3-4割集分析法
国家电网考试之电网络分析理论:不讲!第四章网络的代数方程回路割集及例题(3)

T
网络的端口电流列向量
u u1 , u2 , , u2 p , u2 p1 , , u2 pq
F(u) f1 (u1 ), f 2 (u2 ),
T1 T
网络的端口电压列向量
f 2 p (u2 p ), f 2 p1 (u2 p1 ),
u2 p 1 u2 p
式中
1 Tk ( k ) f 1
(k ) r
i2 p 1
D1
-
fm (um ) I sm (eum /UTm 1)
i2 p q Dq
+
u2 p q
-
外部非线性网络的方程
i TF(u)
i i1 , i2 , , i2 p , i2 p1 , , i2 pq
Q f YbQT f Ut Q f I s Q f Y b Us
定义
Yt Q f YbQT f
割集导纳矩阵
J t Q f I s Q f Yb U s 割集电流源列向量
割集电压方程的矩阵形式
Yt Ut J t
例题
二、非线性电阻电路方程的矩阵形式
非线性电阻电路的方程的基本形式: • 标准形式 • 一般形式
T称为表格矩阵
TW V
• 对于非线性电阻电路
Aib (t ) 0
ub (t ) AT un (t ) 0
h(ub , i b ) 0
例题
•添加支路法
KCL : 节点p流出电流 I bk 节点q流出电流 I bk KVL : Ubk U p U q 0 VAR : I bk GUbk 0 相应的送值表如下表所示
T Bf F(Bf I l Is ) Bf Us
电路分析网孔分析法和节点分析

将电路中的某些单口用其等效电路代替,可以简化 电路的分析和计算。
一、线性电阻的串联和并联
1.线性电阻的串联(见第一章)
2.线性电阻的并联(见第一章)
3.线性电阻的串并联 由若干个线性电阻的串联和并联所形成的单口网
络,就端口特性而言,等效于一个线性二端电阻。
i5 R2 i+2 R5 ib uS-2
支路电流: i1,i2,i3,i4,i5,i6 网孔电流:
假想沿网孔边沿流动的电流,
i4
R4 ic R6 i6
如图中ia,ib,ic
R3 +uS3-i3 参考方向可以任意选取。
若以网孔电流为求解变量, 所需方程数将大大减少。(重点)
一、网孔电流
设想电流i1、i2和i3沿每个
图中 节点1与公共点O间电阻称为R1 节点2与公共点O间电阻称为R2 节点3与公共点O间电阻称为R3
二、Δ形联接
当三个电阻依次联成一个 闭合电路,且三个联接点再 分别与外电路相联,叫Δ形 联接。
图中:
节点1与2间电阻称为R12 节点2与3间电阻称为R23 节点3与1间电阻称为R31
方法: Y-变换
R2
R12
R23 R12 R 23 R31
特例:当三电阻相等时,则
R 3RY
或
RY
1 3
R
历年考题:
9、图示电路,求u 。(2V)
10、图示电路,求i 。(9/13A)
3Ω
6Ω
i
+ 18V
+u–
1A
3Ω 2A 2Ω 4Ω
–
2Ω
6Ω
3Ω
第三章网孔分析法和结点分析法
割集分析法工科

§3-6 割 集 分 析 法一、割集与基本割集1)、割集 割集是支路的集合,它必须满足以下两个条件: (1) 移去该集合中的所有支路,则图被分为两部分。
(2) 当少移去该集合中的任何一条支路,则图仍是连通的。
需要说明的是,在移去支路时,与其相连的结点并不移去。
图G 是一个连通图,如图3-26(a)所示,支路集合{1,5,2}、{1,5,3,6}、{2,5,4,6}均为图G 割集。
将以上割集的支路用虚线表示,分别如图3-26(b)、(c)、(d)所示,不难看出,去掉虚线支路后,各图均被分成了两部分,但是图3-26 图G 及其割集(a)(b)(c)(d)只要少去掉其中的一条虚线支路,图仍然是连通的,故满足割集所要求的条件。
而支路集合{1,5,4,6}、{1,2,3,4,5}不是图G 的割集。
将集合中的支路用虚线表示后如图3-27(a)和(b)所示。
对于图3-27(a)来说,移去支路1、5、4、6后,图虽说被分为两部分(结点①为其中的一部分),但如不移去支路5,图仍被分为两部分;而对于图3-27(b)来说,将支路1、2、3、4、5移去后,图则被分成了三部分,故以上两种支路集合不是割集。
2)、作高斯面确定割集在图G 上作一个高斯面(闭合面),使其包围G 的某些节点,而每条支路只能被闭合面切割一次,去掉与闭合面相切割的支路,图G 将被分为两部分,那么这组支路集合即为图G 的一个割集。
在图G 上画高斯面(闭合面)C 1、C 2、(a)(b)图3-27 非割集说明①②①②C 3如图3-28所示,对应割集C 1、C 2、C 3的支路集合为{1,5,2}、{1,5,3,6}、{2,5,4,6}。
3)、基本割集基本割集又称单树支割集,即割集中只含一条树支,其余均为连支。
如选支路1、5、3为树支,如图3-29所示,则割集C 1,C 2,C 3为基本割集,基本割集的方向与树支的参考方向一致。
当树选定后,对应的基本割集是唯一确定的。
安全系统工程(第三版)模拟试卷二

安全系统工程(第三版)模拟试题二一、选择题(每小题1分,共10分)1.系统的特征不包括()A.整体性B.相关性C.目的性D.复杂性2.预先危险性分析法(PHA)可以用于工程活动的()A.日常运行阶段B.建造投产阶段C.事故调查期间D.方案设计阶段3.下列不是引导词的是()A. 否B. 多C. 少D. 并且4.在故障树分析中,某些基本事件都不发生,则导致顶事件不发生,这些基本事件的集合称为()A. 径集B. 割集C. 最小径集D. 最小割集5. 预先危险性分析是在一个工程项目的设计、施工和投产之前,对系统存在的危险性类别、出现条件、导致事故的后果等做出概略的分析。
通常情况下这种分析方法将系统的危险和危害划分为()个等级。
A.4 B. 5 C.6 D.76. 以下各种评价方法中不属于定量评价方法的有()A. 故障类型及影响分析B. 事故树分析C. 作业条件危险性评价法D. 危险指数评价法7. 在事故树分析中,反映基本事件发生概率的增减对顶事件发生概率影响的敏感程度的是()A.结构重要度B.临界重要度C.概率重要度D.最小径集8. 在火灾爆炸指数法中,物质在由燃烧或其他化学反应引起的火灾和爆炸中其潜在能量释放速率的度量,被称为()A. 物质系数B. 爆炸系数C. 工艺系数D. 物质危险9. 对现有的设备设施进行安全评价,可以采取的评价方法是()A. 安全验收评价B. 安全现状评价C.安全预评价D.专项安全评价10.下列评价方法中不能提供评价后果的是()A.预先危险性分析B.ETAC.FTAD.安全检查表法二、名词解释(每小题4分,共20分)1、系统工程2、预先危险性分析3、最小割集4、故障5、安全决策三、简答题(每小题6分,共30分)1、在作故障类型及影响分析时,划分故障类型和评定故障危险度等级应分别从哪些方面进行考虑?2、安全系统工程的优点有哪些?3、最小割集和最小径集的主要作用有哪些?4、简述事故树分析的步骤5、什么是风险型决策?风险型决策问题一般应具备哪5个条件?四、计算题(20分)已知事故树如图1所示,其中q1=0.01,q2=0.02,q3=0.03,q4=0.04,q5=0.05,试求该事故树的最小割集,最小径集,顶事件发生的概率,结构重要度,概率重要度和关键重要度,并对结果进行分析。
第3章 电阻电路的一般分析总结

第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。
2、熟练地运用节点法和回路法分析计算电路。
3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
1.支路——Branch流过同一个电流的电路部分为一条支路。
2.节点——node三条或者三条以上支路的汇集称为节点。
4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。
6.回路——loop电路中的任意闭合路径,称为回路。
8.网孔——mesh一般是指内网孔。
平面图中自然的“孔”,它所限定的区域不再有支路。
例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。
树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。
一个连通图的树可能存在多种选择方法。
10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。
树一经选定,基本回路唯一地确定下来。
对于平面电路而言,其全部网孔是一组独立回路。
3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。
从而得到含2b 个变量的2b 个独立方程。
又称为“2b 法”。
2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。
3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。
第三章线性网络的一般分析方法和网络定理

1.节点电压
以图3-1所示的直流网络 为例。这个网络具有4个节点, 6条支路。标明各支路电流参 考方向,如图3-1所示。
3-1
图 节 点 分 析 法 用 图
2.节点方程
以图3-1所示的直流电路为例, 阐明节点方程的导出步骤。
① 选定参考节点(本例以节点4为 参考节点),标明各支路电流的参考方 向,如图3-1所示。
在应用叠加定理时,应该注意以下 几点:
① 当令某一激励源单独作用时,其 他激励源应为零值,即独立电压源用短 路代替,独立电流源用开路代替,储能 元件的初始储能设为零。
② 电路中的受控源不能单独作用。
③ 叠加定理只适用于计算电流或电 压,不适用于计算功率。
3.5 替 代 定 理
在具有唯一解的线性或非线性网络 中,若已知某一支路的电压uk或电流ik, 则可用一个电压为uk的理想电压源或电 流为ik的理想电流源来代替这条支路,而 对网络中各支路的电压和电流不发生影 响。这就是替代定理,也叫置换定理。
替代定理不仅适用于直流网络,也适 用于正弦交流网络。不仅一个二端元件或 一条支路可以用理想电压源或理想电流源 代替,任何一个二端网络,包括有源二端 网络,也可用理想电压源或理想电流源代 替。更广泛地说,网络中的任何一个响应 (电压或电流),一般均可以函数形式相同 的激励(理想电压源或理想电流源)替代, 而不致影响网络中其他的响应。
戴维南定理指出:线性含源单口网络 N,就其端口来看,可等效为一个电压源 串联电阻支路(如图3-41(a)所示)。电压源 的电压等于该网络N的开路电压uoc(如图341(b)所示);串联电阻R0等于该网络中所有 独 立 源为 零 值时 所 得网 络 N0的 等 效电 阻 Rab(如图3-41(c)所示)。
3-4 事故树的定量分析二

(3-20)
2
当求出一个事故树的最小割集后, 可直接运用 布尔代数的运算定律及式(3-21) 将相交和化为不 交和。但当事故树的结构比较复杂时, 利用这种直 接不交化算法还是相当烦琐。 而用以下不交积之和定理可以简化计算, 特别 是当事故树的最小割集彼此间有重复事件时更具优 越性。 不交积之和定理: 命题 1 集合 Er 和 Es 如不包含共同元素 , 则 应 Es 可用不交化规则直接展开。 命题 2 若集合 Er 和 Es 包含共同元素, 则
要度最大。
(2) 仅在同一最小割(径)集中出现的所有基本
事件结构重要度相等。
21
(3) 两个基本事件仅出现在基本事件个数相等 的若干最小割(径)集中, 这时在不同最小割 ( 径)集 中出现次数相等的基本事件其结构重要度相等; 出 现次数多的结构重要度大, 出现次数少的结构重要 度小。 (4) 两个基本事件仅出现在基本事件个数不等 的若干最小割(径)集中。在这种情况下, 基本事件 结构重要度大小依下列不同条件而定:
不变时, 顶事件状态也由不发生变为发生的情况。
17
用结构函数表示为:
φ(0i, Xj )=0; φ(1i, Xj )=1; φ(1i, Xj )-φ(0i, Xj )=1; 此时, 基本事件Xi发生直接引起顶事件发生, 基本
事件Xi 这一状态所对应的割集叫“危险割集”。若
改变除基本事件Xi以外的所有基本事件的状态,并取
7
⑴最小割集逼近法:
在式 (3-18) 中, 设:
则得到用最小割集求顶事件发生概率的逼近公 式, 即:
8
式 (3-22)中的F1,F1-F2,F1-F2+F3,……等 , 依 此给出了顶事件发生概率P(T)的上限和下限, 可根 据需要求出任意精确度的概率上、下限。 用最小割集逼近法求解 [ 例 3-8] 。 由式 (3-22) 可得 :
割集分析法

i4
2V I
i4 = i1 + i2 = – 0.25 + 0.85 = 0.6A
II
i5 = 3A(已知), i7 = i1 = – 0.25A
以上各式中,u1、u2、u3分别为支路 1、支路 2 和支路 3 的 电压。
电路分析基础——第一部分:2-5
例2-16 电路如图2-37(a),试求ux。
致,则互电导为正,否则为负;
电流输送:is11、is22、is33 。该基本割集上电流源输 送电流的代数和,电流源电流方向与割
集方向相反者为正,否则为负。
ut1、…、uti、…、ut(n-1):在确定基本割集顺序后, 每个基本割集上的树支电压;
电路分析基础——第一部分:2-5
17/23
注意:在用割集分析时,往往把感兴趣的支路选为树支,使其 电压成为直接求解对象。电路中的电压源支路都应尽量选为树 支,因为电压源是已知的,可以减少未知独立变量的个数。
例如:在图(b)中,切割用虚线表
1
2
示,例如切割II使节点1、3与节点2、 I
3
4分为两个分离部分,所切割的支路 G3、G4、G1和电流源支路的集合就 是割集II。
割集的多样性:一个连通图可以有许
II
4
III
1
2
3
多不同的割集,图(b)中就表明了
三种不同的割集。
4
电路分析基础——第一部分:2-5
7/23
电路分析基础——第一部分:2-5
21/23
i2 =
u2 0.5
=
– ut6 – ut5 – ut4 0.5
= – 2(2–2.75+ 0.326) = 0.85A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3-6 割 集 分 析 法
一、割集与基本割集
1)、割集 割集是支路的集合,它必须满足以下两个条件: (1) 移去该集合中的所有支路,则图被分为两部分。
(2) 当少移去该集合中的任何一条支路,则图仍是连通的。
需要说明的是,在移去支路时,与其相连的结点并不移去。
图G 是一个连通图,如图3-26(a)所示,支路集合{1,5,2}、{1,5,3,6}、{2,5,4,6}均为图G 割集。
将以上割集的支路用虚线表示,分别如图3-26(b)、(c)、(d)所示,不难看出,去掉虚线支路后,各图均被分成了两部分,但是
图3-26 图G 及其割集
(a)
(b)
(c)
(d)
只要少去掉其中的一条虚线支路,图仍然是连通的,故满足割集所要求的条件。
而支路集合{1,5,4,6}、{1,2,3,4,5}不是图G 的割集。
将集合中的支路用虚线表示后如图3-27(a)和(b)所示。
对于图3-27(a)来说,移去支路1、5、4、6后,图虽说被分为两部分(结点①为其中的一部分),但如不移去支路5,图仍被分为两部分;而对于图3-27(b)来说,将支路1、2、3、4、5移去后,图则被分成了三部分,故以上两种支路集合不是割集。
2)、作高斯面确定割集
在图G 上作一个高斯面(闭合面),使其包围G 的某些节点,而每条支路只能被闭合面切割一次,去掉与闭合面相切割的支路,图G 将被分为两部分,那么这组支路集合即为图G 的一个割集。
在图G 上画高斯面(闭合面)C 1、C 2、
(a)
(b)
图3-27 非割集说明
①
②
①
②
C 3如图3-28所示,对应割集C 1、C 2、C 3的支路集合为{1,5,2}、{1,5,3,6}、{2,5,4,6}。
3)、基本割集
基本割集又称单树支割集,即割集中只含一条树支,其余均为连支。
如选支路1、5、3为树支,如图3-29所示,则割集C 1,C 2,C 3为基本割集,基本割集的方向与树支的参考方向一致。
当树选定后,对应的基本割集是唯一确定的。
当然选的树不同,相应的基本割集也就不同。
如选支路1、5、6为树支以及选支路1、5、2为树支的基本割集分别如图3-30 (a)和(b)所示。
当图G 有n 个结点、b 条支路时,基本割集的数目等于树支数,为(n -1)。
图3-28 作高斯面确定割集
C 1
2
C 3
图3-29 基本割集
二、割集分析法
割集分析法与回路分析法一样,是建立在“树”的基础上的一种分析方法。
割集分析法是将树支电压作为一组独立的求解变量,根据基本割集建立KCL 方程,因此割集分析法也可以称为割集电压分析法。
割集分析法的选树原则与回路分析法相同,即尽可能将电压源及电压控制量选为树支,电流源及电流控制量选为连支。
设网络的图有n 个结点,b 条支路,则割集分析法中基本割集的数目与树支数相等,为(n -1)个,树支电压变量也为(n -1)个。
因此当电路中电压源支路较多时,采用割集分析法最为有效。
下面通过例题说明割集分析法的求解过程。
图3-30 基本割集示例 C 1
(b)
(a)
C 3
C 2
例3-16 用割集分析法求图3-34(a )所示电路。
解:割集分析法的求解步骤如下:
(1) 画出电路的拓扑图,选一个“合适”的树,并给各
支路定向。
本电路的拓扑图如图3-34(b )所示。
其中粗线为树,树支电压为u 1、u 2、u 3,参考方向如箭头方向所示。
(2) 画出基本割集及其参考方向。
基本割集C 1、C 2、C 3如图3-34(b )所示,其参考方向与树支电压方向相同。
(3) 写基本割集的KCL 方程。
图3-34 例3-16图
5s (a )
(b )
C 12
C 3
为写方程方便起见,将基本割集C 1、C 2、C 3画在原电路上,如图3-34(c )所示。
每一条支路的电流都可以用树支电压以及激励源表示。
对应基本割集的KCL 方程分别为
03
2
1511123=++-+---R u u R u u R u u u s (1)
011
233
2142=---+++-R u u u R u u R u i s (2)
02
3
1123=++--s i R u R u u u (3)
(4) 联立求解,得树支电压u 1、u 2、u 3。
(5) 利用树支电压求得电路的其它物理量。
(c )
s C 3
C
C C 2
C 3
(d )
图3-34 例3-16图
如所选树如图3-34(d )所示,则所得基本割集方程正好是结点电压方程,所以结点电压法是割集分析法的特例。
例3-17 重做例3-7所示电路。
求结点①与结点②之间的
电压12u 。
解:选树支电压如图,分别为u 1、u 2和u 3 。
u 3等于22V ,可以不建立关于u 3的基本割集方程。
另外两个基本割集的KCL 方程分别为
C 1 08)1(3)22(411=+++-u u C 2 025)22(51822=-++⨯+u u 两式联立求解得
V u 111=,V u 5.152-= 所以 V u u 11
112==
4S
2
图3-35 例3-17图
例3-18 电路如图3-36(a )所示。
已知:
S G 11=,S G 2 2=,S G 3 3=,S G 5 5=,V u s 1 1=, V u s 3 3=,
A i s 3 3=, 4 4V u s =,V u s 6 6=。
试用割集分析法求电流i 1以
及电压源u s1发出的功率p 。
解:选树如图粗线所示,树支电压如图3-36(b )所示,为u 1、u 4和u 6。
因为V u u s 4 44==,V u u s 6 66== ,所以可以不建立关于u 4和u 6的基本割集方程,故只需要列关于u 1的基本割集方程。
基本割集C 1如图3-36(a )所画,其方程为
0)()()(36145612111=+++-+++-s s s s s i u u u G u u G u u G
图3-36 例3-18图
u s4(a )
(b )
即 024 81=+u 得 V u 3 1-=
所以 A u u G i s 4)13()(1111-=--=-= W i u p s 411=-=。