分式方程解法技巧课件PPT

合集下载

第2课时分式方程的解法PPT课件(北师大版)

第2课时分式方程的解法PPT课件(北师大版)
23
解:3x-2(x+1)=6 3x-2x=6+2 x=8
讲授新课
分式方程的解法 你能试着解这个分式方程吗?
90 60 30+x 30 x
(1)如何把它转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘什么样的式子才能把每一 个分母都约去? (4)这样做的根据是什么?
解分式方程最关键的问题是什么?“去分母”
90 60 30+x 30 x
方程各分母最简公分母是:(30+x)(30-x)
解:方程①两边同乘(30+x)(30-x),得 90(30-x)=60(30+x), x=6是原分式
解得 x=6.
方程的解吗?
检验:将x=6代入原分式方程中,左边=
5 2
=右边,
因此x=6是原分式方程的解.
归纳总结
2x=3x-9.
解得
x=9.
检验:当x=9时,x(x-3) ≠0. 所以,原分式方程的解为x=9.
4.解方程
x 1
3
.
x 1 (x 1)(x 2)
解: 方程两边乘(x-1)(x+2),得
x(x+2)-(x-1)(x+2)=3.
解得
x=1.
检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是 原分式方程的解. 所以,原分式方程无解.
A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
2.若关于x的分式方程
的值为 ( D )
A.-1,5
B.1
C.-1.5或2 D.-0.5或-1.5

《分式方程及其解法》PPT课件 精品

《分式方程及其解法》PPT课件 精品

因此 x = -5是原分式方程的解.
解下列方程:
(1)5 7 x x2
【选自教材P150 练习】
(2) 2 1 x3 x1
解:(2)方程两边乘 (x+3)(x-1),得2(x-1)= x + 3.
解得:x = 5. 检验:将 x = 5代入原分式方程中,左边 = 1 = 右边.
4
因此 x = 5是原分式方程的解.
知数的式子(最简公分母).
当v=6时,(30+v)(30-v)≠0,去 分母时,方程①两边乘了同
一x个=不5为是0分的式式方子程,因的此增所根得
整式方程的解与①的解相同.
当 x=5 时 , (x-5)(x+5)=0 , 去 分母时,方程②两边乘了同 一个等于0的式子,这时所得 整式方程的解使②出现分母 为0的现象,因此这样的解不 是②的解.
90 = 60 30+ v 30- v
转化
(1)如何把它转化为整式方程呢?

整式方程
(2)怎样去分母?
(3)在方程两边乘什么样的式子才能把每一个分母都约去?
(4)这样做的依据是什么?
解分式方程最关键的问题是什么? “去分母”
90 = 60 30+ v 30- v 方程两边同乘各分母的最简公分母(30+v)(30-v), 得 9(0 30-v)=6(0 30+v). 解得 v = 6
2
所以 x = 3 是原分式方程的解.
2
5.解关于x 的方程 a b 1( b ≠ 1). xa
解:方程两边同乘x-a,得
a+b(x-a)= (x-a)
去括号,得 a+bx-ab =x-a
移项、合并同类项,得 (b-1)x = ab-2a ∴ x ab 2a

分式方程(共10张PPT)

分式方程(共10张PPT)

小试牛刀
八年级学生去距学校10千米的博物馆参观,一 部分同学骑自行车先走,过了20分后,其余同学乘
汽车出发,结果他们同时到达,已知汽车的速度是骑
车同学速度的2倍,求骑车同学的速度.
归纳总结
1、列分式方程解应用题,应该注意解题的 六个步骤.
2、列方程的关键是要在准确设元(可直接设,也 可设间接)的前提下找出等量关系.
分析:甲队一个月完成工程的 1,设乙队如果单独施工一个月
3 能完成总工程的 ,1 那么甲队半个月完成总工程的 (
)1 乙
队+半个月完成总工程x 的( )1 两队半个月完成总工程的 6
1 1
2x
6 2x
例2
从2004年5月起某列车平均提速v千米/时,用 一样的时间,列车提速前行驶s千米,提速后 比提速前多行驶50千米,提速前列车的平均 速度是多少?
3、解题过程注意画图或列表帮助分析题意找 等量关系.
4、注意不要漏了检验和做答.
50
经检验x= 是原分式方程的解.
sv
答:提速前5列0 车的平均速度为
sv 千米/时。 50
方程两边同乘以6x,得: 分析:甲队一个月完成工程的 ,设乙队如果单独施工一个月能完成总工程的 ,那么甲队半个月完成总工程的 ( ) 乙队半个月 完成总工程的( )两队半个月完成总工程的 2、 解整式方程. 经检验x= 是原分式方程的解. 3、解题过程注意画图或列表帮助分析题意找等量关系. 根据工程的实际进度,得: 工作了半个月,总工程全部完成. 从2004年5月起某列车平均提速v千米/时,用一样的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速 度是多少? 八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽 车的速度是骑车同学速度的2倍,求骑车同学的速度. 分析:根据行驶时间的等量关系可以列出方程. 分析:甲队一个月完成工程的 ,设乙队如果单独施工一个月能完成总工程的 ,那么甲队半个月完成总工程的 ( ) 乙队半个月 完成总工程的( )两队半个月完成总工程的 2、列方程的关键是要在准确设元(可直接设,也可设间接)的前提下找出等量关系. 解:设乙队如果单独施工1个月能完成总工程的 解:设乙队如果单独施工1个月能完成总工程的 解:设乙队如果单独施工1个月能完成总工程的

第06课时 分式方程及其应用PPT课件

第06课时 分式方程及其应用PPT课件

根据题意得:26a+35(200-a)=6280,
(2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购
解得:a=80.
买了多少条 A 型芯片?
答:购买了 80 条 A 型芯片.
+3
例 1 [2017·宁夏] 解方程:
-
4
-3 +3
=1.
[方法模型] 解分式方程时易出现的错误:
(1)漏乘没有分母的项;
(2)没有验根;
(3)去分母时,没有注意符号的变化.
解:去分母,得 x2+6x+9-4x+12=x2-9,
移项、合并同类项,得 2x=-30,
系数化为 1,得 x=-15,
)
B.4
=1 的解为 x=2,则 m
C.3
D.2
-1
=1 的解
为 x=2,∴x=2 满足关于 x 的分式方程
-3
-1
-3
=1,∴
2-1
=1,解得 m=4.故选 B.
高频考向探究
探究三 分式方程的应用
例 3 [2018·岳阳] 为落实党中央“长江大保护”新发展理念,我
市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然
完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化
面积比乙工程队完成 300 平方米的绿化面积少用 3 小时.乙工
程队每小时能完成多少平方米的绿化面积?
解:设乙工程队每小时能完成 x 平方米的
300 300
绿化面积.根据题意,得

-
2
=3.
解得 x=50.
经检验,x=50 是分式方程的解且符合题意.

分式方程ppt课件

分式方程ppt课件
36
36
根据题意,得 x =
+2,
(1+50%)x
解得 x=6.
经检验,x=6 是方程的解.
答:该施工队原计划每天改造 6 m.
知3-练
例 5 [情境题 校园文化]为了进一步丰富校园文体活动,
某中学准备一次性购买若干个足球和排球,用480 元
购买足球的数量和用390 元购买排球的数量相同,已
知足球的单价比排球的单价多15 元.





③ =x;④
+3=




其中是分式方程的是________(填序号).
③④
知识点 2 分式方程的解法
知2-讲
1. 解分式方程的基本思路:去分母,把分式方程转化为整
式方程.
2. 解分式方程的一般步骤
知2-讲
3. 检验分式方程解的方法
(1)直接检验法:将整式方程的解代入原分式方程,这
车的速度.
知3-练
思路引导:
知3-练
解:设大型客车的速度为x km/h,


则小型客车的速度为1.2x km/h,12 min= h.


根据题意,得 -


= ,解得x
.
经检验,x = 6 0 是方程的解.
答:大型客车的速度是60 km/h.
= 6 0.
知3-练
3-1.[中考·广州] 随着城际交通的快速发展, 某次动车平

;(3) =1;
- +





(4)

;(5) -2=x(a为非零常数).

+ -
解题秘方:利用判别分式方程的依据——分母中含有

分式方程及其解法课件

分式方程及其解法课件

高阶分式方程的解法实例
总结词
通过降阶、变量代换等方法,将高阶分式方 程转化为低阶或可直接求解的分式方程。
详细描述
高阶分式方程可以通过降阶、变量代换等方 法,将其转化为低阶或可直接求解的分式方
程。例如,对于形如 "a1x1+a2x2+...+anxn/b1x1+b2x2+...+b nxn=c" 的高阶分式方程,可以先将高阶项 进行降阶或变量代换,将其转化为可直接求
分式方程及其解法课件

CONTENCT

• 分式方程的基本概念 • 分式方程的解法 • 分式方程的解法技巧 • 分式方程的解法实例 • 分式方程的解法总结与反思
01
分式方程的基本概念
分式方程的定义
总结词
分式方程是数学中一类带有分式的等式,用于描述某些特定情况 下的数量关系。
详细描述
分式方程是数学中一类带有分式的等式,通常用来描述两个或多 个量之间的关系。分式方程中的分母不能为零,因为分母代表一 个量所占的比例或份额。
适用范围
分式方程的解法适用于解决涉及分数 、比例、百分数等实际问题的数学问 题,同时也可以用于解决一些代数和 几何问题。
不适用范围
对于一些过于复杂或抽象的分式方程 ,分式方程的解法可能无法解决,或 者解决起来非常困难。
解法的改进与展望
改进
在解分式方程时,可以尝试引入更多的数学工具和方法,例Байду номын сангаас使用分数运算规则、因式 分解、变量替换等技巧,以提高解题效率和准确性。
通过约分、通分、消去分母等方法,将 分式方程转化为整式方程进行求解。
VS
详细描述
一元分式方程通常可以通过约分、通分和 消去分母的方法,将方程转化为整式方程 ,然后利用整式方程的解法求解。例如, 对于形如 "ax+b/cx+d=e" 的分式方程, 可以先通分,然后移项、合并同类项,最 后求解整式方程。

最新分式方程及其解法公开课精品课件

最新分式方程及其解法公开课精品课件
最新分式方程及其解 法公开课精品课件
目录
• 分式方程概述 • 分式方程的基本解法 • 分式方程的特殊解法 • 分式方程的应用举例 • 分式方程的解法技巧与注意事项 • 分式方程与其他数学内容的联系
01
分式方程概述
定义与特点
01
02
定义:分式方程是未知 数在分母中的有理方程 。其一般形式为 $frac{a_1x+b_1}{c_1x+ d_1} = frac{a_2x+b_2}{c_2x+ d_2}$,其中 $a_i, b_i, c_i, d_i$ 是常数,且 $c_1$ 和 $c_2$ 不同时 为0。
关注方程的定义域
在求解过程中,要时刻关 注分式方程的定义域,确 保解在定义域范围内。
避免增根和失根
在求解过程中,要留意可 能出现的增根和失根情况 ,确保解的准确性。
分式方程与其他数学内容的
06
联系
与整式方程的联系与区别
联系
分式方程和整式方程都是代数方程,都用于描述数量之 间的关系。在某些情况下,分式方程可以转化为整式方 程进行求解。
04
分式方程的应用举例
工程问题
工作总量、工作时间、工作效率之间的关系
工作总量=工作时间×工作效率。在给定两个量的情况下,可以求解第三个量。
典型例题
一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他 任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
解题思路
解题思路
设乙的速度为x千米/时,则甲 的速度为(x+0.5)千米/时,根 据题意列出分式方程求解。
浓度问题
01
溶质、溶剂、溶液、浓度之间的关系

解分式方程课件

解分式方程课件

THANKS
感谢观看
化学反应速率问题
通过解分式方程,可以计算化学反应的速率、反应时间等参数,有助于分析和解决化学 反应速率问题。
溶液浓度问题
利用分式方程,可以计算溶液的浓度、溶质的质量等参数,有助于分析和解决溶液浓度 问题。
06
练习题与答案解析
练习题一:一元一次分式方程求解
练习题1
解方程 $frac{x}{x-2} - frac{3}{x+2} = 1$
未知数位不同
整式方程的未知数通常出现在分子中 ,而分式方程的未知数出现在分母中 。
方程形式不同
解法不同
整式方程通常通过合并同类项、移项 等方法求解,而分式方程则需要通过 去分母等方法转化为整式方程后求解 。
整式方程通常是多项式等式,而分式 方程则包含分式。
02
解分式方程方法
去分母法
原理
通过去分母,将分式方程转化为 整式方程,从而简化求解过程。
找公共分母
观察分式方程中的各个分式,找出它们的公共分母。
消去分母
通过两边同时乘以公共分母,将分式方程转化为整式方程。
求解整式方程,得到解集
整理方程
将整式方程进行整理,化简为标准形式。
求解方程
运用整式方程的求解方法,如因式分解、配方法等,求出方程的解集。
检验解集,确定最终解
检验解的合法性
将求得的解代入原方程进行检验,确 保解满足原方程。
练习题2
解方程 $frac{x^3+2x^2+x}{x^2+x} - frac{x^2+3x+2}{x+2} = frac{2}{x}$
练习题3
解方程 $frac{x^4-16}{x^2-4} - frac{2(x^2+4)}{x^2+4x+4} = frac{8}{x^2-4}$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经检验:x=6是原分式方程的根。
点拨:此题如果用常规法,将出现四次项且比较繁, 而采用局部通分法,就有明显的优越性。
但有的时候采用这种方法前需要考虑适当移项,
组合后再进行局部通分。
解本方程 1 1 1 1
x 3 x 4 x 5 x 12
还有其他通分方法吗?
1
1
1
1



∴x=2 经检验:x=2是原分式方程的根。
分析: 来求解,而不用常规解法。 解:原方程可化为:
分析:由于方程两边分子、分母未知数的对 应项系数相等,因此可以利用这样的恒等
运算。
解:应用上述性质,可将方程变形 为:
课堂小结
切记:
一、解分式方程,勿忘检验;否则会产生增根。
二、若方程两边含有未知数的相同因式时,不能约去;
解方程
y4 y5 y7 y8 y5 y6 y8 y9
点拨: 此方程的特点是:各分式的分子与分母的次数相同,
且相差 1, 这样一般可将各分式拆成: 整式+分式 的形式。
解:1 1 1 1 1 1 1 1
y 5
y6
y 8
y9
11 11 y5 y6 y8 y9
x3
x5
x7
11 11 x 1 x 3 x 5 x 7
通分得: 2

2
x2 4x 3 x2 12x 35
x2 4x 3 x2 12x 35
解得:x 4 经检验,x 4是原方程的根
总结Ⅱ:像例3 各分式的分子、分母的次数相同,且相差一定的数,
1
1

y2 11 y 30 y2 17 y 72
以下过程同 学来完成
y2 11 y 30 y2 17 y 72
解得:y 7
经检验,y ቤተ መጻሕፍቲ ባይዱ7是原方程的根
分式的分子、分母的次数相同,且相差一定的数, 可将各分式拆成几项的和。
解:部分移项得:
分析:观察此 方程的两个分 式的分母是互 为相反数,考 虑移项后易于 运算合并,能 使运算过程简 化。
否则会产生失根
【模拟试题】(答题时间:20分钟) 解下列分式方程:
2. 3. 4. 5.
再 见
解方程: 1
x3
1 x3

2x x2 4
通分法
1
1
2x

x3 x 3 x2 9
拆项法
2x (x2)(x2) 1 1


x2 4 (x2)(x2) x2 x2
2x
2x
欢迎来到数学课堂
打破常规 创新求解
—— 分 式 方 程 解 法 技 巧
对于某些分式方程,用常规解法很麻烦;若能 针对题目特点,打破常规,另觅新路,往往会化难 为易, 化繁为简。
要做到这点,必须认真观察、仔细分析方程特 点,会从数学的角度发现和提出问题,运用数学方 法加以探索创新,找到最简方法。达到发展思维, 开拓创新,灵活求解的目的。
2x 4 2x 1
∴此方程无解
说明:解方程时若等式两边含有未知数的
相同因式,不能约去,否则将会产生失根。
例2:解方程
1
1
1



1
x 3 x 4 x 5 x 12
方程左边通分结果 是什么?
方程右边通分结果 是什么?
7
7
解:通分得 x 3x 4 = ( x 5)( x 12 )
例1:解方程
2x
2
1
2x 1
x2
解:通分得 2 x x
2x 1 x 2
2 xx 2 x2 x 1
2x2 4x 2x2 x 解得x 0
经检验 x 0 是原方程的根
此方程两边 分子中的X 能约去吗?
2x
x
解:2 x 1 x 2
2 1 2x 1 x 2
通分得: 2

2
x2 4x 3 x2 12x 35
x2 4x 3 x2 12x 35
解得:x 4 经检验,x 4是原方程的根
祝学习愉快
x2 x 12 x2 17x 60
解得: x 9 2
经检验,x 9 是 原 方 程 的 根 2
解:方程两边分别通分并化简,得:
分析:该方程的特点是等号两边
各是两个分式,相邻两个分式的
分子与分子,分母与分母及每个
解之得:x=6
分式的分子与分母都顺序相差1, 象这类通常采取局部通分法。·
拆 可将各分式拆成几项的和。这种解法称为 —— 项 法
练 一 练 :x 2 x 4 x 6 x 8 x 1 x 3 x 5 x 7
解: 1 1 1 1 1 1 1 1
x 1
x3
x5
x7
11 11 x 1 x 3 x 5 x 7
x 3 x 5 x 4 x 12
8
8

x 2 2x 15 x 2 16x 48
1
1
1
1



x 3 x 4 x 5 x 12
解:
解此方程此方程无解。
点拨:换元法解分 式方程,是针对方程 实际,正确而巧妙地 设元,达到降次,化 简的目的,它是解分 式方程的又一重要的 方法,本题还有其它 的设法,同学们可自 己去完

x2 9 x2 4
1111 x3 x3 x2 x2
分式的分子、分母的次数相同,且相差一定的数,可将各分 式拆成几项的和。
x2 x4 x6 x8 x 1 x 3 x 5 x 7
解: 1 1 1 1 1 1 1 1
x 1
相关文档
最新文档