光纤光栅传感器

合集下载

光纤光栅传感器技术指标

光纤光栅传感器技术指标

光纤光栅传感器技术指标光纤光栅传感器是一种基于光纤光栅原理的传感器,通过测量光纤光栅的光谱特性变化来实现对环境参数的监测和测量。

光纤光栅传感器具有高灵敏度、高分辨率、抗电磁干扰等优点,在工业、航空航天、能源等领域有着广泛的应用。

1. 分辨率光纤光栅传感器的分辨率是指传感器能够分辨出的最小参数变化。

通常用波长分辨率来表示,单位为纳米。

分辨率越高,传感器能够检测到更小的参数变化,具有更高的精度。

2. 灵敏度光纤光栅传感器的灵敏度是指传感器输出信号对参数变化的响应程度。

灵敏度越高,传感器能够对参数变化产生更大的信号响应,具有更好的测量能力。

3. 动态范围光纤光栅传感器的动态范围是指传感器能够测量的参数范围。

传感器的动态范围应该能够覆盖实际应用中可能出现的参数变化范围,以保证测量结果的准确性。

4. 响应时间光纤光栅传感器的响应时间是指传感器对参数变化的响应速度。

响应时间短的传感器能够及时捕捉到参数变化,并及时输出相应的信号。

5. 温度稳定性光纤光栅传感器的温度稳定性是指传感器在不同温度条件下测量结果的稳定性。

传感器的温度稳定性应该能够适应实际应用环境中的温度变化,以保证测量结果的准确性和可靠性。

6. 抗电磁干扰能力光纤光栅传感器应具备良好的抗电磁干扰能力,以保证传感器在电磁干扰环境下的正常工作。

传感器应能够有效屏蔽外界电磁干扰,并输出准确可靠的测量结果。

7. 可靠性光纤光栅传感器的可靠性是指传感器在长时间工作状态下的稳定性和可靠性。

传感器应具备良好的抗老化能力,能够长期稳定地工作,以保证测量结果的准确性和稳定性。

8. 环境适应性光纤光栅传感器应具备良好的环境适应性,能够适应不同环境条件下的工作要求。

传感器应具备良好的防水、防尘、耐腐蚀等性能,以保证传感器在恶劣环境中的正常工作。

9. 尺寸和重量光纤光栅传感器应具备小尺寸和轻量化的特点,以便于安装和集成到各种应用设备中。

10. 成本效益光纤光栅传感器的成本效益是指传感器在实际应用中所带来的经济效益和性价比。

光纤布拉格光栅传感器测量温度和应变的原理

光纤布拉格光栅传感器测量温度和应变的原理

光纤布拉格光栅传感器测量温度和应变的原理光纤布拉格光栅传感器,简称FBG传感器,这可是个神奇的东西哦!它不仅可以测量温度,还能测量应变,简直就是个万能的小助手。

今天,我就来给大家聊聊这个神奇的小家伙是怎么工作的,让我们一起揭开它的神秘面纱吧!我们来了解一下FBG传感器的基本结构。

它是由一系列周期性折射率不同的光纤组成的,这些光纤就像一根根细细的琴弦,当光线通过它们时,会发生折射现象。

而这种折射现象正是FBG传感器测量温度和应变的关键所在。

FBG传感器是如何测量温度的呢?其实,这就要靠那些神奇的光纤了。

当阳光或者光源照射到光纤上时,光纤中的原子会吸收一部分光线,使得光线在光纤内部发生反射。

而反射回来的光线经过多次反射后,最终到达了FBG传感器的检测器。

检测器会根据反射光线的强度和时间变化来计算出光纤的温度。

是不是很厉害啊!我们再来聊聊FBG传感器是如何测量应变的。

其实,这也是利用了光纤的折射现象。

当FBG传感器受到外力作用时,光纤会发生形变,从而导致折射光线的变化。

而这种变化又被检测器捕捉到,从而计算出了应变的大小。

是不是感觉FBG传感器就像一个神奇的变形金刚一样,可以感知到周围的变化呢!FBG传感器有哪些应用呢?其实,它的应用范围非常广泛。

在建筑行业中,它可以用来检测混凝土的结构变化;在医疗行业中,它可以用来监测人体的生理指标;在汽车制造行业中,它可以用来检测车身的变形情况。

只要有需要测量温度和应变的地方,FBG传感器都可以派上用场哦!当然啦,虽然FBG传感器非常神奇,但它也有一些局限性。

比如说,它的灵敏度有限,不能用来检测非常微小的应变;而且,它的精度也有一定的误差。

随着科技的发展,相信这些问题都会得到解决的。

今天关于光纤布拉格光栅传感器测量温度和应变的原理就给大家介绍到这里了。

希望对大家有所帮助哦!下次再见啦!。

光纤光栅传感器

光纤光栅传感器

光纤光栅监测报警系统结构示意图
使

FBG探头
连接光缆


光连接器
控 显示仪表 制 室 内
计算机
调制解调器
传输光缆
3 、光纤布喇格光栅解调原理
光纤布喇格光栅的解调有多种方法,下面介绍匹 配光纤光栅解调法。匹配光纤光栅检测信号的 基本原理如下图所示,其中左图为传感光栅与 解调光栅的配置,右图为两光栅的反射谱及检 测到的信号.
当两光栅反射谱重叠面积较大时,探测器探测到 的光信号较大,反之则较小,即检测器检测到 的光强是检测光纤光栅 FBG1和匹配光纤光栅 FBG2两个光谱函数的卷积。随着 FBG1上的微 扰,在 FBG2的反射谱中可检测到相对应的一定 光强度的光信号。
F-P腔波长滤波解调原理
法布里—珀罗腔(F-P腔)的光学原理是多光束干
* 光纤光栅传感器
• 光纤光栅传感器(FBG)是利用 Bragg波长 对温度、应力的敏感特性而制成的一种 新型的光纤传感器。
光纤光栅工作原理
感光折射率 n 包层折射率 n2
包层
芯层折射率 n1
λ1 λ2 …λn
λ2 …λn
Λ
λ1
芯层
相位掩模板
紫外掩模写入法
+1级
-1级
包层 芯层
1 、光纤布喇格光栅原理
对包含有φ(z)的非正弦分布也进行了类似于周期 函数的傅里叶展开可以得到光栅区的实际折射 率分布为
该式即为光纤布喇格光栅的折射率调制函数,它 给出了光纤光栅的理论模型,是分析光纤光栅 特性的基础。
2 、光纤布喇格光栅传感原理 光纤光栅纤芯中的折射率调制周期由下式
给出:
这里λUV是紫外光源波长, θ是两相干光束之间的 夹角。

2024年光纤光栅传感器市场发展现状

2024年光纤光栅传感器市场发展现状

2024年光纤光栅传感器市场发展现状摘要光纤光栅传感器是一种基于光纤光栅技术的传感器,通过对光纤光栅进行测量和分析,实现对温度、应变、压力等物理量的传感和监测。

本文分析了光纤光栅传感器的市场发展现状,包括技术进展、应用领域和市场规模等方面,并对未来的发展趋势进行展望。

1. 引言光纤光栅传感器是一种基于光纤光栅技术的传感器,具有高灵敏度、抗干扰能力强、体积小等优点,在工业、医疗、航空航天等领域有广泛的应用。

近年来,随着技术的不断进步和需求的增加,光纤光栅传感器市场也呈现出快速发展的态势。

2. 技术进展光纤光栅传感器技术在过去几十年中取得了长足的发展。

最早的光纤光栅传感器采用单点传感的方式,只能实现对单个物理量的监测。

随着技术的进步,现在的光纤光栅传感器可以实现对多个物理量的同时监测,并且具有更高的精度和灵敏度。

另外,随着微纳制造技术的发展,光纤光栅传感器的体积也不断减小,尺寸更加紧凑,便于在复杂环境中的安装和应用。

此外,光纤光栅传感器还与其他传感技术结合,如惯性导航、无线通信等,提高了其在实际应用中的性能和功能。

3. 应用领域光纤光栅传感器在众多领域中都有着广泛的应用。

其中,工业领域是其主要应用领域之一。

工业中的光纤光栅传感器主要应用于温度、压力、应变等物理量的监测和控制。

另外,光纤光栅传感器在医疗领域也有重要的应用,如生物医学传感、病情监测等方面。

此外,光纤光栅传感器在航空航天、海洋工程、能源领域等也有广泛的应用。

例如,在航空航天领域,光纤光栅传感器可以用于飞行器结构的监测和故障诊断,提高飞行安全性。

在海洋工程领域,光纤光栅传感器可以实现对海水温度、压力等参数的监测,为海洋资源开发和环境保护提供数据支持。

4. 市场规模光纤光栅传感器市场在过去几年中呈现出快速增长的趋势。

根据市场研究机构的数据显示,全球光纤光栅传感器市场规模从2015年的约10亿美元增长到2020年的约20亿美元,年复合增长率超过10%。

光纤光栅传感器的工作原理

光纤光栅传感器的工作原理

光纤光栅传感器的工作原理
光纤光栅传感器是一种利用光纤中的光栅结构来感知物理量的传感器。

其工作原理可以分为两个主要过程:光栅反射和光纤衍射。

在光栅反射过程中,光栅根据物理量的变化而发生形变。

当物理量作用于光栅时,光栅的周期将发生变化,导致入射光的反射光谱发生偏移。

光纤光栅传感器采用光栅的反射光谱特性来检测物理量的变化。

在光纤衍射过程中,入射光通过光栅后会发生衍射现象。

光栅栅条的周期性结构将入射光分散成一系列特定角度的衍射光。

当物理量作用于光栅时,光栅的周期性结构发生变化,从而导致衍射光的角度发生偏移。

通过检测衍射光的角度变化,可以获得物理量的信息。

综上所述,光纤光栅传感器利用光栅的反射光谱和光纤的衍射现象来感知物理量的变化。

其中,光栅反射过程利用反射光谱的偏移来检测物理量的变化,而光纤衍射过程则利用衍射光的角度变化来获取物理量的信息。

光纤光栅传感器

光纤光栅传感器

温度传感
温度传感
光纤光栅传感器能够实时监测温度变化,广 泛应用于电力、能源、环保等领域的温度监 控。通过将光纤光栅传感器安装在发热设备 或热流通道中,可以实时监测温度,实现设 备的预防性维护和安全控制。
温度传感特点
光纤光栅传感器具有测温范围广、响应速度 快、精度高、稳定性好等特点,能够实现高 精度的温度测量和实时监测。
航空航天
用于监测飞机和航天器的结构健康状况,如机翼、 机身等关键部位的温度、应变和振动等参数。
智能交通
用于监测高速公路、桥梁和隧道等基础设施的结 构健康状况,以及车辆速度、流量等交通参数。
06 光纤光栅传感器与其他传 感器的比较
电容式传感器
总结词
电容式传感器利用电场感应原理,通过测量电容器极板 间距离的变化来检测位移或形变。
分布式测量
长距离传输
光纤光栅传感器可以实现分布式测量,即 在同一条光纤上布置多个光栅,实现对多 点同时监测。
光纤光栅传感器以光纤为传输媒介,可实 现远距离信号传输,适用于长距离、大规 模监测系统。
THANKS FOR WATCHING
感谢您的观看
抗电磁干扰
光纤光栅传感器采用光信号传输,不 受电磁干扰的影响,特别适合在强电 磁场环境下工作。这使得光纤光栅传 感器在电力、航空航天、军事等领域 具有广泛的应用前景。
光纤光栅传感器的抗电磁干扰特性使 其在复杂环境中能够稳定工作,提高 了测量的可靠性和准确性。
耐腐蚀与高温
光纤光栅传感器采用石英光纤作为传输介质,具有优良的化 学稳定性和耐腐蚀性,能够在恶劣的化学环境下正常工作。 同时,石英光纤的熔点高达1700℃,使得光纤光栅传感器能 够在高温环境下进行测量。
光纤光栅传感器

光纤光栅传感器的原理

光纤光栅传感器的原理

光纤光栅传感器的原理
光纤光栅传感器是一种利用光纤光栅作为传感元件的传感器。

通过在光纤中引入周期性的折射率调制结构,形成光栅,可以实现对光的干涉和耦合。

光纤光栅传感器的工作原理是利用光的干涉效应。

当入射光经过光纤光栅时,会发生光的折射、反射和散射现象,这些现象会改变光的传播状态和幅度。

通过测量入射光和反射光之间的干涉效应,可以间接地获取待测参数的信息。

光纤光栅传感器的工作过程如下:首先,入射光进入光纤光栅,当入射光与光栅中的周期性结构相互作用时,会发生光的耦合和反射。

然后,经过光栅调制后的反射光将重新耦合回光纤中,并沿光纤传输到接收器。

最后,接收器检测到反射光的干涉效应,并将其转化为电信号。

光纤光栅传感器具有很多优点,如高精度、高灵敏度、快速响应、抗干扰能力强等。

它被广泛应用于测量温度、压力、应变、振动等物理量,以及检测液体浓度、气体成分等化学参数。

在工业自动化、能源、医疗、环境监测等领域有着重要的应用价值。

光纤传感技术课件:光纤光栅传感器

光纤传感技术课件:光纤光栅传感器
22
光纤光栅传感器
直接测量掺锗光纤紫外吸收谱相对较为困难, 尤其是测 量244 nm处的吸收谱。 一般测量光纤的吸收谱是采用反逆技 术, 在被测光纤的光注入端和输出端都放上单色仪, 测量其 频谱。 用这种方法可以测得掺锗3%(摩尔分数)的玻璃在 325 nm处的吸收峰约为17 dB/m。 考虑到244 nm带的吸收率 是325 nm带的1000倍, 可以认为在244 nm处的衰减约为 17 000 dB/m。 故被测光纤的长度不能大于1 cm, 否则难以用 反逆技术测量。
8
光纤光栅传感器
随着光纤布拉格光栅(FBG)制作工艺的不断提高, 特 别是FBG自动化生产平台的建立, 制作出高性能、 低成本的 可靠FBG已成为可能。 同时, 近几年对波长解调技术的深入 研究和不断成熟, 已经扩大了光纤布拉格光栅传感器的应用, 并为只能传感这一新思路创造了一个新的机遇。 智能结构监 测, 智能油井和管道, 智能土木工程建筑, 以及智能航天、 航海传感都需要高质量、 低成本、 稳定性好、 传感特性精密 的光学传感器, FBG传感器阵列由于其波长编码、 可同时测 量多个物理量(温度、 压力、 应力等)以及一路光纤上应用 波分复用技术等自身的优点, 在上述领域已经得到了广泛关 注。
14
光纤光栅传感器
8.2
所谓的光敏性, 就是指当材料被外部光照射时, 引起 该材料物理或化学性的暂时或永久性变化的一种效应。 光纤 的光敏性通常是指光纤纤芯折射率在外部光源照射时发生改变 的特性。 在一定条件下, 变化的大小与光强成线性关系, 并 可保存下来。
15
光纤光栅传感器
光纤的光敏性首先于1978年通过在掺锗光纤内形成驻波观 察到。 在那个实验中, 发现了两束波长相同但反向传输的氩 离子激光(488 nm或514.5 nm)在掺锗光纤纤芯中激起了周期 性的折射率变化。 此后, 做了许多工作确定这一激光折射率 变化的原因。 Yuen的实验指出, 光纤中的光敏现象与双光子 吸收过程有联系, 确定掺锗光纤对蓝绿光的光敏性与244 nm 处吸收响应的双光子吸收作用有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤光栅
光纤光栅是一种新型的光子器件,它是在光纤中建立起的一种空间周期性的折射率分布,可以改变和控制光在光纤中的传播行为。

利用光纤材料的光敏性(外界入射光子和纤芯内锗离子相互作用引起折射率的永久性变化),在纤芯内形成空间相位光栅,作用实质上是在纤芯内形成一个窄带的反射或透射的反射镜或滤波器。

光纤光栅可与光纤完全兼容,不存在集成波导光栅与光纤的耦合问题。

光纤光栅的出现,使许多复杂全光纤通信和传感网成为可能,极大的拓宽了光纤技术的应用范围。

3.3 光纤光栅传感器的工作原理
1989年Morey等人首先对光纤光栅的应力和温度传感特性进行了研究。

应力影响由光弹效应导致折射率变化和形变使光纤光栅周期变化引起,温度影响由热光效应使有效折射率改变和热膨胀效应使光栅周期变化引起。

光纤光栅传感器的工作原理是借助于某种装置将被测参量的变化转换为作用于光纤光栅上的应力或温度的变化,从而引起光纤光栅布拉格波长变化。

由光纤光栅布拉格波长的变化测量出被测量的变化。

即采用波长调制方式,将被测信息转化为特征波长的移动。

实验测定,布拉格波长在1550nm附近的光纤光栅的应力和温度响应分别为1.2nm/με和1.0nm/。

根据光纤耦合模理论,当宽带光在光纤布拉格光栅中传输时,产生模式耦合,满足布拉格条件的波长光被反射,于是有
(3-1)式中:为导模的有效折射率,为光纤栅格周期。

符合布拉格条件的反射光波长的移位为
(3-2)3.3.1 温度响应
当只考虑温度影响时,有
(3-3)式中:为热膨胀系数,为热光系数。

且有
(3-4)
(3-5)对于掺锗石英光纤,取;的范围内,取
,在时,取。

3.3.2 应变响应
当只考虑应力影响时,有
(3-6)式中:为轴向应变,是泊松比,p是光纤光栅应变灵敏度系数。

对于掺锗石英光纤,p取0.22,则
(3-7)实际应用中,是个很小的量,可以引入作为应变度量单位。

3.3.3 光纤光栅传感器性能指标
传感器波长:FBG反射谱中的尖峰的中心波长,大多FBG传感系统工作在50nm (1520nm~1570nm)窗口范围内。

传感器带宽:FBG反射谱中的尖峰下降3dB时对应的波长宽度。

带宽越小,测量精度越高。

实际的制作工艺可达到0.2nm~0.3nm之间,通常取0.25nm。

反射率:返回测量系统的光功率占原始光功率的百分比,决定信号强度。

边模抑制:决定信噪比。

3.3.4 光纤光栅传感器的特点
光纤光栅与光纤之间存在固有的兼容性,很容易将多个光纤光栅串联在一根光纤上构成光纤光栅阵列,实现分布式传感。

且具有抗腐蚀、抗电磁干扰、频带宽、重复性好、多只光栅时分、波分复用方便及波长编码方式不受光源功率波动和系统损耗影响等特点。

波长编码保证了检测到的光频谱取决于光源和布拉格光栅的频谱,对电磁场以及布什加在光栅上的应力、温度等都不敏感。

光纤光栅传感器使用于特殊结构的传感网络,如水坝寿命监测、桥梁缺陷监测、大型运输载体的复合材料在不破坏材料性质基础上对多种物理量的多点分布测量等。

2.3 光纤布拉格光栅的传感解调原理
如何检测传感光栅布拉格波长的微小偏移,是光纤光栅传感器实用化面临的关键技术。

为此,人们提出了许多检测方案,大致可分为光谱分析法、可调谐光纤光栅滤波器法、可调谐光源检测法、可调谐法布里-珀罗滤波器法等。

(1)光谱分析法
光谱分析法是最基本的波长解调的方法,实验室通常都用这种方法来检测光纤光栅的波长偏移。

可以用反射式,如图2-2(a)所示,也可以用透射式,如图2-2(b)所示。

这种方法结构简单,但通常适用于实验室使用传统的以色散棱镜或衍射光栅为基础的光谱仪测量波长变化,是一种最基本的方法。

这种方法有很大的局限性,一是精度低,不能很好的满足一般测量要求;二是仪器体积大,不适于现场应用;三是价格高。

另外,光谱分析仪还不能直接输出对应波长变化的电信号输出,这种方法通常无法满足工程应用的要求。

(2) 可调谐光纤光栅滤波器法
可调谐光纤光栅滤波器法也称为匹配光纤光栅滤波器法。

这种方法需要借助于另外的光纤光栅(称为参考光纤光栅),在驱动元件的作用下使用参考光纤光栅的谐振波长跟踪传感光纤光栅的谐振波长的变化,通过测量驱动元件的驱动信号来获得作用于传感光栅的物理量。

可调谐光纤光栅滤波器法结构有两种,一种是透射式,一种是反射式,如图2-3和图2-4所示,光纤布拉格光栅1和光纤布拉格光栅2是两个(可以串接更多个)传感光纤光栅,其反射波长可以随温度或应变而发生变化,用以反映被测量的变化。

图2-2 光谱分析法波长解调
宽带光源的波长分布覆盖光栅反射波长变化的范围。

耦合器为3dB耦合器。

光纤布拉格光栅0是一个可调谐的参考光纤光栅,它固定在压电陶瓷(PZT)上,压电陶瓷由线性电压驱动,从而可以对参考光纤光栅(光纤布拉格光栅0)的谐振波长进行调谐,其波长
图2-3 可调谐光纤光栅滤波器法结构(透射式)
的变化范围能够覆盖传感光纤光栅的波长变化区间,也可以通过其他方法(如悬臂梁)来实现调谐。

参考光纤光栅(光纤布拉格光栅0)的电压和波长关系已通过标定,有确定的关系。

在透射式结构中,当参考光纤光栅的反射波长和某一个传感光纤光栅的反射波长匹配时,光电探测器探测到的光强出现最小值,从而可以测量出传感光纤光栅的反射波长,进而可以计算出光纤光栅的应变或所处环境的温度变化。

在反射式结构中,当参考光纤光栅的反射波长和某一个传感光纤光栅的反射波长匹配时,光电探测器探测到光强出现最大值。

图2-4 可调谐光纤光栅滤波器法结构(反射式)
当单个光纤光栅光纤光栅0的调谐范围不能覆盖传感光纤光栅的波长范围时,可以用多个匹配光纤光栅构成的光栅阵列,调谐光纤光栅与传感光纤光栅一一对应,波长范围互不重叠。

匹配光纤光栅之间并联连接,可以通过耦合器同时接在反射光纤上或用光开关分时介入反射光纤光栅。

可调谐光纤光栅滤波器法的优点是结构简单,而且对反射光光强无特别要求,强度噪声不会对输出结果有影响。

但这种方法也有不足之处,主要要求两个光纤光栅匹配,而且受参考光纤光栅应变量的限制,传感光纤光栅的测量范围不能很大,以及由于压电陶瓷的响应速度有限,使这种方法只适用于测量静态或低频变化的物理量。

4光路设计
4.1 整体光路系统
图4-1 整体光路系统结构图
激光器发出的光经过光隔离器后,被调制器(调制信号为正弦RF信号)调制,得到的调制光经过标准布拉格光栅的反射滤波。

然后融合分光束参考法、匹配光纤光栅探测法及光纤光栅复用,使标准FBG反射的波与传感FBG反射的波
在耦合器中发生功率叠加及干涉,放大后由光电探测器将光信号转换为电信号,并用频谱分析仪观测。

当标准FBG的反射波波长与传感FBG的反射波波长完全匹配时,光耦合器中的功率叠加值最大和干涉现象最明显,则耦合后的光能量最大,反映在频谱分析仪上是RF信号能量最大。

当两个反射波波长不配备时,RF信号的能量将迅速减小。

4.1.1 分光束参考法
在探测端,光功率的测量会受到光源功率波动、光纤传输损耗变化、光电探测器特性等因素影响。

为了补偿光源、传输光纤、接头和光探测器的波动和漂移,获得稳定的测量结果,需要采用某种形式的强度参考。

4.1.2 匹配光纤光栅探测法
只有当标准FBG的中心波长与传感FBG的中心波长想匹配时,标准FBG的反射光谱与传感FBG的反射光谱的重叠部分面积最大,得到的光波强度最强,即最终光波强度为标准FBG的反射光谱函数与传感FBG的反射光谱函数的卷积。

此方法只能实现较小的变化范围内对被测轴向应变及温度变化进行检测,但它具有机构简单、低成本、易实现的优势。

4.1.3 光纤光栅复用
分布式传感和传感器的复用是光纤传感器所独有的技术,它能实现沿光纤铺设路径上分布场的测量,显著降低系统成本,减少引线。

在波分复用中,多个光纤光栅共用一个光源,每个光纤光栅的工作波长互相分开,而且每个光栅的反射光波长在一定光谱范围内随应变或温度线性移动,每个光栅光谱空间必须互不重叠,且皆在光源的光谱范围内才能保证它们的测量互不干扰。

因此,单个光纤光栅应变传感器的光谱空间与光源的光谱范围决定了传感器复用的数目,一般的LED光源皆可容许复用10个光纤光栅以上。

相关文档
最新文档