细数大数据风控那点事_光环大数据培训

合集下载

光环大数据的人工智能培训 让你快速掌握高薪人工智能技术_光环大数据培训

光环大数据的人工智能培训 让你快速掌握高薪人工智能技术_光环大数据培训

光环大数据的人工智能培训让你快速掌握高薪人工智能技术_光环大数据培训光环大数据的人工智能培训——让你快速掌握高薪人工智能技术。

近年来,科技巨头围绕人工智能产业,开展了大量的收购;标的包括人工智能初创企业、大数据公司)和芯片研发公司,人工智能以更快的速度发展中。

人工智能培训人工智能(ArtificialIntelligence),英文缩写为AI。

它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

在未来,人工智能将成为一种更常见、更重要的陪伴者。

人工智能助理会知道你在工作且有10分钟的空余时间,然后帮你完成待办事项中优先级靠前的事项。

人工智能将会让我们的生活更富成效和更具创造性。

毫无疑问,我们是在创造一个新的物种,一个在智力上可能没有上限的物种。

一些未来主义者预测,所谓的奇点,即计算机智能超越人类智能的时刻,可能会在2100年之前到来,而另一些人声称这将仍然只是科幻作品中的畅想。

这种可能性听起来令人振奋,但也让人觉得有点可怕——也许两者都有一些。

人工智能的发展将来对人类有益还是有害呢?光环大数据的人工智能培训讲师坚信是有益的。

那么人工智能培训光环大数据好不好?我们先来看看人工智能培训课程的安排吧。

如果课程安排都不尽如人意,还能奢望学生学到多少实用的技术呢?课程一阶段PythonWeb学习内容:PythonWeb内容实战人工智能培训学习目标:掌握HTML与CSS基础与核心、JavaScript原生开发,jQuery框架、XML与AJAX技术完成项目:大型网站设计项目、京东电商网站项目、JS原生特效编写实战。

课程二阶段PythonLinux学习内容:PythonLinux实战开发学习目标:熟练Linux安装与管理、熟练使用Shell核心编程,掌握服务器配置与管理。

完成项目:ERP员工管理系统开发、图书管理系统开发、数据库系统调优。

课程三阶段文件与数据库学习内容:文件与数据库实战开发学习目标:熟练掌握Python各类操作,熟练掌握数据库语法与函数编程,及大数据库解决方案完成项目:权限系统数据库设计、日志系统数据库设计、综合系统数据库设计。

大数据培训班_你对大数据了解多少呢_光环大数据培训

大数据培训班_你对大数据了解多少呢_光环大数据培训

大数据培训班_你对大数据了解多少呢_光环大数据培训随着大数据时代的迅速来临,大数据的应用开始逐渐进入了社会的各个领域,他的相关技术已经渗透到各行各业,基于大数据分析的新兴学科也随之衍生。

网络大数据的呈现为大数据分析技术人才提供了前所未有的宝贵机遇,但同时也提出了非常大的挑战。

大数据为人们更好地感知现在、预测未来将带来的新型应用。

大数据的技术与应用还是处于起步阶段,其应用的前景不可预测。

不要犹豫啦,来光环大数据参加大数据培训吧。

什么是大数据?大数据是指大小超出了传统数据库软件工具的抓取、存储、管理和分析能力的数据群。

这个定义带有主观性,对于“究竟多大才算是大数据”,其标准是可以调整的。

简单来说,大数据由三项主要技术趋势汇聚组成,一是海量交易数据,二是海量交瓦数据,三是海量数据处理。

大数据自诞生开始,便受到广泛的关注。

什么数据结构、思维仓库、迭代算法、样本相关一个个概念玄乎其神,让人摸不着头脑。

作为一家专业的大数据处理公司,开运联合告诉你:其实,大数据一点都不神秘,而且就在我们身边。

一:医疗大数据看病更便捷在未来,借助于大数据平台我们可以收集不同病例和治疗方案,以及病人的基本特征,可以建立针对疾病特点的数据库。

如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。

在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊,明确定位疾病。

同时这些数据也有利于医药行业开发出更加有效的药物和医疗器械。

医疗行业的数据应用一直在进行,但是数据没有打通,都是孤岛数据,没有办法进行大规模应用。

未来需要将这些数据统一收集起来,纳入统一的大数据平台,为人类健康造福。

二:金融大数据赚钱更给力企业和个人的一些信用记录现在有全国性质的统一数据库能够拿到部分数据。

但是对于单个银行来说,同样是无法拿到用户在其他银行的行为记录数据的,其二银行本身在做很多信贷风险分析的时候,确实需要大量数据做相关性分析,但是很多数据来源于政府各个职能部门,包括工商税务,质量监督,检察院法院等,这些数据短期仍然是无法拿到。

大数据风控是什么意思,大数据风控(二)2024

大数据风控是什么意思,大数据风控(二)2024

大数据风控是什么意思,大数据风控(二)引言概述:大数据风控是指利用大数据技术和方法对金融、互联网、保险等行业的风险进行评估和管理的过程。

它通过收集、整合和分析大规模的数据,以识别潜在的风险因素并采取相应的措施,从而帮助企业降低风险并提高经营效率。

正文:一、风险评估1. 收集和整合数据:大数据风控从各个渠道采集数据,包括交易数据、客户数据、市场数据等,并将这些数据进行整合。

2. 数据清洗:对采集到的数据进行清洗,去除重复数据、噪声数据和无效数据,保证数据的准确性和完整性。

3. 数据建模:利用机器学习和统计模型对清洗后的数据进行建模,以识别潜在的风险因素和预测未来的风险。

4. 风险评估:根据建模结果,对风险进行评估,确定不同风险等级和对应的措施,帮助企业制定风险管理策略。

二、预警系统1. 监控风险指标:利用大数据技术对各种风险指标进行监控和分析,及时发现异常情况。

2. 预警信号:根据监控结果,生成预警信号,向相关人员发送警报,并提供相应的措施建议。

3. 风险管理:根据预警信号,进行风险管理,采取相应的措施来减少可能的损失。

三、欺诈检测1. 模式识别:利用大数据分析技术,识别和分析欺诈行为的模式和规律。

2. 实时监测:监测交易流程,及时发现异常行为和欺诈风险。

3. 自动化决策:根据欺诈检测结果,自动化地进行决策,包括确认、拒绝或进一步验证。

四、个性化风控1. 用户画像:通过对用户行为数据的分析,建立用户画像,了解其行为特征和倾向。

2. 风险定价:根据用户画像和风险评估结果,对用户制定个性化的风险定价策略。

3. 客户服务:根据用户画像,提供个性化的客户服务和产品推荐,增强用户体验。

五、数据隐私保护1. 合规性要求:遵守相关法律法规,对个人隐私数据进行保护,并严格控制数据的访问权限。

2. 匿名化处理:对个人隐私数据进行匿名化处理,保护用户隐私。

3. 数据加密:采用加密技术对敏感数据进行保护,确保数据的安全性。

大数据行业正在酝酿风暴_光环大数据培训

大数据行业正在酝酿风暴_光环大数据培训

大数据行业正在酝酿风暴_光环大数据培训光环大数据培训机构,最近的大数据行业,风声鹤唳。

据内部消息,最近监管对数据乱象出手,开始清理行动,15家公司被列入调查名单,其中几家估值都超几十亿。

据多位知情人透露,上周末,“数据堂”多人被警方调查,导致部分数据业务线停摆。

多位业内人士预测,这轮清理行动,可能会导致行业大洗牌。

01风雨欲来其实,在上周五,某大数据公司的负责人吴元清就得到了消息。

“最近警方会针对数据乱象出手,开始全面整治”,吴元清称,当时整个行业并未引起重视,“因为以前也有过整治,未必会挖出根本,动真格”。

结果,此时整治行动的规模,超乎所有人的想象。

据多位知情人向一本财经透露,在周末,“数据堂”数据业务线多人被警方调查。

“据说,至少一个VP级别的高层被调查,涉及6人”,知情人透露,被调查的原因,是因为数据堂给一家理财营销公司,提供了大量涉及用户隐私的数据。

“目前,人已放了出来,但数据堂的多条业务线停滞”,知情人称。

某监管部门的负责人也证实了此事。

而数据堂的下游客户徐君,在周二下午也发生了端倪。

“一数据业务的接口,突然断了。

我询问数据堂的业务员,对方说在调整,等消息”,徐君称,但公司的业务不能等,他只能到处找新的数据接口。

据数据堂官网的资料:“数据堂成立于2011年,并在2014年12月10日在新三板成功上市,成为中国大数据行业第一家挂牌新三板的企业。

在中美两地已建立4家子公司,5个数据处理中心。

”而其提供的核心服务,是大数据的采集、处理和挖掘。

据公开资料,在2015年11月6日,数据堂宣布获得B轮2.4亿元人民币融资,估值超过20亿。

就在今年4月份,数据堂公布了2016年年度财报,归属于挂牌公司股东的净利润是-16,871,029.94,业绩亏损近1700万。

财报公布之后,数据堂股票价格腰斩,从9块多一度跌到4块多。

5月26日上午,一本财经前往数据堂的北京总公司核实该消息,公关部表示,暂时不予回应。

什么是大数据风控大数据风控如何操作(一)2024

什么是大数据风控大数据风控如何操作(一)2024

什么是大数据风控大数据风控如何操作(一)引言概述大数据风控是指利用大数据技术和分析方法,对金融机构、企业等进行风险评估和风险控制的过程。

在当前信息时代,大数据已经成为了金融领域中重要的资源,它的应用可以帮助金融机构更好地理解和把握客户的行为特征,提高风险识别的准确性和效率。

正文内容一、数据收集和整理1. 收集传统数据:如客户的姓名、年龄、职业等基本信息,以及与金融行为相关的交易记录、借贷记录等。

2. 利用互联网数据:通过网络爬虫技术,获取客户在社交媒体、电商平台等互联网渠道的行为数据,包括网购记录、社交活动等。

3. 利用新型数据源:例如利用物联网设备收集到的客户手机定位、行车数据等非传统数据。

二、数据清洗和处理1. 数据清洗:清除数据中的噪声、重复项等问题,确保数据的准确性和完整性。

2. 数据分析和挖掘:利用数据挖掘算法,探索数据中的潜在规律和特征,为后续风险分析提供依据。

3. 数据标准化和归一化:将不同数据类型的指标进行转化和统一,方便后续的模型应用。

三、风险评估和预测1. 构建模型:根据收集到的数据和领域的专业知识,建立风险评估的模型,如信用评分模型、欺诈检测模型等。

2. 特征选择和优化:选择重要的特征指标,通过特征工程和模型调参等手段,提高风险预测模型的准确性。

3. 模型训练和测试:利用历史数据进行模型的训练和测试,评估模型的性能和预测能力。

四、风险控制和应对1. 制定风险控制策略:依据风险评估的结果,设计相应的风控策略,包括授信额度的设定、监测频率的确定等。

2. 实施实时监测:通过实时监测客户的行为和交易记录,及时发现异常情况或风险信号,采取相应的措施进行干预和调整。

3. 风险应对和处置:对于已经出现的风险,及时采取风险应对措施,如冻结账户、追赃追踪等。

五、风险反馈和总结1. 风险监控和报告:建立风险监控的体系和报告机制,定期对风险情况进行汇报和分析。

2. 风险总结和改进:根据风险的经验总结和评估结果,及时对风险控制策略和模型进行调整和改进,提升风险控制的效果。

大数据培训_大数据应用方向思考_光环大数据培训

大数据培训_大数据应用方向思考_光环大数据培训

大数据培训_大数据应用方向思考_光环大数据培训光环大数据作为国内知名的大数据培训机构,讲师都是实战专家,有十几年的软件开发经验和5年以上的实战经验,在业内口碑非常不错。

关于师资质量这点非常重要,大家可以去了解一下。

优秀的大数据培训机构能让自己能和大数据行业前沿的项目、主流的技术接触,这对你的学习成长非常的重要。

大数据+时代,就选光环大数据!一、警惕大数据过热1.1 过热产生盲目性国内大数据的宣传早已过热,很多区县级政府也在考虑成立大数据局,政府对大数据热几乎没有抵抗力,企业没有紧跟就对了,在大数据高潮中反省政府的大数据行为、冷静一下头脑是有益的,毕竟大数据应用是一个经济问题,一窝蜂地大数据会使人犯“大炼钢铁”一类的错误。

1.2 大数据应用效益存在问题大数据培训越来越火,大数据产业蓬勃发展。

大数据最积极的推动者是政府,但是政府工作如何从大数据应用中获益一直没有清晰的答案,有效的大数据应用集中于互联网企业和金融领域并非政府工作,迄今一本像样的政府大数据应用案例都编写不出来,这种情况下推力政府大数据应用会带有很大的盲目性,这是技术导向而不是问题导向,技术导向必然会造成浪费。

1.3 大数据不是包治百病的神药现在对大数据的宣传已经远远胜过对城市问题的探讨,问题还没搞清药方就先开出来了,大数据药方再灵也不可能解决自己都没有诊断清楚的问题。

任何技术都有其长处和短处,大数据也是一样,都有其能解决与不能解决的问题,各地政府首先要明确要问题是什么,然后再审视大数据技术能否发挥作用,不能反过来先定大数据再去找问题,政府工作明确目标永远比搞清技术更重要。

二、大数据源自互联网的推动2.1 大数据是如何产生的?大数据培训越来越火,大数据产业蓬勃发展。

任何有社会影响力的新名词都不是望文生义可以解释的,这些名词都被赋予了成语含义,“大数据”便是其一。

历史上超大规模的数据很多却不被称为大数据,是因为单纯数据量增长并没有形成巨大社会影响力。

光环大数据告诉你大数据是万能的吗_光环大数据培训

光环大数据告诉你大数据是万能的吗_光环大数据培训

光环大数据告诉你大数据是万能的吗_光环大数据培训光环大数据培训机构,数据科学正在被当做货物一样崇拜数据科学已经逐渐成为各个行业公司的重要竞争优势。

随着越来越多的公司开始引进数据管理的新模式,公司内部就可能会产生所谓的“货物崇拜”,即去学习模仿一系列行为而不去了解其中动机的现象。

在数据科学的应用方面,公司很可能会照搬数据科学背后的技术体系,而忽略了建立数据驱动型的组织文化。

这种情况颇为常见,对此我想分享一下解决之法。

数据科学是一种强大的工具,其优势在于:∙自动决策∙辅助人为决策虽然有许多公司已经认识到了数据科学的重要性,但他们往往没有匹配上有效的数据能力。

个人认为这源于对数据科学的根本性误解,这种误解让人们在忽略自身的基础上进行数据科学的技术构架。

其他的领域也存在相似的问题。

本文阐述了我对于规避此类现象的最佳办法以及如何从数据科学投资领域获得更多价值的思考。

一个典型的数据科学项目绝大多数数据科学项目和其他的IT项目一样,遵循以下的发展轨迹:∙上层管理者同意立项,组员们踌躇满志,饱含希望;∙初始原型看似前途无量,项目本身也似乎能解决一个非常重要的组织问题;∙项目中期效果不佳,没能完成既定目标;∙同时,公司管理层不再关心项目的进展,项目推进受阻;∙项目结束,但是没有能实现最初承诺的组织变革。

对于数据项目而言,这个流程本身就是有问题的。

因为数据项目意味着引入新的管理方法和组织行为。

与许多传统的IT项目不同,数据项目是对现有流程的改进,并且旨在改变组织整体的运行模式。

这个项目为什么失败了?多数人,尤其是数据科学家,会归咎于技术缺陷或是管理不当。

然而在我看来,早在初始设计没能理清项目完成后要如何适应组织运作的时候,失败就已成定局。

数据科学的人性面就我的经验来看,一个“数据驱动型组织”要做的远不止分析和测量。

从根本上说,要成为一家数据驱动的公司,就需要让数据成为公司员工日常工作生活的一部分。

这与上述项目形成了鲜明对比,那些项目更注重技术应用而非达成目标,是种典型的货物崇拜行为,例如最为常见的“企业数据湖项目”。

大数据培训_大数据时代必须破解的重大现实课题_光环大数据培训

大数据培训_大数据时代必须破解的重大现实课题_光环大数据培训

大数据培训_大数据时代必须破解的重大现实课题_光环大数据培训光环大数据作为国内知名的大数据培训机构,讲师都是实战专家,有十几年的软件开发经验和5年以上的实战经验,在业内口碑非常不错。

关于师资质量这点非常重要,大家可以去了解一下。

优秀的大数据培训机构能让自己能和大数据行业前沿的项目、主流的技术接触,这对你的学习成长非常的重要。

大数据+时代,就选光环大数据!当今,社会信息化和网络化的发展导致数据爆炸式增长,全球数据量大约每两年翻一番,这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。

大数据时代已经到来,大数据渗透到各个行业领域,逐渐成为一种生产要素发挥着重要作用,成为未来竞争的制高点。

然而,大数据掀起新一轮生产率提高和生活方式改变的同时,随之而来的是安全挑战,这是我们必须破解的重大现实课题。

大数据隐患面临三大风险问题大数据培训越来越火,大数据产业蓬勃发展。

数据生命周期安全问题。

伴随着大数据技术和应用的快速发展,在大数据生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。

比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中可能出现逐步失真等。

又如,大数据处理环节,除数据非授权使用和被破坏的风险外,由于大数据的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。

基础设施安全问题。

作为大数据汇集的主要载体和基础设施,云计算为大数据提供了存储场所、访问通道、虚拟化的数据处理空间。

因此,云平台中存储数据的安全问题也成为阻碍大数据发展的主要因素。

在云计算安全方面,云安全联盟2016年发布的云安全十二大威胁中,“数据泄露”高居榜首。

美国国家标准技术研究院指出安全是公共云计算面临的最大障碍,潜在风险包括:一是云计算环境复杂,产生了比较大的受攻击面;二是多租户共享计算资源,增加了网络和计算基础设施的风险,一个用户的数据和应用可能在无意中暴露给其他用户;三是公共云计算通过互联网交付,用户的应用和数据面临来自网络和暴露接口的威胁;四是用户失去了对系统和数据在物理和逻辑上的控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

细数大数据风控那点事_光环大数据培训大数据风控同传统风控在本质上没有区别,主要区别在于风控模型数据输入的纬度和数据关联性分析。

据统计,目前银行传统的风控模型对市场上70%的客户是有效的,但是对另外30%的用户,其风控模型有效性将大打折扣。

大数据风控作为传统风控方式补充,主要利用行为数据来实施风险控制,用户行为数据可以作为另外的30%客户风控的有效补充。

大数据风险控制的作用就是从原来被拒绝的贷款用户中找到合格用户,识别出已经通过审核的高风险客户和欺诈客户。

一、银行信用风险控制的原理金融行业中,银行是对信用风险依赖最强的一个主体,银行本质就是经营风险,不同的风险偏好决定了银行的经营水平。

在经济结构调整周期过程中,信用风险管理也是各个银行面临的巨大挑战。

1.两种常见的信用风险管理方式银行信用风险管理有两种方式,第一种方式是从大量申请人中找到合格的贷款客户,将贷款放给这些人。

第二种方式是从申请人中识别出有潜在风险的贷款客户,不将贷款发给这些人。

可以简单地认为是找到好种子和识别出坏种子2.如何找到合格的贷款人?银行在找好种子时,一般会对好种子进行一些基本限定,从贷款人的学历、年龄、收入、职业、资产、负债、消费等几个方面进行打分,最后综合评级,依据评估分数进行贷款审批,可以简单地认为是风险定价(RBP)。

贷款销售人员主要的任务是找到好种子的用户,通过KYC和风险评估等方式的找到潜在合格客户。

这个阶段的风险控制可以认为是一个基线控制,经过风险评估之后,会得到客户的评估分数或风险评级。

在控制基线之上的客户会被放进来,认为是潜在合格客户;风险管理部门进一步验证,如果审核通过之后,就会依据分数和级别发放贷款。

3.识别出潜在风险的人利用数学模型来识别风险客户,目的是找到欺诈客户和未来不会还款的用户。

在识别坏种子时,数学模型和坏种子是关键,数学模型决定风控方式是否科学,数据纬度是否全面,结论是否科学。

坏种子是用来修正风控模型参数,提升模型的鲁邦性,同时让模型可以不断完善自己。

在预防欺诈用户时,行业共享的黑名单也起到了很大的作用。

坏种子对识别出欺诈用户和潜在违约用户十分关键,风控模型是否有效的一个前提就是是否有足够多的坏种子。

4.个人消费金融授信的5P原则信用贷款分为抵押贷款和无抵押贷款,其中抵押贷款的风险相对较低,风险评估过程中主要关注抵押品的自身价值和贷款覆盖率,贷款用途和还款能力占信用审批权重比例较低。

银行过去大量的个人贷款,都是抵押贷款,其中按揭房贷占了很大的比重。

无抵押贷款称为信用贷款,时髦的称呼为消费金融。

贷款人无需进行财产抵押,仅仅依靠自身信用分数或还款能力申请贷款。

相对于抵押贷款,其风险较高,也是银行信用风险管理的重点领域。

这几年消费贷款增加较快,预计2017年同个人消费相关的消费贷款,可以达到27万亿左右。

很多银行、信用卡中心、互联网金融公司都在争夺这个市场。

个人金融消费贷款除了遵循CCCP消费金融授信审核标准之外,授信5P原则也经常用于评估客户信用风险。

“5P”原则主要是指贷款人情况(people),资金用途(purpose),还款来源(payment),债权确保(protection),借款人展望(perspective)。

贷款人情况是指贷款人信用情况、个人财力、银行往来记录,其中其个人信用评分比重最高,个人财力次之,贷款人的还款记录和还款意愿也很重要。

资金用途是指贷款人的借款用途是否合理、合法。

是否用于投机领域或高风险领域,例如高利贷或赌博等。

资金用途是否合法,同贷款被按时归还相关度较高。

还款来源是授信审批中最重要的,用来了解贷款客户是否具备还款来源,其偿债能力如何。

其中客人的月度薪资收入、资产收入、支出费用、财产价值都高度相关。

其中常用衡量标准是无担保贷款不得超过月收入的22倍(DBR小于等于22),月还款金额不得超过客人扣掉所有支出费用后,所剩费用的一半。

另外信用卡的授信额度也会被考虑在内。

债权确保主要是指对申贷客户所提供的各项担保品进行评估,当贷款违约时,银行可以处理担保品,减少带贷款损失。

消费金融一般无担保品,因此债权担保不太适用,但是某些消费金融公司会让贷款人购买一个担保产品,一般为贷款总额的2%,可以作为债权确保。

借款人展望就是贷款人未来违约的可能性,依据贷款人的行业、薪资、职业、职务、学历等因素进行预测,评估未来发生风险的概率。

一般入门门槛低、专业程度低,可替代性高度高的工作或行业风险较高。

5.贷前风险控制的重要性。

信用贷款的风险控制分为贷前,贷中,贷后三个阶段。

贷前控制主要是找到合格贷款人;贷中控制主要预防抵押品资产减值,无法覆盖贷款标的,或者预防借款人还款能力下降,无法按时归还贷款;贷后控制,主要当贷款发生逾期时,通过催收降低银行损失。

其中,贷前风险控制是最为重要的。

摩根大通银行有一个统计,75%的信用风险可以在贷款前进行风险控制,贷后风险控制的有效性大概只用25%。

因此对于金融企业,贷款前的风险控制更为重要。

在信用卡领域,贷款前的恶意欺诈占整体信用贷款损失的60%,真正贷款到期,不进行还款的的客户只占信用贷款损失的40%。

互联网金融企业也是如此。

信用贷款风险控制过程中,贷前风险控制是最为重要的。

二、金融行业信用风险控制的挑战金融行业在过去主要依靠经验和宏观经济形式来实施风险控制,以定性为主,更多依赖风险管理精英的个人能力,特别在经济发展很好的时期,风险管理偏好不太科学,不能够反应出真正的风险水平。

定性的风险管理占主体,定量的风险管理起到很小的作用。

现在,越来越多的银行正在重视定量风险管理,积极利用风控模型来实施风险评估。

巴塞尔III协议的推行,推动了定量风险评估。

大多数中国银行的风控模型大多从国外引入,经过自己定制和改良之后用于信用风险评估。

但是信用风险和操作风险比较复杂,由于信息不全以及其他问题,很多国外的信用风险模型效果不太明显。

于是大多数中国银行参考国外信用风险评估模型,做了一个中国版本。

包括著名的FICO风控模型,现在银行很少直接采用。

在这个中国版本的风控模型中,企业信用贷款过于依赖政府授信和国有企业,这种粗放型信用风险管理在经济结构调整过程中,引发了很高的不良贷款率。

对私业务中,过高的信用审核标准,无法为更多的贷款申请人提供贷款,造成了无法为更多人提供服务,特别是在信用消费领域,无法实现普惠金融服务。

银行在个人信用风险管理过程中遇到的主要挑战。

1.缺少坏种子银行建立风控模型的基本原理是,利用大量坏种子,寻找到共性信息,建立风控模型。

在利用另外一批坏种子来优化风控模型,找到合适算法,预测参数,加快收敛等。

坏种子对于建立风控模型至关重要,如果坏种子数量不够,风控模型无法设定参数和修正模型。

过去银行严格的信贷审批机制,造成了小额贷款(信用消费信贷)规模很小,产生的坏种子也不多,规模较小的坏种子对于建立信用评估模型不利,无法优化已有的模型和提高风控模型的适用性。

信用风险常见的算法有参数统计法例如逻辑回归、Bayes风险判别分析法,以及非参数统计方法例如聚类和K-means法,神经网络法。

现在应用较多的是SVM支持向量级机方法,其在小样本、非线性及高纬模式识别中有特有的优势。

同时SVM也是努力最小化结构风险的算法。

2.数据纬度不全量化风险评估需要将涉及到此风险的所有相关数据都包含进来,通过模型进行信用风险评估,计算出还款意愿和还款能力。

评估采用的基本数据因素有年龄、收入、学历、客户资历、行业、区域等,其占主要部分。

信用因素包含如负债状况、缴款记录、理财方式;以及行为因素例如交易时间和频率等。

除了这些变量和因素,其实还有一些因素并没有被考虑到现有的风险评估模型中。

例如贷款者的身体健康情况、生活规律、是否参与赌博、是否参与民间借贷等,同信贷违约高度相关的信息没有被考虑到信用风险评估当中。

特别是用户行为特征,几乎很少的信贷评估模型会考虑用户的行为。

如果客户在借款前,频繁去澳门赌博、或参与民间高利贷、或有吸毒历史、或者飙车、或者经常半夜出入夜店等危险区域、或经常半夜使用App等。

这些危险行为因素都会对其信用风险产生影响,但这些因素原来并没有被考虑到信用风险评估之中。

风险评估过程中,如果数据纬度不全,高相关数据没有被考虑进来,对风控模型是一个大的风险。

信用风险评估模型缺少了重要风险因素的输入,其评估结果的偏离度就会较大,评估结果失效的可能性就很大。

3.风险定价不够精细量化风险管理的一个核心是风险定价,根据银行自身的风险偏好来对资产进行定价,高风险资产定价较高,低风险产品定价较低,根据风险高低来制定资产收益,RBP(基于风险定价)已经成为主流。

大多数银行过于保守,不愿意容忍较高的逾期率和不良率,对于所有信贷产品都一视同仁,严格控制逾期率和不良率水,一旦过高,立即缩紧信贷政策,严格控制贷款规模。

复杂的经济环境和风险场景,以及缺少全面数据,让风险管理专家更加谨慎对待风险管理,误杀率远远大于漏放率。

实际上,不同风险的产品应该有不同的信贷风险控制指标,高收益的产品,其不良率应该比低风险的产品要高。

例如利率为12%的小额信贷就可以容忍3%左右的不良贷款率,其利差收益完全可以覆盖不良贷款。

对于风险较低的消费信贷,其不良贷款率也可以适当放开。

在逾期和不良贷款管理中,应该按照风险覆盖程度细化资产定价,不能采用统一的风险偏好,这样才能支持消费贷款,依据风险水平,提供精细化信贷产品。

4.风险模型的自我学习能力和数据的实时性量化风险成为主流风险管理方式之后,银行也在思考风险评估模型的科学性。

影响信用风险管理的因素很多,除了客户自身的还款能力和还款意愿,还有恶意欺诈、外界经济环境、黑天鹅事件等不可预见的因素。

信用风险的评估完全依赖风控模型将会产生另外一个风险,就是模型自身学习能力和数据实效性。

好的风控模型需要具有自我学习能力,可以依据输入数据来修正模型,另外模型的抗干扰能力也需要较强,避免大量噪声数据干扰计算结果。

具有自我学习能力的模型可以适应外部多种因素的变化,同时也可以自身迭代提高,抵抗外界噪音干扰。

实时有效的数据对于风险评估结果影响也很大,数据是有时间价值的,滞后的数据会影响评估结果,不能反映实时风险变化情况。

实时的数据录入和动态信用风险评估现在对银行是一个巨大的挑战,一个月进行一次的风险评估并不能实时反映信用风险变化情况,银行需要找到一个好的方法来建立动态风险视图,不仅仅是信用风险管理,其他的风险管理方法也要向实时数据录入和风险实时评价方向转变。

5.外部风险来源的多样化现在的信贷市场,不再是银行一家的市场。

互联网金融企业的崛起,让客户更加容易获得贷款,同时也加大了银行管理信贷风险的难度。

例如一个客户在银行环境内部授信额度是10万,但是其在外面的互联网金融公司、典当行、民间借贷机构,都有借贷行为,可能总计借贷规模远远超过10万元。

相关文档
最新文档