风洞实验报告 (1)

合集下载

小型风洞实验报告模板

小型风洞实验报告模板

小型风洞实验报告模板1. 实验目的本实验旨在通过搭建小型风洞,模拟风场环境,以了解流体力学相关概念,并探究在风洞中空气流动特性的变化。

2. 实验原理利用风机产生气流,经过管道进入风洞,再通过风洞内的模型,观察和测量气流在模型前后的压力、速度等参数的变化,从而了解气流对物体的影响。

3. 实验装置和材料1. 小型风洞:风洞箱、风机、风洞管道、模型支架等。

2. 模型:可以选择不同几何形状的模型,如平板、球体等。

3. 测量仪器:差压传感器、风速计等。

4. 实验步骤4.1 搭建风洞1. 搭建风洞箱,确保密封性良好。

2. 将风机安装在风洞箱的一侧。

3. 连接风机与风洞箱之间的管道,确保气流能顺畅流动。

4.2 安装模型1. 根据实验需求选择合适的模型,并将其安装在风洞箱内的模型支架上。

2. 确保模型位置稳定,并与风洞箱内的气流方向对齐。

4.3 进行实验测量1. 在模型前后位置处,分别安装差压传感器和风速计。

2. 根据实验要求,记录模型前后气流的压力差和速度差等参数。

3. 可以使用数据采集系统,将实验数据进行记录和处理。

4.4 分析实验数据1. 根据实验所得数据,计算压差和速度差的平均值,并进行比较和分析。

2. 根据流体力学相关理论,理解实验结果所呈现的物理现象,如气流分离、阻力等。

5. 实验结果与讨论根据实验数据的分析,可以得出以下结论:1. 模型前后的压差随着模型的形状和尺寸的变化而变化,进一步验证了伯努利定律在风洞中的适用性。

2. 模型前后的速度差与模型的形状和尺寸密切相关,不同形状的模型会产生不同的气流效应。

3. 在实验中发现,当气流速度较大时,模型前后的压差和速度差明显增大。

本实验结果表明,小型风洞是一个有效的工具,可以用于研究和理解物体在气流中的行为。

通过改变模型的形状和尺寸,可以进一步探究气流对物体的影响,并为飞行器设计、建筑结构等领域提供参考依据。

6. 实验结论通过本次小型风洞实验,我们对气流的特性和模型的影响有了更深入的了解。

小型风洞实验报告总结(3篇)

小型风洞实验报告总结(3篇)

第1篇一、实验背景与目的随着现代工业和航空技术的发展,对空气动力学特性的研究日益重要。

风洞实验作为一种重要的空气动力学研究方法,能够有效地模拟真实飞行器或其他物体在空气中的运动状态。

本实验旨在通过小型风洞实验,研究特定模型在不同风速和攻角下的空气动力学特性,为后续设计优化提供数据支持。

二、实验原理与设备1. 实验原理:风洞实验基于流动相似原理,通过模拟实际飞行器或其他物体在空气中的运动状态,研究其空气动力学特性。

实验过程中,通过控制风速、攻角等参数,观察模型在不同工况下的运动状态,分析其空气动力学特性。

2. 实验设备:- 小型风洞:用于产生均匀气流,模拟实际飞行器或其他物体在空气中的运动状态。

- 模型:根据实验需求设计,用于模拟真实飞行器或其他物体。

- 数据采集系统:用于实时采集实验数据,包括风速、攻角、模型姿态等。

- 计算机软件:用于数据处理和分析。

三、实验过程1. 实验准备:根据实验需求,设计模型并加工制作。

安装数据采集系统,调试风洞设备。

2. 实验步骤:- 调整风洞风速,使模型处于预定攻角。

- 记录风速、攻角、模型姿态等数据。

- 改变攻角,重复上述步骤。

- 分析实验数据,得出结论。

3. 实验数据:实验过程中,记录了风速、攻角、模型姿态等数据,并对数据进行整理和分析。

四、实验结果与分析1. 实验结果:通过实验,得到了模型在不同风速和攻角下的空气动力学特性数据。

2. 数据分析:- 随着风速的增加,模型的升力系数和阻力系数逐渐增大。

- 随着攻角的增加,模型的升力系数逐渐增大,阻力系数逐渐减小。

- 在特定风速和攻角下,模型具有最佳空气动力学特性。

五、结论与讨论1. 结论:通过小型风洞实验,研究了特定模型在不同风速和攻角下的空气动力学特性,为后续设计优化提供了数据支持。

2. 讨论:- 实验结果表明,模型在特定风速和攻角下具有最佳空气动力学特性,有利于提高飞行器的性能。

- 实验过程中,风速和攻角对模型的空气动力学特性有显著影响。

客机模型风洞实验报告(3篇)

客机模型风洞实验报告(3篇)

第1篇一、实验目的本次实验旨在研究某型号客机模型在风洞中的气动特性,包括升力、阻力、俯仰力矩、滚转力矩和偏航力矩等。

通过实验数据,评估客机模型的空气动力学性能,为后续的飞机设计提供理论依据。

二、实验设备1. 风洞:T-128号风洞,具备0.96马赫的试验速度,雷诺数在3.5-5百万之间。

2. 客机模型:按照实际尺寸1:1比例制作,材料为轻质合金。

3. 测量系统:包括压力传感器、力矩传感器、角度传感器等。

4. 数据采集与处理系统:用于实时采集实验数据并进行处理。

三、实验方案1. 客机模型在风洞中固定,调整角度和姿态,使模型处于水平状态。

2. 通过调整风洞的风速,模拟不同飞行状态下的气流情况。

3. 在不同风速下,测量客机模型的升力、阻力、俯仰力矩、滚转力矩和偏航力矩等参数。

4. 利用液晶视频测量法,对机翼变形进行扰流显像研究。

四、实验结果与分析1. 升力与阻力实验结果表明,客机模型在0.96马赫的速度下,升力系数随攻角增大而增大,阻力系数随攻角增大而减小。

在攻角为15°时,升力系数达到最大值,阻力系数达到最小值。

这与理论分析相符。

2. 俯仰力矩实验结果表明,客机模型的俯仰力矩系数随攻角增大而增大。

在攻角为15°时,俯仰力矩系数达到最大值。

这与理论分析相符。

3. 滚转力矩实验结果表明,客机模型的滚转力矩系数随攻角增大而增大。

在攻角为15°时,滚转力矩系数达到最大值。

这与理论分析相符。

4. 偏航力矩实验结果表明,客机模型的偏航力矩系数随攻角增大而增大。

在攻角为15°时,偏航力矩系数达到最大值。

这与理论分析相符。

5. 机翼变形通过液晶视频测量法,对机翼变形进行扰流显像研究。

结果表明,在攻角为15°时,机翼变形较小,气动性能较好。

五、结论1. 客机模型在0.96马赫的速度下,具有良好的气动性能,升力系数、俯仰力矩系数、滚转力矩系数和偏航力矩系数均达到较优值。

空气动力试验报告

空气动力试验报告

空气动力实验实验一MAF风洞结构、实验仪器和实验原理1.实验内容:掌握MAF风洞的结构、所用实验仪器、模型的类型和用途、实验原理和实验过程。

风洞形成超音速气流的条件等。

2.实验目的; 通过上课听讲和实验室见习,对MAF风洞有一个全面了解,了解MAF风洞所能进行的实验内容和方法。

3.实验仪器:MAF风洞、测压力模型、测温度模型、测流量模型、各种马赫数的喷管、空气压缩机、冷却设备、压力和温度传感器、六分量天平、数据采集和调理仪、计算机软件的使用等。

4.实验原理:MAF小型风洞装置主要是形成短时间超音速或者高超音速气流,这些气流用于各种不同的气体动力研究。

实验气体存储器由总容积0.32m3的8个标准气罐组成,用中心连接管连接,从存储器出来的气体经过中心连接管和手动阀进入到主控制阀。

在装置开动的时候接通主控制阀,气体经过电加热器进入到预制室,再经过可以替换的喷管进入工作室,在那里气体围绕被研究的模型流动。

通过与模型连接的传感器测得的压力和温度等的电压型号,经过数据采集仪进行采集、放大和条例后导入计算机记录并进行数据处理,即可得到相应的真实压力和温度等。

5.实验步骤:工作室是被密封的直角仪器舱,在那里安装试验模型和传感器,在实验前向气罐充满实验气体,压力达到15MPa,电加热器加热到指定温度。

装置按控制台指令启动,接通主控制阀,实验气体从气罐经过电加热器进入预制室,在这里通过喷管形成实验气流,围绕模型流过。

实验过程中利用各种测量方法测量实验数据,借助光学仪器分析气流。

经过指定时间(1—2S)后定时器断开阀门,工作状态结束。

用计算机进行数据处理并完成实验报告6.实验结果:MAF小型风洞装置主要是形成短时间超音速或者高超音速气流,这些气流用于各种不同的气体动力研究。

该装置设计简单,压缩气体和电能消耗低,形成的气流具有很好计量特性,它要求按马赫数和雷诺数设计模型,。

可用于空气动力实际研究。

在小型的空气动力实验方面,充分显示了其优越性。

风洞实验报告

风洞实验报告

风洞实验报告引言:风洞实验作为现代科技研究的重要手段之一,广泛应用于航空航天、汽车工程、建筑结构等领域。

本报告将围绕风洞实验的原理、应用以及相关技术展开探讨,旨在加深对风洞实验的理解和应用。

一、风洞实验的原理风洞实验是通过利用风洞设备产生流速、温度和压力等环境条件,对模型进行真实环境仿真试验的一种方法。

其基本原理是利用气体流动力学的规律,使得实验模型暴露在所需风速的气流中,从而通过测量模型上的各种力和参数来分析其气动性能。

二、风洞实验的应用领域1.航空航天领域风洞实验在航空航天领域有着广泛的应用。

通过风洞实验,可以模拟不同飞行状态下的风载荷,评估飞机、火箭等载体的稳定性和安全性,在设计和改进新型飞行器时提供可靠的数据支撑。

2.汽车工程领域风洞实验在汽车工程领域同样具有重要意义。

通过对汽车模型在高速风场中的测试,可以优化车身外形设计,降低气动阻力,提高燃油效率。

此外,风洞实验还可用于汽车内部气流研究,如车内空调流场、风挡玻璃除雾等。

3.建筑工程领域在建筑工程领域,风洞实验可以帮助研究风荷载对建筑物结构产生的影响,以提高建筑物的抗风性能。

通过模拟真实的气流环境,可以评估建筑物在不同风速下的应力、应变分布情况,为工程设计和结构优化提供依据。

三、风洞实验技术1.气流控制技术气流控制技术是风洞实验中必备的关键技术之一。

通过对风洞内流场进行合理设计和调整,可以实现不同速度、湍流强度和均匀度的气流条件,以保证实验的准确性和可重复性。

2.试验模型制作技术试验模型制作技术对于风洞实验的结果具有重要影响。

模型的准确度和还原程度直接关系到实验数据的可靠性。

现如今,各类先进材料和加工技术的应用,使得模型制作更加精准和高效。

3.数据采集和分析技术风洞实验所得数据的采集和分析是判断实验成果的关键环节。

当前,数字化技术的快速发展为数据采集和分析提供了强有力的支持。

传感器、图像处理等先进技术的应用,使得实验数据获取更为精确和全面。

风洞实验报告

风洞实验报告

风洞实验报告
实验目的:
本次实验的主要目的是探究风洞内气流与实际情况的关系,通过对比不同种类的物体在风洞中所受到的气流影响,分析气流力与物体形状、风速等参数的关系,进一步探究气动力学知识。

实验仪器:
本次实验采用的是风洞设备,主要包括:风机、热线安放器、压力传感器、激光测量仪及流场可视化实验装置。

实验流程:
1. 首先将实验物体放入风洞内,开启风机,控制风速,并调整风洞内气流状态。

2. 利用热线安放器对实验物体表面局部速度的测量。

3. 利用压力传感器对实验物体表面气压及气液动力的测量。

4. 通过激光测量仪及流场可视化实验装置对实验物体周围气流情况进行记录并进行分析。

实验结果:
本次实验中,我们选取了不同的实验物体,进行了相应的实验操作。

其中,以典型机翼作为实验目标,分别在不同风速及不同攻角下进行实验测量。

根据实验结果,我们发现在相同的风速条件下,攻角越大,物体所受到的气流力越大。

同时,不同物体的形状、尺寸也对其所受到的气流力产生一定的影响。

此外,通过流场可视化实验装置的实验结果,我们也可以清晰地看到实验物体周围气流的流动情况,这一结果进一步验证了实验数据的准确性。

结论:
通过本次实验,我们深入了解了风洞实验的意义以及其在气动力学领域中的应用。

同时,我们也对气流力、攻角和物体形状等
参数的关系进行了深入探究,展示了其重要性和实用性。

基于本次实验的实验结果,我们也可以为工程设计、气动力学等领域提供一定的理论基础支持。

风洞实验报告

风洞实验报告

风洞实验报告风洞实验报告一、引言风洞实验是一种重要的工程实验方法,可以模拟大气中的空气流动情况,用于测试和研究各种物体在气流中的性能和特性。

本文将介绍一次针对某飞行器模型的风洞实验,包括实验目的、实验过程、实验结果和结论。

二、实验目的本次实验的目的是通过风洞实验,对某飞行器模型在不同风速下的气动特性进行测试和分析,为飞行器的设计和改进提供参考依据。

具体目标如下:1. 测试飞行器在不同风速下的升力和阻力变化情况,了解其气动性能;2. 研究飞行器在不同风速下的稳定性和操纵性,评估其适航性;3. 分析飞行器在不同风速下的气动力分布,寻找潜在的改进方向。

三、实验过程1. 实验设备准备:在实验室中搭建风洞装置,包括风洞本体、风速控制系统、数据采集系统等。

确保设备正常运行和准确测量。

2. 实验样本制备:根据飞行器模型的设计要求,制作样本并进行必要的校正和调整,确保样本符合实验要求。

3. 实验参数设置:根据实验目的,确定实验参数,包括风速范围、采样频率、测量点位置等。

4. 实验数据采集:将样本放置在风洞中,通过数据采集系统记录风速、升力、阻力、气动力矩等数据,并实时监测飞行器的姿态。

5. 数据处理与分析:对采集到的数据进行处理和分析,得出实验结果,并与理论计算结果进行对比。

四、实验结果1. 升力和阻力变化曲线:通过实验数据的分析,得到了飞行器在不同风速下的升力和阻力变化曲线。

结果显示,在低速风洞实验中,飞行器的升力随着风速的增加而线性增加,而阻力则呈指数增加。

在高速风洞实验中,升力和阻力的增长趋势逐渐趋于平缓。

2. 稳定性和操纵性评估:通过实时监测飞行器的姿态,得到了飞行器在不同风速下的稳定性和操纵性评估结果。

结果显示,在较低风速下,飞行器的稳定性较好,操纵性较强;而在较高风速下,飞行器的稳定性和操纵性受到较大的挑战。

3. 气动力分布分析:通过实验数据的处理,得到了飞行器在不同风速下的气动力分布情况。

结果显示,在低速风洞实验中,飞行器的气动力主要集中在机翼和尾翼上,而在高速风洞实验中,气动力分布更加均匀。

大学生物理实验报告

大学生物理实验报告

大学生物理实验报告篇一:风洞试验综合一.风洞试验简述:实验空气动力学是空气动力学的一个分支,是用实验方法研究飞行器及其它物体在与空气或其它气体作相对运动时的气动特性、运动规律和各种复杂物理现象。

由于是直接研究物体与真实气流间的相互作用,所得数据可以用作工程设计的依据,验证理论计算结果并能揭示新的流动现象,为理论分析提供物理模型。

实验空气动力学作为一门分支学科是20世纪40年代形成的。

它的形成同飞行器高速发展,要求迅速获得大量复杂、精确、可靠的设计数据有关。

它的主要内容除空气动力学基础理论外,还包括实验理论、实验方法和实验设备的知识。

实验空气动力学的主要任务是利用风洞进行模型实验,以发现和确认流动现象、探索和揭示流动机理、寻求和了解流动规律,并为飞行器提供优良气动布局和空气动力特性数据,风洞实验所依据的基本理论是相对运动原理和相似理论。

相对运动原理:无论是固体以某一均匀速度在静止的流体中运动,还是流体以相同速度流经固体,两者之间的相互作用力恒等。

相似理论:论述物理现象相似的条件和相似现象的性质的学说。

是模拟的理论基础。

相似理论的重要课题是确定各种物理现象的相似准数。

风洞是进行空气动力学实验的一种主要设备,几乎绝大多数的空气动力学实验都在各种类型的风洞中进行。

风洞的工作原理是使用动力装置在一个专门设计的管道内驱动一股可控气流,使其流过安置在实验段的静止模型,模拟实物在静止空气中的运动。

测量作用在模型上的空气动力,观测模型表面及周围的流动现象。

根据相似理论将实验结果整理成可用于实物的相似准数。

实验段是风洞的中心部件,实验段流场应模拟真实流场,其气流品质如均匀度、稳定度、湍流度等,应达到一定指标。

风洞实验的主要优点是:①实验条件易于控制。

②流动参数可各自独立变化。

③模型静止,测量方便而且容易准确。

④一般不受大气环境变化的影响。

⑤与其他空气动力学实验手段相比,价廉、可靠等。

缺点是难以满足全部相似准数相等,存在洞壁和模型支架干扰等,但可通过数据修正方法部分或大部分克服。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表2:轴向系数Cx随迎角的变化参数表
α
-4
0
4
8
10
12
14
16
20
CL
实验结论:
1.
参考文献:
1.钱翼稷,《空气动力学》,北京航空航天大学出版社,2004。
2.
2.翼型低速压强分布测量试验
(5)在教师指导下将压力计底座调为水平,再调节液壶面高度使测压管液面与刻度“0”平齐,斜角θ=30o。
(6)将风洞壁面测压孔、翼面测压孔与多管压力计的测压管对接好,注意检查导管,不得有破漏或堵塞。记录多管压力计的初始读数。
(7)将模型迎角调节到位并固定,风洞开车,由变频器稳定风速。实验中迎角调节范围为α=-4o~4o,△α=4o。
(14)关闭风洞,记录实验室的大气参数和压力计工作液酒精密度:大气压 ,温度 , 。
(15)整理仪器,实验数据交老师签字后离开实验室。
实验结果
实验条件原始数据
Pa=769(毫米汞柱), ta=?C
其中空气密度 有下式计算:
LII=(毫米酒精柱), LI=(毫米酒精柱)(迎角??10°)
来流风速为:
1.风洞实验段速度和压力测定实验
2.用多管压力计测出翼型表面压强分布,并用坐标法绘出翼型的压强系数分布图;
3.定量了解翼型压强分布随迎角变化的趋势;
4.用多管压力计测出不同迎角下翼型表面的压强分布,并用坐标法绘出翼型的升力系数随迎角的分布曲线,确定NACA0012翼型的临界失速迎角。
实验装置
1.风洞:低速吹气式二元风洞。实验段为矩形截面,高0.5米,宽0.2米。实验风速≤30米/秒。(见图1);
CP(上)
下截面
CP(下)
20
上截面
CP(上)
下截面
CP(下)
根据表2数据结果,画出翼型上下表面压力系数沿弦向的变化曲线,并对实验结果进行分析。
3.机翼失速测量试验
1)实验结果处理数据
表1:升力系数随迎角的变化参数表
α
-4
0
4
8
10
12
14
16
20
CL
根据上表实验数据绘出CL-α曲线,从而确定NACA0012翼型的临界失速迎角。
8
上截面
7
CP(上)
11
下截面
2
CP(下)
0
1
10
上截面
CP(上)
下截面
CP(下)
12
上截面
4
CP(上)
下截面
CP(下)
14
上截面
CP(上)
下截面
CP(下)
16
上截面
CP(上)
下截面
CP(下)
20
上截面
CP(上)
下截面
CP(下)
迎角
截面
9
10
11
12
13
14
15
16
-4
上截面
2
CP(上)
0
0
1
下截面
2.翼型低速压强分布测量试验
实验风速固定、迎角不变时,翼面上第i点的压差为
,(i=0;1,2,3,……)(1)
气流的动压为,
(2)
、 分别为空气密度和压力计工作液酒精密度。
于是,翼面上第i点的压强系数为
(3)
表1:NACA0012翼型测压孔位置参数
测压孔数目
0
1
2
3
4
5
6
7
8
x位置(mm)
0
5
10
15
实验原始数据就是酒精柱长度测量值,由排管酒精压力计测量,并填于表1。
排管压力计初始读数:2mm
2.翼型低速压强分布测量试验
1)实验结果处理数据
迎角
截面
1
2
3
4
5
6
7
8
-4
上截面
CP(上)
-1
下截面
4
CP(下)
7
6
4
0
上截面
3
3
CP(上)
6
6
5
0
下截面
CP(下)
0
0
4
4
上截面
CP(上)
下截面
CP(下)
(4)
(5)
图3:作用在翼型表面上的压强
由几何关系可知 , 。由此可得
(6)
(7)
作用在翼型上总的法向力和轴向力可由 和 沿翼型表面积分得到,即
(8)
(9)
把上式化成系数形式,即
(10)
(11)
式中 、 、 表示翼型坐标x、y和翼型上、下表面最大纵坐标相对于弦长b的无量纲量。
实验目的
1.测定一座风洞实验段的速度和压力;
风洞实验报告(三)
实验简介
本次试验主要为采用风洞测机翼升力系数、阻力系数及失速迎角。是飞行器研制工作中的一个不可缺少的组成部分。它不仅在航空和航天工程的研究和发展中起着重要作用,随着的发展,在交通运输、房屋建筑、风能利用和环境保护等部门中也得到越来越广泛的应用。用风洞作实验的依据是运动的相对性原理。超过临界迎角(攻角)后,翼型上表面边界层将发生严重的分离,升力急剧下降而不能保持正常飞行的现象,叫失速。飞机失速的原因是机翼在大迎角下出现了气流分离.而左右两翼因种种原因(如侧滑、或构造有微小的不对称).气流分离并不对称。
2.皮托管,修正系数k(已知修正系数),排管压力计,其修正系数为1,工作液为酒精,比重取,斜角为30°。
3.实验模型:NACA0012翼型,弦长0.15米,展长0.2米,安装于风洞两侧壁间。模型表面的测压孔,前缘孔编号i=0,上、下翼面的其它孔的编号从前到后,依次为i=1、2、3……16。I<4, 测压孔间距为5毫米,i>4,间距为10毫米。(见图2)
20
30
40
50
60
y位置(mm)
0
测压孔数目
9
10
11
12
13
14
15
16
x位置(mm)
70
80
90
100
110
120
130
140
y位置(mm)
5
3.机翼失速测量试验
图2:飞机失速
失速:在机翼迎角较小的范围内,升力随着迎角的加大而增大。但是,当迎角加大到某个值时,升力就不再增加了。这时候的迎角叫做临界迎角。当超过临界迎角后,迎角再加大,阻力增加,升力反而减小。这现象就叫做失速。
(8)记录数据:在风速稳定和迎角不变时,读取并记录 ;上翼面的 ,下翼面的 。实验中注意观察,上下翼面压强随迎角的变化,尤其是前缘点压强和上翼面后段的压强的变化。
(9)关闭风洞,记录实验室的大气参数和压力计工作液酒精密度:大气压 ,温度 , 。
3.机翼失速测量试验
(10)将压力计底座调为水平,再调节液壶面高度使测压管液面与刻度“0”平齐,斜角θ=30o。
图3:翼型测压孔分布
实验步骤
1.风洞实验段速度和压力测定实验
(1)实验前制定实验步骤,确定数据处理的方法。
(2)在教师指导下把皮托管安装在低速风洞实验段内,皮托管总压孔应对准来流方向,不要偏斜。
(3)用导管连接皮托管和排管压力计,注意检查导管,不得有破漏或堵塞。注意斜管压力计的初始读数。
(4)启动风洞,调节风洞变频器频率(不小于10Hz为宜),记录排管压力计的读数。
失速产生的原因:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。当超过临界迎角以后,气流在流过机翼的上表面时会发生分离,在翼面上产生很大的涡流,见图2。造成阻力增加,升力减小。
实验风速固定、迎角不变时,翼面上第i点的压差为:
,(i=0;1,2,3,……)(1)
气流的动压为:
(2)
于是,翼面上第i点的压强系数为:
(3)
表1:NACA0012翼型测压孔位置参数
测压孔数目
0
1
2
3
4
5
6
7
8
x位置(mm)
0
5
10
15
20
30
40
50
60
y位置(mm)
0测压孔数目9源自101112
13
14
15
16
x位置(mm)
70
80
90
100
110
120
130
140
y位置(mm)
5
(11)将风洞壁面测压孔、翼面测压孔与多管压力计的测压管对接好,注意检查导管,不得有破漏或堵塞。记录多管压力计的初始读数。
(12)将模型迎角调节到位并固定,风洞开车,由变频器稳定风速。实验中迎角调节范围为α=-4o~22o,△α=2o。
(13)记录数据:在风速稳定和迎角不变时,读取并记录 ;上翼面的 ,下翼面的 。
3
2
CP(下)
2
1
0
上截面
CP(上)
0
3
0
0
下截面
2
CP(下)
3
2
0
0
1
4
上截面
CP(上)
0
0
0
下截面
2
CP(下)
1
8
上截面
CP(上)
0
2
0
下截面
2
2
2
2
CP(下)
1
1
1
0
0
1
10
上截面
CP(上)
下截面
2
2
2
CP(下)
12
上截面
3
CP(上)
下截面
CP(下)
相关文档
最新文档