)
由KVL可知,任一闭合回路电压的代数和恒为零
即有 B f u 0 或 Bf U 0 称为矩阵形式的KVL。
如上图中,u u1 u2 u3 u4 u5 u6 T
1 1 1 1 0 0
4
Bf 1 1 0 0 1 0
1 l1
l2
6
0
1
100 u1
1
5 2 3 l3
us5 -
R5
b5
1
b1 2 b2 3
Is1
R2
+
+
b4
b3
b6
u4 - R4
R3
kuu4 _
4
电路
拓扑图(线图)
支路电压和支路电流的正方向与支路方向一致-----
有向图
连通图:是指拓扑图中任意两节点间都至少有一条通路。
子图:是指原拓扑图的一部分,可包括原图的一些边和顶 点。
树:在连通图中包含连通图中的全部节点和部分支路,不 包含回路。
b4
b5 b3
4
特点:
a.每一列的代数和均为零。其中的行不是彼 此独立的,其任意一行都与(n-1)行的和 的相反的数相等。
b.去掉以任意一个节点为参考节点所对应的 一行后记为(n-1) b阶矩阵称为降阶的关 联矩阵 简称关联矩阵 。用符号 A 表示。
在 Aa 中划去的行对应的节点即为参考节点。
如上图选节点④为参考节点则有:
b1 b5
b2
Q1
b4
b3
Q3 b6
Q2
规定基本割集的方向与其中的树支方向一致。
若将切割线Q1,Q2,Q3延伸成闭合面则有:
ib1 ib2 ib4 ib6 0 ib2 ib5 ib6 0 ib3 ib4 ib6 0
15.1 割集

e c
c
(a,d,f) 是割集
2、割集的确定 可以用在连通图G上作闭合面的方法判断确定 一个割集。 如果在G上作一个闭合面,使其包围G的某些结点, 于是,若把与此闭合面相切的所有支路全部移去,G 将被分离为两个部分,则这样一组支路便构成一个割 Q1 集。
a e b a e b d f c
5、独立割集组 基本割集组是独立割集组。对于n个结点的连 通图,独立割集数为(n-1) 。 独立割集不一定是单树支割集, 如同独立回路不一定是单连支回路一样。
由于一个连通图G可以有许多不同的树,所以 可选出许多基本割集组。 6、基本割集组的选择 首先选择一个树, 然后确定(n-1)个单树支割集。
树
1、概念: 一个连通图G的一个树T包含G的全部结点和部 分支路, 而树T本身是连通的且又不包含回路。 2、树支: 树中包含的支路。 树支数为n-1。 3、连支: 树支之外的其他支路。 连支数为b-(n-1)=b-n+1
例:基本割集组的确定
a e d c b
f
选择a,e,c为树 树支用实线表示 连支用虚线表示 每个基本割集中只有一个树支和相 应闭合面相切割。
§15.1 割集
一、割集
1、定义 连通图G的一个割集是G的一个支路集合,把 这些支路移去将使G分离为两个部分,但是如果少 移去一条支路,图仍将是连通的。
a e b a e b a
d
f
c
d
f
c f
c
(b,d,e,f)是割集源自a e d f cb
a
e d f c
b
f
移去割集支路,G (a,b,c,d,e)不是割集 被分离成三部分
1、独立割集: 对应于一组线性独立的KCL方程(n-1个)的 割集称为独立割集。 对于一个具有n个结点和b条支路的连通图,独立的 KCL方程有(n-1)个,独立割集数将有(n-1)个. 2、一组独立割集的确定 借助于“树”确定一组独立割集。 3、基本割集 由树的一条树支与相应的一些连支构成的割集称为单 树支割集或基本割集。 4、基本割集组 对于一个具有n个结点和b条支路的连通图,其树支数 为(n-1),因此将有(n-1)个单树支割集,称为基本割集组。