电流型开关电源中电压反馈电路的设计与实现

合集下载

开关电源控制原理

开关电源控制原理

开关电源控制原理开关电源是一种非常常见的电源类型,它通过开关管的开关控制来实现电压或电流的调节。

开关电源的控制原理涉及到多个方面,主要包括以下几个方面:一、开关管的控制开关电源的基本原理就是通过开关管的开关来实现电压或电流的调节。

因此控制开关管的开关是非常关键的一环。

对于这方面,通常使用PWM 控制方式。

PWM(Pulse Width Modulation)是一种脉冲宽度调制技术,它通过改变开关管的开合时间来控制电源输出的电压或电流。

二、参考电压的产生在开关电源中,通常需要使用参考电压来作为基准电压,对电源输出进行调节。

参考电压的产生主要有两种方式:一种是通过基准电路产生,另一种是通过反馈电路产生。

其中反馈电路产生的参考电压更为常见。

三、反馈电路的设计反馈电路是开关电源中一个非常重要的部分。

它通过比较参考电压和输出电压之间的差异来控制开关管的开合。

反馈电路的设计需要考虑很多因素,如误差、抗干扰能力、响应速度等。

四、过流保护开关电源在使用过程中,可能会出现过流现象,导致电源损坏或电路失效。

因此在设计开关电源的控制原理时,需要考虑到过流保护机制的设计。

开关电源的过流保护通常采用限流或短路保护的方式,通过检测电流大小来实现。

五、过压保护在开关电源输出电压过高时,可能会对电路产生损害,甚至可能对使用者造成危害。

因此,需要在开关电源控制原理设计中,考虑到过压保护。

过压保护可以通过输入过滤、过压保护电路等多种方式实现。

综上所述,开关电源的控制原理是一个涉及多个方面的复杂问题,需要进行全面的考虑和设计。

在设计过程中,需要根据实际情况综合考虑各种因素,确保电源能够稳定可靠的工作。

开关电源的原理与设计

开关电源的原理与设计

开关电源的原理与设计一、引言开关电源是一种将交流电转换为直流电的电子设备,广泛应用于各种电子设备中。

本文将介绍开关电源的原理与设计。

二、开关电源的原理开关电源的基本原理是利用开关管(MOS管)的导通和截止来控制电源输出。

其主要由输入滤波电路、整流电路、变换电路、输出电路和控制电路等组成。

1. 输入滤波电路输入滤波电路的作用是将交流电转换为稳定的直流电。

它由电容和电感构成,通过对电流的整流和滤波作用,使得输出电压平稳。

2. 整流电路整流电路主要由二极管桥整流电路组成,将交流电转换为脉冲直流电。

二极管桥整流电路具有整流和滤波功能,可以将交流电转换为脉动较小的直流电。

3. 变换电路变换电路是开关电源的核心部分,主要由开关管、变压器和输出电感组成。

开关管的导通和截止控制了电源的输出电压,变压器用于提高或降低电压。

通过开关管的开关动作,可以实现高效率的电能转换。

4. 输出电路输出电路由输出电容和负载组成,用于稳定输出电压并提供给负载使用。

输出电容的作用是存储能量,平稳输出直流电压。

5. 控制电路控制电路主要由控制芯片和反馈电路组成,用于监测和控制输出电压。

控制芯片通过反馈电路不断调整开关管的导通和截止,以保持输出电压的稳定。

三、开关电源的设计开关电源的设计需要考虑输入电压、输出电压、输出功率、效率和稳定性等因素。

1. 输入电压根据应用场景的不同,可以选择不同的输入电压范围。

常见的输入电压有220V交流电和110V交流电。

2. 输出电压输出电压是开关电源设计的关键参数之一,需根据实际需求确定。

常见的输出电压有5V、12V、24V等。

3. 输出功率输出功率是开关电源能够提供的最大功率,需根据负载的功率需求确定。

需要注意的是,输出功率不能超过开关电源的额定功率。

4. 效率开关电源的效率是指输出功率与输入功率的比值,通常以百分比表示。

较高的效率意味着更少的能量损耗,可提高整个系统的能量利用率。

5. 稳定性开关电源的稳定性是指输出电压的稳定性,即在负载变化或输入电压波动时,输出电压的变化情况。

第三节 开关电源电压型控制和电流型控制基本原理

第三节 开关电源电压型控制和电流型控制基本原理
• 1.平均电流反馈:响应速度慢 • 2.逐周过电流保护:检测瞬时电流,响应快 • 3.电压滞环的电压型控制:又称打嗝型控制 (hiccup-mode),当输出电压低于设定值时,开 关管才开通,否则开关管处于常关的状态。 • 4.常用控制芯片:TL494,SG3525
电压型控制的优点
• 1。单环控制,易于设计和分析; • 2。噪声裕量大; • 3。多路输出时,交叉调节性能好。
负载
0
x
PWM比较器 + C1 z=xy
R3
PI调节器
X为误差信号
+
Vref
将前面各个环节的传递函数代入上述控制系统,并进行 归一化后可以得到博德图。从博德图可知,电压模式控 制的开关电源,其稳定性和动态特性之间的矛盾比较突 出。(参阅教材和参考书得到此问题的详尽解释)
电压型控制的过电流保护形式 及其常用控制芯片
一、电压控制模式和电流控制模式
开关电源的控制模式分为:电压控制模式(Voltage Mode Control)和电流控制模式(Current Mode Control)两种。 电压控制模式:仅有一个输出电压反馈控制环。 电流控制模式:输出电压反馈控制外环和电流控制内环。 电流控制模式分类:峰值电流、滞环电流和平均电流控 制模式三种。
t=0
Qs =
π ( M1 − M 2 + 2M c )
2( M 1 + M 2 )
, 通过合理选择 M c,就可以使 Qs > 0,
MC − M2 n ] e0 从而保证系统的稳定。 此时误差en = [ M C + M1
峰值电流控制的优缺点及其 集成电路芯片
优点:(1)系统得稳定性增强,响应速度快(能够直接将干

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计
TL431是一种常用的精密可调节稳压器件,通常用于开关电源中的稳压反馈电路。

它可以作为一个误差放大器,用于控制开关电源的输出电压。

以下是一个简单的TL431稳压反馈电路的应用电路设计示例:
在这个电路中,TL431被用作误差放大器,它通过比较参考电压和反馈电压来控制输出电压。

具体的设计步骤如下:
设置参考电压:TL431的参考电压通过外部电阻网络进行调节,根据需要选择合适的参考电压值。

连接反馈回路:将TL431的输出与开关电源的反馈回路相连,通过比较输出电压和参考电压,控制开关电源的输出电压稳定在设定值。

选择外部元件:根据具体的需求,选择合适的外部电阻、电容等元件,以确保稳压反馈电路的性能和稳定性。

稳压调节:通过调节外部电阻来调节输出电压的设定值,使得开关电源的输出电压符合要求。

需要注意的是,具体的电路设计需要考虑到开关电源的整体设计和控制要求,以及TL431的工作特性和参数。

此外,为了确保电路的性能和稳定性,建议在设计过程中进行仿真和实际测试验证。

开关电源PWM的五种反馈控制模式

开关电源PWM的五种反馈控制模式

一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。

PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。

由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。

对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。

下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。

二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。

电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。

该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。

电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。

逐个脉冲的限流保护电路必须另外附加。

主要缺点是暂态响应慢。

当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。

这两个延时滞后作用是暂态响应慢的主要原因。

图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。

电流型开关电源中的UC3842电压反馈电路设计

电流型开关电源中的UC3842电压反馈电路设计

电流型开关电源中的UC3842电压反馈电路设计
电路类别、实现主要功能描述
 下图所示电路属于电压反馈电路,当输出电压变化时,通过此反馈电路反馈给控制芯片,从而调节输出电压,使输出电压稳定。

电路如下图:
 2、工作原理分析
 当输出电压变化时,通过R27和R28分压,U15的反相输入端电压变化,通过和U15的同相输入端的固定电压比较,通过运放放大输出变化的电压,从而通过光耦发光二极管端的电流变化,传到光耦的三级管输出变化,再输入到控制芯片,控制芯片再调节输出电压,从而达到输出电压稳定。

 UC3842简介
 图1为UC3842PWM控制器的内部结构框图。

其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。

振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C 共同决定了振荡器的振荡频率,f=1.8/RC.反馈电压由2脚接误差放大器反相端。

1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。

3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。

UC3842PWM控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V.正因如此,可有效地防止电路在阈值电压附近工作时的振荡。

开关电源中的电流型控制模式

开关电源中的电流型控制模式

开关电源中的电流型控制模式摘要:讨论了开关电源中电流反馈控制模式的工作原理、优缺点,以及与之有关的斜波补偿技术。

关键词:开关电源;电流型控制;斜波补偿1引言PWM型开关稳压电源是一个闭环控制系统,其基本工作原理就是在输入电压、内部元器件参数、外接负载等因素发生变化时,通过检测被控制信号与基准信号的差值,利用差值调节主电路功率开关器件的导通脉冲宽度,从而改变输出电压的平均值,使得开关电源的输出电压保持稳定。

以开关电源中的降压型变换为例(其它类型如正激型、推挽型等,均可由降压型派生得到),图1表示了该变换器的主电路的基本拓扑结构。

图1降压型开关电源根据选用不同的PWM控制模式,图1电路中的输入电压Uin、输出电压Uo、开关功率器件电流(可从A点采样)、输出电感电流(可从B或C点采样)均可作为控制信号,用于完成稳压调节过程。

目前在开关电源中广泛使用的控制方式是通过对输出电压或电流(功率开关器件或输出电感上流过的电流)进行采样,即形成2类控制方式:电压控制模式与电流控制模式。

2电流控制模式的工作原理图2为检测输出电感电流的电流型控制的基本原理框图。

它的主要特点是:将采样得到的电感电流直接反馈去控制功率开关的占空比,使功率开关的峰值电流直接跟随电压反馈电路中误差放大器输出的信号。

从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。

在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阈值。

电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。

因此电流型控制模式具有比起电压型控制模式大得多的带宽。

图2检测输出电感电流的电流型控制原理框图实际电路以单端正激型电源为例,如图3所示。

误差电压信号Ue送至PWM比较器后,并不是像电压模式那样与振荡电路产生的固定三角波状电压斜波比较调宽,而是与一个变化的、峰值代表功率开关上的电流信号(由Rs上采样得到)的三角状波形信号(电感电流不连续)或矩形波上端叠加三角波合成波形信号(电感电流连续)比较,然后得到PWM脉冲关断时刻。

开关电源电路设计要点与调试

开关电源电路设计要点与调试

开关电源电路设计要点与调试开关电源是一种用于电子设备的电源供应,其具有高效率、稳定性和可调性等优点。

设计和调试开关电源时,需要注意一些重要要点。

一、开关电源设计要点:1.选择适当的拓扑结构:开关电源的拓扑结构有多种,如降压型、升压型、升降压型等。

要根据设备的功率需求和使用环境来选择合适的拓扑结构。

2.选择合适的功率器件:开关电源的功率器件主要包括开关管、二极管和变压器等。

需要选择具备合适功率和工作频率范围的器件,并且要考虑其可靠性和成本。

3.控制和保护电路设计:开关电源需要有稳定的控制和保护功能,如输出电压、电流的监测和调节,过载、过压、短路等故障的保护。

需要设计相应的反馈和控制电路,保证开关电源的可靠工作。

4.选择合适的滤波电路:开关电源在工作过程中会产生较大的开关干扰,需要采取合适的滤波措施,减小开关干扰对其他电子设备的影响。

5.选择合适的输出电容:开关电源的输出端需要连接电容进行滤波,以减小输出纹波。

应选择适当容量和质量的电容,保证输出电压稳定。

6.保证开关电源的安全性:开关电源设计时需要考虑一些安全因素,如避免触电危险、瞬态过电压保护等,保证电源的安全可靠性。

7.合理布局和散热设计:开关电源的布局设计要合理,器件的热量要及时散热,避免温度过高对电源稳定性的影响。

二、开关电源调试要点:1.确认电源输入输出参数:在开关电源调试之前,首先要明确电源的输入和输出参数,如输入电压范围、输出电压和电流等,以便调试和验证工作的正确性。

2.建立逐步调试的过程:开关电源调试时可以采用逐步调试的方法,即先调试一部分功能,然后逐渐增加其他功能的调试。

这样可以避免在调试过程中出现一些难以排查的问题。

3.注意开关电源的保护功能:在调试的过程中,要注意开关电源的保护功能是否正常,如过载、过压、短路等故障保护功能是否有效。

可以通过人工模拟故障情况进行测试。

4.确保开关电源的稳定性:开关电源在调试过程中需要保证输出电压和电流的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流型开关电源中电压反馈电路的设计与实现
在传统的电压型控制中,只有一个环路,动态性能差。

当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。

因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。

为了解决这个问题,可以采用电流型控制模式。

电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈;而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。

电流型控制方法的特点如下:
 1、系统具有快速的输入、输出动态响应和高度的稳定性;
 2、很高的输出电压精度;
 3、具有内在对功率开关电流的控制能力;
 4、良好的并联运行能力。

由于反馈电感电流的变化率didt直接跟随输入电压和输出电压的变化而变化。

电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。

本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。

 uc3842简介
 图1为UC3842PWM控制器的内部结构框图。

其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。

振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C 共同决定了振荡器的振荡频率,f=1.8/RC。

反馈电压由2脚接误差放大器反相端。

1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱。

相关文档
最新文档