流固耦合的研究与发展综述

合集下载

流固耦合的研究与发展综述

流固耦合的研究与发展综述

流固耦合的研究与发展综述流固耦合是指流体与固体之间相互作用的现象。

在许多工程领域,流固耦合现象都是非常重要的,例如在航空航天、汽车工程、能源系统和生物医学领域等。

本文将对流固耦合的研究与发展进行综述,包括其基本原理、数值模拟方法和应用领域等方面的内容。

一、流固耦合的基本原理流固耦合的基本原理是通过数学模型描述流体与固体之间的相互作用。

流体力学和固体力学是研究流体和固体运动的基本学科,它们提供了描述流固耦合现象的基本理论基础。

在流体力学中,流体的运动可以通过Navier-Stokes方程组来描述,而在固体力学中,固体的运动可以通过弹性力学或塑性力学方程来描述。

通过将这两个方程组耦合起来,可以得到描述流固耦合现象的数学模型。

二、流固耦合的数值模拟方法为了研究流固耦合现象,数值模拟方法是一种常用的手段。

常见的数值模拟方法包括有限元法、有限体积法和边界元法等。

在流固耦合问题中,有限元法是最常用的数值模拟方法之一。

有限元法将流体和固体分别离散化为有限个单元,并通过求解代数方程组来得到流体和固体的运动状态。

此外,还可以使用流体-结构相互作用软件来模拟流固耦合问题,例如ANSYS、FLUENT等。

三、流固耦合的应用领域流固耦合现象在许多工程领域都具有重要的应用价值。

在航空航天工程中,流固耦合现象的研究可以帮助改善飞机的气动性能,提高飞行稳定性和安全性。

在汽车工程中,流固耦合现象的研究可以用于改善汽车的空气动力学性能,降低燃油消耗和减少排放。

在能源系统中,流固耦合现象的研究可以用于优化风力发电机的设计,提高能量转换效率。

在生物医学领域,流固耦合现象的研究可以用于模拟血液在心脏和血管中的流动,帮助诊断和治疗心血管疾病。

综上所述,流固耦合的研究与发展是一个非常重要的课题。

通过对流固耦合现象的研究,可以深入理解流体与固体之间的相互作用机制,为工程实践提供理论指导和技术支持。

未来,随着数值模拟方法的不断发展和计算能力的提高,流固耦合的研究将在更多领域得到应用和拓展。

流固耦合的研究与发展综述

流固耦合的研究与发展综述

流固耦合的研究与发展综述流固耦合是指液体或气体与固体之间相互作用并相互影响的物理过程。

在过去几十年里,流固耦合的研究与发展取得了令人瞩目的进展。

本综述将对流固耦合的研究背景、发展状况和前景进行综述。

首先,流固耦合的研究背景。

流固耦合的研究源于对大气和海洋中的风暴、涡旋和浪潮等自然规律的理解。

这些自然现象中,液体和气体介质与地球表面的固体结构相互作用,并产生复杂而有趣的现象。

例如,在风暴过程中,气体通过辐合进而产生强风和风暴潮,对海岸线造成严重的破坏。

了解这些流固耦合的现象对于防灾减灾和环境保护具有重要意义。

此外,流固耦合的研究还可以应用于工程领域,如航空航天、水利水电和海洋工程等。

其次,流固耦合的研究发展。

随着计算机技术和数值模拟方法的发展,研究人员能够模拟和预测流固耦合过程中的各种物理现象。

数值模拟方法包括有限元法、有限差分法和边界元法等。

这些方法能够解决流固耦合问题中的非线性、多物理场和多尺度等复杂问题。

此外,研究人员还开展了实验和理论研究,以更加全面和深入地理解流固耦合过程。

当前流固耦合的研究重点包括气液两相流动、流体力学与固体力学的相互作用、液固界面的动态行为等。

最后,流固耦合的研究前景。

随着数据采集和处理技术的不断进步,流固耦合的研究正朝着多尺度、多物理场和多学科的方向发展。

在气液两相流动中,研究人员将继续探索液滴、气泡和颗粒的动力学行为,以及它们与固体表面之间的相互作用。

在流体力学和固体力学的相互作用中,研究人员将关注固体结构如何影响流体流动和固体应力分布。

在液固界面的动态行为中,研究人员将继续研究液滴的形变和破裂机制,并探索其在材料科学和生物医学领域的应用。

总之,流固耦合的研究与发展具有广阔的应用前景。

通过深入理解流固耦合过程的物理机制,可以提供有关气候变化、自然灾害和工程设计等方面的关键信息。

这些研究也有助于推动相关学科的发展,如流体力学、固体力学和材料科学等。

随着技术的不断进步和理论的不断完善,相信流固耦合的研究将加速,为我们理解和利用自然界的复杂现象提供更多的支持和指导。

《流固耦合渗流规律研究》

《流固耦合渗流规律研究》

《流固耦合渗流规律研究》篇一一、引言流固耦合问题作为现代科学研究中具有广泛性的领域,是多种复杂自然现象以及工程现象的基本反映。

特别地,流固耦合渗流规律的研究,对于理解流体在多孔介质中的运动、传输和变形过程具有重要意义。

本文旨在探讨流固耦合渗流规律的研究现状、方法及进展,为相关领域的研究提供参考。

二、流固耦合渗流的基本概念流固耦合渗流是指流体在多孔介质中流动时,由于流体与固体骨架的相互作用,导致固体骨架发生变形,进而影响流体流动的过程。

在这个过程中,流体与固体骨架相互依赖、相互影响,共同决定着渗流的运动规律。

三、研究现状目前,流固耦合渗流规律的研究主要集中于岩土工程、石油工程、环境工程等领域。

这些领域中的研究主要集中在多孔介质的力学性质、流体的流动特性以及流固耦合的相互作用机制等方面。

随着计算机技术的发展,数值模拟方法在流固耦合渗流规律的研究中得到了广泛应用。

四、研究方法(一)理论分析理论分析是研究流固耦合渗流规律的基础。

通过建立数学模型,描述流体在多孔介质中的流动过程以及固体骨架的变形过程,进而分析两者之间的相互作用机制。

(二)实验研究实验研究是验证理论分析的重要手段。

通过设计实验装置,模拟实际工程中的流固耦合渗流过程,观察并记录实验现象,为理论分析提供依据。

(三)数值模拟数值模拟是研究流固耦合渗流规律的重要手段。

通过建立数值模型,利用计算机技术对流体在多孔介质中的流动过程进行模拟,从而揭示流固耦合的渗流规律。

五、研究进展近年来,流固耦合渗流规律的研究取得了重要进展。

一方面,理论分析方面取得了突破性进展,建立了更加完善的数学模型,为深入研究提供了理论基础。

另一方面,实验研究和数值模拟方面的技术手段不断更新,提高了研究的准确性和可靠性。

此外,多学科交叉融合的研究方法也为流固耦合渗流规律的研究提供了新的思路和方法。

六、结论与展望通过对流固耦合渗流规律的研究,我们深入理解了流体在多孔介质中的运动、传输和变形过程。

流固耦合概述及应用研究进展

流固耦合概述及应用研究进展

流固耦合概述及应用研究进展流固耦合是研究流体与固体相互作用的一种方法,它将流体动力学方程和固体力学方程相互耦合求解,能够模拟复杂的流固耦合问题。

近年来,随着计算机技术的不断发展和数值模拟方法的日益完善,流固耦合研究在多个领域取得了重要进展,并在工程实践中得到广泛应用。

目前,流固耦合的研究进展主要集中在以下几个方面:第一,研究方法的改进。

为了提高计算效率和精度,研究者提出了多种有效的流固耦合求解方法。

例如,基于体积法的耦合方法可以将流体和固体的网格耦合在一起,减少了计算量和内存需求。

此外,还有基于仿真网格重构的方法、基于界面移动技术的方法等。

这些方法在求解复杂流固耦合问题时具有较好的适用性和效率。

第二,模型的改进和扩展。

为了更好地模拟实际问题,研究者对流固耦合模型进行了改进和扩展。

例如,考虑流固界面的非线性和非均匀特性、考虑流固界面的热传导、考虑流体中的多相流等。

这些改进使得模拟结果更加准确,为实际工程问题的分析和设计提供了有力支持。

第三,应用领域的拓展。

流固耦合研究不仅适用于常见的工程领域,如航空航天、汽车工程等,还逐渐拓展到其他领域。

例如,生物力学领域中的血液流动与血管壁的相互作用、地下水与土壤的相互作用等。

这些应用领域的拓展对流固耦合方法的深入研究提出了新的挑战。

综上所述,流固耦合研究在方法、模型和应用领域等方面都取得了重要进展。

随着计算机技术的不断发展和数值模拟方法的不断完善,流固耦合研究将进一步深入,为实际工程问题的解决提供更加准确和可靠的方法和模型。

流固耦合的研究综述

流固耦合的研究综述

流固耦合的研究综述流固耦合是指流体和固体之间相互作用的现象。

在许多自然界和工程应用中,流体和固体之间的相互作用起着重要的作用。

例如,在大气中,风与树木之间的相互作用会导致树枝的摆动;在海洋中,海浪与海岸线的相互作用会引起沙滩的冲刷。

在工程应用中,流固耦合现象也十分常见,如飞机在飞行时的气动弹性效应、管道中的液固两相流动等。

流固耦合现象的研究对于深入理解自然界中的复杂问题和提高工程应用的性能至关重要。

本文将综述流固耦合的研究现状和相关领域的进展,并重点介绍流固耦合模型的建立和求解方法。

在流固耦合的研究中,模型的建立是一个关键的环节。

根据问题的实际情况和研究目标,可以采用不同的数学模型来描述流体和固体之间的相互作用。

常用的模型包括神经网络模型、有限元模型和计算流体动力学模型等。

这些模型能够准确地描述流体和固体之间的动力学关系和力学行为,并提供对流固耦合现象的定量分析。

在流固耦合模型的求解中,常用的方法包括数值模拟和实验测试。

数值模拟方法主要是利用计算机模拟流体和固体之间的相互作用过程。

常见的数值模拟方法包括流体动力学模拟、结构动力学模拟和流固耦合模拟等。

通过数值模拟,研究人员可以获得流体和固体之间的详细信息,如压力分布、速度场和应力分布等。

实验测试方法主要是通过实验设备来模拟流体和固体之间的相互作用过程,并进行测试和观测。

实验测试可以提供直观的物理现象和定量的实验数据,对于验证数值模拟结果和模型的有效性具有重要意义。

在流固耦合的研究中,还存在许多待解决的问题和挑战。

首先,流固耦合现象的模型和方法需要进一步发展和改进,以更好地符合实际问题的要求。

其次,流固耦合模型的求解方法需要更加高效和准确,以提高计算速度和求解精度。

此外,流固耦合的研究还需要考虑多尺度效应和非线性效应等复杂问题,进一步提高模型的适用范围和研究的深度。

综上所述,流固耦合作为一个重要的研究领域,对于理解自然界和工程应用中的复杂问题具有重要的意义。

流固耦合概述及应用研究进展

流固耦合概述及应用研究进展

流固耦合概述及应用研究进展流固耦合是指涉及流体和固体相互作用及其相互影响的一种物理过程。

在流体中存在的固体物体会受到流动力的影响,而流体的流动又会受到固体物体的阻碍或改变。

流固耦合研究的目的是探索流体与固体耦合过程中的物理现象和机理,并为相关领域的应用提供理论和实践基础。

流固耦合是多学科、多领域交叉研究的产物,涉及机械工程、流体力学、材料科学、土木工程等众多领域。

流固耦合现象广泛存在于自然界和工程中,例如空气和飞机翼之间的相互作用、水流与水坝之间的相互影响、海洋中风浪作用于海洋工程结构等。

对于这些情况,了解流体对固体的作用以及固体对流体的影响有助于提高工程设计的可靠性和安全性。

近年来,流固耦合研究在理论研究和应用方面取得了一些进展。

在理论上,流固耦合模型主要基于数值计算和实验数据,通过建立相关方程和模拟方法来描述流体和固体相互作用。

这些模型主要包括弹性体与流体相互作用、固体与不可压缩流体相互作用、固体与可压缩流体相互作用等。

通过这些模型,可以预测固体的受力和变形情况,并进一步优化设计。

在应用方面,流固耦合的研究涉及了很多领域。

在航空航天工程中,例如在飞机机翼设计中,需要考虑空气流动对机翼的影响,同时也需要考虑机翼的形状对气流的影响。

在海洋工程中,例如在海上钻井平台的设计中,需要考虑海浪对平台的冲击,同时也需要考虑平台的形状对海浪的影响。

在建筑工程中,例如在高层建筑的结构设计中,需要考虑气流对建筑的荷载、风力对建筑的影响。

流固耦合研究的进展带来了许多创新应用,提高了工程设计的精度和可靠性。

例如,在汽车和飞机设计中,通过对流体力学和结构力学的耦合分析,可以更好地优化车身结构和机翼形状,减小风阻和气动噪声,提高车辆的性能和燃油效率。

在海洋工程中,通过对水流和结构的耦合分析,可以更好地预测海浪对海洋结构的冲击,从而减小结构的破坏风险。

虽然流固耦合研究取得了一些进展,但仍存在一些待解决的问题。

首先,流固耦合模型的建立和计算方法的选择仍然具有一定的局限性,需要进一步完善和发展。

《流固耦合渗流规律研究》范文

《流固耦合渗流规律研究》范文

《流固耦合渗流规律研究》篇一一、引言流固耦合渗流规律研究是当前多学科交叉领域的一个重要研究方向,涉及力学、物理学、地质学等多个学科。

随着科学技术的不断发展,流固耦合渗流规律在工程实践中应用越来越广泛,如地下水动力学、油气开采、地质灾害防治等领域。

本文旨在通过分析流固耦合渗流的基本原理和规律,探讨其在实际应用中的一些关键问题。

二、流固耦合渗流的基本原理流固耦合渗流是指在多孔介质中,流体和固体骨架之间相互作用而形成的流动过程。

这种流动过程具有复杂的物理机制,包括多孔介质的渗透性、流体与固体骨架的相互作用力等。

在流固耦合渗流中,流体在多孔介质中流动时,会对固体骨架产生作用力,而固体骨架的变形也会对流体流动产生影响。

这种相互作用力的大小和方向取决于多孔介质的性质、流体和固体骨架的物理性质以及流体流动的物理条件等因素。

因此,在研究流固耦合渗流规律时,需要综合考虑这些因素。

三、流固耦合渗流的规律分析1. 多孔介质中的流体流动规律在多孔介质中,流体受到的阻力主要是由多孔介质的孔隙结构和流体的性质所决定的。

流体在多孔介质中流动时,会受到粘滞力、惯性力等多种力的作用,这些力的作用大小和方向取决于多孔介质的渗透性、孔隙大小分布等因素。

因此,在研究多孔介质中的流体流动规律时,需要综合考虑这些因素。

2. 固体骨架的变形规律在流固耦合渗流中,固体骨架的变形也是非常重要的一个方面。

当流体在多孔介质中流动时,会对固体骨架产生作用力,导致固体骨架发生变形。

这种变形的大小和方向取决于流体和固体骨架的相互作用力以及固体骨架的物理性质等因素。

因此,在研究固体骨架的变形规律时,也需要考虑这些因素。

3. 流固耦合渗流的总体规律流固耦合渗流的总体规律是指在多孔介质中,流体和固体骨架之间的相互作用力所形成的流动过程。

这种流动过程具有复杂的物理机制和数学模型。

在实际应用中,需要根据具体的工程问题建立相应的数学模型和求解方法,从而得出可靠的结论和解决方案。

《流固耦合渗流规律研究》范文

《流固耦合渗流规律研究》范文

《流固耦合渗流规律研究》篇一一、引言流固耦合现象广泛存在于自然界和工程领域中,如地下水渗流、岩土工程、多孔介质流动等。

这些现象涉及到流体与固体之间的相互作用,对渗流规律的研究具有重要的理论意义和实际应用价值。

本文旨在研究流固耦合渗流规律,通过对相关理论的分析和实验研究,揭示流固耦合渗流的基本规律和特点。

二、流固耦合渗流理论基础流固耦合渗流是指在多孔介质中,流体与固体骨架之间的相互作用导致流体在介质中的流动规律发生变化。

其理论基础主要包括多孔介质渗流理论、弹性力学理论、流固耦合理论等。

多孔介质渗流理论是研究流体在多孔介质中流动的规律和特性的理论。

该理论认为多孔介质中的流体流动受到介质孔隙结构、流体性质、外部条件等多种因素的影响。

弹性力学理论则是研究固体在外力作用下的变形和应力分布的理论。

在流固耦合过程中,固体骨架的变形会影响流体的流动规律,而流体的流动又会对固体骨架产生作用力,二者相互影响、相互制约。

流固耦合理论则是将多孔介质渗流理论和弹性力学理论相结合,研究流体与固体之间的相互作用及其对渗流规律的影响。

该理论认为,在流固耦合过程中,流体与固体之间的相互作用会导致介质孔隙结构的变化,从而影响流体的流动规律。

三、实验研究方法为了深入研究流固耦合渗流规律,本文采用实验研究方法。

具体步骤如下:1. 制备多孔介质样品:选用不同类型的多孔介质样品,如砂土、黏土等,进行制备和加工。

2. 设计实验装置:设计一套流固耦合渗流实验装置,包括供水系统、压力传感器、数据采集系统等。

3. 进行实验:将多孔介质样品置于实验装置中,通过改变流体压力、流量等参数,观察流体在介质中的流动规律和特点。

4. 数据处理与分析:对实验数据进行处理和分析,得出流固耦合渗流的基本规律和特点。

四、实验结果与分析通过实验研究,我们得出以下结论:1. 流固耦合渗流过程中,流体与固体之间的相互作用会导致介质孔隙结构的变化,从而影响流体的流动规律。

2. 流体压力、流量等参数对流固耦合渗流规律具有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流固耦合的研究与发展综述目录1.引言............................................... - 1 -2.流固耦合的分类与发展............................... - 1 -3.流固耦合的研究方法................................. - 2 -4.流固耦合计算法..................................... - 4 -5.软件应用方法....................................... - 6 -6.总结与展望........................................ - 14 - 参考文献............................................ - 15 -流固耦合的研究与发展1.引言近来,航空航天工业在世界上发展迅速,而作为“飞机心脏”的航空发动机是限制其发展的主要因素。

目前,航空发动机日益向高负荷、高效率和高可靠性的趋势发展,高负荷导致的高你压力梯度容易引起流动分离,同时随着科技的发展,航空发动机的设计使得材料越来越轻,越来越薄,这就使得发动机内部的不稳定流动对叶片的影响大大增加,成为发动机气动及结构设计要考虑的关键问题之一。

而以往单单考虑气动或结构因素不能满足实际的需求,必须将气动设计和结构设计相结合,考虑其相互作用的影响,因此流固耦合的研究应运而生。

流固耦合是流体力学与固体力学交叉而生成的一门独立的力学分支,它的研究对象是固体在流场作用下的各种行为以及固体变形或运动对流场影响。

流固耦合力学的重要特征是两相介质之间的交互作用,固体在流体动载荷作用下会产生变形或运动,而固体的变形或运动又反过来影响流场,从而改变流体载荷的分布和大小,正是这种相互作用将在不同条件下产生形形色色的流固耦合现象。

2.流固耦合的分类与发展总体上,从流固耦合的机理上可以分为两大类:第一类,耦合作用仅仅发生在两相交界面上,在方程上的耦合是由两相耦合面上的平衡及协调来引入的如气动弹性、水动弹性等;第二类,两相部分或全部重叠在一起,难以明显地分开,使描述物理现象的方程,特别是本构方程需要针对具体的物理现象来建立,其耦合效应通过描述问题的微分方程来体现。

从20世纪80年代以来, 流固耦合的研究便一直受到世界学术界的广泛关注,近年来流固耦合研究发展的3个标志为:①由线性流固耦合问题发展到非线性流固耦合问题;②由固体结构的变形和强度问题发展到固体的屈曲问题;③计算格式从单纯的固体有限元格式或流体的差分格式到混合或兼容的流固格式。

现已能在固体和结构中考虑材料非线性和几何非线性;在流体中也开始考虑有粘性和空化等效应的流体模型,从而得以模拟出晃动、空化、飞溅等流固耦合行为。

在流体激发振动中也已经开始考虑复杂的结构阵列和流体流动。

使其更加接近真实情况,从而可以更好的应用于实际情况中。

3.流固耦合的研究方法流固耦合的研究经历了持续的发展,按照发展的先后顺序,可以分为单步耦合、多步耦合、直接耦合三个阶段。

1)单步耦合单步耦合应用频域法假设结构体以一个已知的频率和幅值进行运动,然后求解非定常气动力做功来判断稳定性。

单步耦合往往需要先求解结构体的变形,然后通过将结构体的变形作用于流场,进而计算系统的阻尼和稳定性。

单步耦合中对流场的求解经历了从线性到非线性的发展过程。

Stuart Moffatt 和 Li He先利用ANSYS计算出叶片模态振型,然后将模态振型以一定幅值耦合到流体边界,求解气动功和气动阻尼。

北京航空航天大学张小伟等利用ANSYS计算了NASA67的弯曲振动阶模态,然后在流场中给定叶片振幅计算了气动力和气动阻尼。

张正秋、邹正平等也利用单步耦合方法对叶轮机颤振预测和稳定性分析作了讨论。

单步耦合研究叶片结构的稳定性,没有考虑到结构体和流体的相互作用,因此需要加以改进。

2)多步耦合多步耦合方法与单步耦合方法相同之处在于都需要对结构体和流体场进行分别求解,不同之处在于单步耦合仅进行了一次数据交互,而多步耦合需要在多个时间点上进行交互计算,即每一次计算完成之后都需要在流体和结构体的交界面上进行载荷和位移等参数的传递。

多步耦合法的难点在于进行时间离散之后,结构体和流体场之间的数据交互总是存在滞后。

Volker Carsterns介绍了多步耦合中使用的常规交错迭代法及其改进方法;S.Piperno对带预估的交错迭代方法进行了介绍;M.Sadeghi开发出叶栅颤振的多步耦合程序,研究了不同的数据传递方法在计算中的应用。

西北工业大学徐敏等针对柔性大展弦比机翼发展了一种CFD/CSD的多步耦合方法。

南京航空航天大学郭同庆、陆志良等用二级精度的龙格-库塔时间推进对结构运动方程进行求解,用非定常欧拉方程双时间有限体积推进对气动力进行求解,用多步耦合的方法计算了机翼的静气弹特性。

3)直接耦合直接耦合法又称为整体积分法,该方法对结构体和流体场用统一的方程进行描述,按照统一的数值方法进行离散求解,从而在时间上实现了同步,不存在滞后现象。

Bendiksen用一种混合欧拉-拉格朗日方程对流固耦合系统进行了求解,在耦合边界面实现了欧拉格式向朗格朗日格式的转换;Ge-Cheng Zha等利用直接耦合法对失谐叶盘进行了高周疲劳预测分析。

由于直接耦合法涉及到不同模型和求解方法的转换,理论尚未完全成熟,开展的应用较少,国内尚处于起步阶段。

比较三种耦合方法可知,单步耦合法计算量较小,能较快得到结果,但因为没有考虑后续时间里流场对结构体的反作用,不能反映两种介质之间的能量传递;直接耦合方法准确直观,但是还需深入研究;多步耦合在目前的条件下比较容易开展研究。

4.流固耦合计算法流固耦合的数值计算问题,早期是从航空领域的气动弹性问题开始的,这也就是通过界面耦合的情况,只要满足耦合界面力平衡,界面相容就可以。

求解气动弹性问题的耦合方法通常可以分为两种:强耦合和弱耦合,强耦合方法需要对CFD和CSD方程同时进行求解,弱耦合方法是模块化的形式。

其耦合通过CFD网格点上的载荷转换到CSD节点上和CSD节点上的位移插值到CFD网格点上数据交换实现。

在这种弱耦合方法中,CSD和CFD网格位移可保持高精度。

Guruswamy通过在动网格上建立带有欧拉/纳维-斯托克斯方程模型的方法证明了弱耦合技术。

Guruswamy和Byun提出了求解二维翼型的气动弹性的一种弱耦合方法。

并证明了这种松耦合方法是有效和精确的。

在流固耦合问题的计算中,各国学者提出了不少的方法,经过归纳终结,基本可以概括为以下两个方面:一类是结构部分和流体部分都按有限元法进行离散,建立流体与固体耦合的振动方程式;另一类是结构部分仍按有限元法进行离散,而流体部分用边界元法离散,所谓边界元法与有限元法在连续体域内划分单元的基本思想不同,边界元法是指在定义域的边界上划分单元,用满足控制议程的函数去逼近边界条件。

所以边界元法与有限元相比具有单元的未知数少,数据准备简单等优点。

然后建立流固耦合振动方程式。

应用流体有限元和结构有限元结合的方法可以计算流体对复杂形状结构的影响,但这一方法一般要求电子计算机有较大的容量,并且计算机时较长,这给实际计算带来困难。

边界元方法只对边界积分方程离散求解,计算量相对较小,在工程中得到广泛应用。

并且,当流体为无限域情况时,有限元法及差分法就显得力不从心,解决这种无限域困难的方法之一是Bettes等提出的无限元法,Bettes,Orsero等都用有限元法和无限元法结合起来处理流固耦合问题中的无限流场,但由于解的稳定性和衰减长度的不确定性,限制了无限元法的进一步应用。

相对而言,边界元法能十分有效地处理流体水动力计算,特别是在处理无限域流场时,更是得天独厚。

大量学者在该领域进行了深入的研究,沈惠明、赵德有结合流体边界元和结构有限元求解流固耦合问题,采用迭代法求解流固耦合振动的特征,为了使迭代迅速、波动小,用结构在空气的振动模态(干模态)作为初始迭代向量,经过若干次迭代收敛于湿模态。

安泽幸隆等人将结构部分用有限元离散,流体部分采用边界元,同时对结构和流体相互作用的界面模型做出假设,计算结果证明假设是合理的。

5.软件应用方法ANSYS是目前十分常用的典型的流固耦合分析软件。

分析机理为流体与固体部分分开进行,第一个分析作为第二个分析的荷载,如果分析是完全耦合的,那么第二个分析的结果又会影响或成为第一个分析的荷载,如此将流体与固体场耦合起来。

复杂的几何图形建模可以通过UG、CATIA、PROE等专业软件完成,他们与有限元分析软件都有很好的接口,可以方便的传送文件。

流固耦合的软件分析大致分为以下几个步骤:1.首先要做好固体.CDB文件和流场.CAS文件,这个在HyperMesh 里面可以分别导出。

流体部分采用HyperMesh9.0分网,按照流体分网步骤即可,没有特殊要求。

HyperMesh9.0划分固体网格。

设置边界条件,载荷选项,求解控制,导出.cdb文件2.导入流体网格3.设置分析类型(ANALYSIS TYPE)-ANSYS MULTIFIELD,输入固体网格文件,设置瞬态分析,时间设置4.建流体材料,设置属性5.设置默认域(default domain)流场的一些特性6.添加边界条件,与网格中的边界相对应7.初始化8.求解控制设置9.输出控制设置10.监视变量设置11.求解12.后处理一般来说,CAE分析工程师80%的时间都花在了有限元模型的建立、修改和网格划分上,而真正的分析求解时间是消耗在计算机工作站上,所以采用一个功能强大,使用方便灵活,并能够与众多CAD系统和有限元求解器进行方便的数据交换的有限元前后处理工具,对于提高有限元分析工作的质量和效率具有十分重要的意义。

下面就提供了一些常见的前处理器软件,下表中显示的是一些常用的前处理器软件及它们各自的工作环境、特点、优缺点等。

表:常用前处理器软件在流固耦合分析中,流体部分网格划分的好坏对分析结果的准确性至关重要,同时也是相对复杂的部分,因此选择适当的网格划分软件十分必要,Gambit 、HyperMesh 都是目前应用最为广泛的软件,它们在复杂结构上具有强大的网格效率与准确性。

此外,ADINA 也是当今最为可靠的结构非线性、流固耦合计算系统。

ADINA-2F 中使用的程序是基于有限元和有限体积离散图,带有非常全面和高效的解决方法,可解决任意几何学中的全部流动问题。

一旦计算区域的任何一部分发生变形,对流体的Eulerian 描述就不再可用了。

因此,ADINA 求解流体的控制方程使用Arbitrary-Lagrangian-Eulerian(ALE)表示。

相关文档
最新文档