人教版九年级下册数学学习探究诊断_第二十七章__相似学案

合集下载

九年级数学下册27相似教案新版新人教版

九年级数学下册27相似教案新版新人教版

第二十七章相似1.通过具体实例认识图形的相似.2.了解相似多边形和相似比的含义,探索相似多边形的性质.3.了解三角形相似的概念,探索相似三角形的性质.4.掌握平行线分线段成比例定理.5.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.6.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.7.了解图形的位似,能够利用图形的位似将一个图形放大或缩小.8.了解在同一坐标系中位似变换后图形的坐标变化.将一个多边形的顶点坐标扩大或缩小相同倍数时对应的图形与原图形是位似的.9.会利用图形的相似解决一些简单实际问题.1.结合相似图形性质和判定方法的探索与证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的表达能力.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.培养学生用联系和转化的观点看待周围的事物,增强探索问题的信心和热情.前面学习了图形的全等和全等三角形的有关知识,也研究了几何图形的全等变换,“全等”和“相似”都是图形之间的一种变换,全等图形是相似比为1的相似图形,所以本章相似形的学习,以全等形和全等变换为基础,是全等三角形在边上的推广,比全等形更具有一般性,是前面学习图形全等的拓展和发展.本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形的.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,按照研究对象的“一般→特殊→特殊位置关系”的顺序展开研究.首先,教科书从现实世界中形状相同的物体谈起,然后把研究对象确定为形状相同的图形——相似图形,举例说明了放大、缩小两种操作与相似图形之间的关系.接着教科书把研究对象缩小为特殊的相似图形——相似多边形,由相似多边形的定义推出了相似多边形的性质.对于相似多边形的判定,教科书以三角形为载体进行研究,此外,还研究了相似三角形的其他性质和应用.最后,教科书研究了一种具有特殊位置关系的相似图形——位似图形.本章的知识不仅将在后面学习“锐角三角函数”和“投影与视图”时得到应用,而且对于建筑设计、测量、绘图等实际工作也具有重要价值.在本章中,相似三角形的判定和性质是本章的重点内容,相似三角形判定定理的证明是本章的难点内容.此外,综合应用相似三角形的判定和性质,以及学生前面学过的平行线、全等三角形、平行四边形等知识解决问题(包括实际问题)也是本章的一个难点.为了降低学生在推理论证方面的难度,本章加强了证明思路的引导,或者用分析法分析出由条件到结论必需的转化,或者提示了证明的关键环节;为了降低学生在解决实际问题中的难度,本章专门设置了相似三角形应用举例,从不同角度为解决实际问题作出示范.【重点】1.相似三角形的判定与性质及应用判定和性质解决问题.2.位似图形的性质及画法.【难点】1.相似三角形的判定定理的证明.2.位似变换的坐标表示.1.初中数学从《全等三角形》开始,已经进入了推理证明阶段,本章的学习在已有的基础上继续进行必要的推理证明,本章的证明所涉及的问题不仅包含相似的知识,也有很多是和三角形、全等、平行、勾股定理、平面直角坐标系等知识融合在一起的,例如相似三角形判定定理的证明中利用了全等三角形作为“桥梁”,性质的证明借助了代数运算,因此推理论证的难度提高了.教学时应注意帮助学生复习已有的知识,做到以新带旧、新旧结合;也要注意以具体问题为载体,加强证明思路的引导,帮助学生确定证明的关键环节,指导学生写出完整的证明过程.同时注意根据教学内容及时安排相应的训练,让学生能够逐步达到独立分析、完成证明.2.学生通过前面对三角形、四边形、圆等几何图形的学习,对于研究几何图形的基本问题、思路和方法已经形成了一定的认识.本章教学中要充分利用学生已有的研究几何图形的经验,用研究几何图形的基本套路贯穿全章的教学.例如,在教授本章之前,可以让学生类比对全等三角形研究的主要内容,提出对形状相同、大小不同的三角形应研究的主要问题和方法,构建本章内容的基本线索,使他们对将学习的内容做到心中有数.因此本章在教学相似三角形的性质之前,可以先让学生自己发现性质,再给出证明.3.相似是生活中常见的现象,日常生活中存在着相似的例子,相似图形的性质在实际生活中有着广泛的应用,能直接应用相似三角形的判定和性质的实例很多,教材中融入了许多实际背景问题,所以在教学中要注重数学与实际生活的联系,每个课时都让学生体会数学来源27.1图形的相似1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.3.了解成比例线段的含义,会判断是不是成比例线段.4.理解相似多边形的概念、性质及判定,并能计算和相似多边形有关的角度和线段的长.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习的兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.3.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.经历相似多边形概念的形成过程,培养学生的观察、推理能力,激发学生探究、发现数学问题的兴趣.3.在探索相似多边形的性质过程中,培养学生与他人交流、合作的意识和品质.4.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似图形、相似多边形的概念及特征.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】1.理解相似图形的特征,掌握识别相似图形的方法.2.探索相似多边形的性质中的“对应”关系.第课时1.通过具体实例认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的性质定理,掌握相似图形的判定定理.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似图形的概念的形成过程,培养学生观察能力及归纳总结能力.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.通过小组合作交流,培养学生共同探究的合作意识.3.通过识别生活中的相似图形,激发学生探究、发现数学问题的兴趣.【重点】理解并掌握相似图形的概念及特征.【难点】理解相似图形的特征,掌握识别相似图形的方法.【教师准备】多媒体课件1~2.【学生准备】预习教材P24~25.导入一:欣赏图片.【课件1展示】(1)汽车和它的模型(2)大小不同的两个足球(3)大小不同的两张照片【引导语】上面各组图片的共同之处是什么?这些图形涉及的就是我们这章要学习的相似形问题.导入二:请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星它们的形状、大小有什么关系?导入三:【复习提问】1.什么是全等形?全等形的形状和大小有什么关系?(能够完全重合的图形是全等形,全等形的形状相同、大小相等)2.判断下列图形是不是全等形?如何判断?(下列两幅图片均是全等形.判断依据:形状相同、大小相等)[设计意图]通过欣赏生活中的图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.在欣赏国旗上的五角星时,对学生进行爱国主义思想教育.同时通过复习[过渡语]在上面的全等形的图片中放大或缩小其中一张图片,得到的图片与另一张图片的形状和大小有什么关系?通过今天的学习,我们将认识这一类图形.思路一【思考1】以上展示的图片之间有什么特点?它们的形状和大小有怎样的关系?【师生活动】学生观察思考,教师引导点拨它们形状相同、大小不等.共同归纳本节课学习重点——相似形的概念.【结论】形状相同的图形叫做相似图形.【思考2】全等形一定是相似图形吗?相似图形一定全等吗?它们之间有什么关系? 【师生活动】学生通过观察导入中图片,独立思考后小组交流,教师对学生回答进行点评,归纳全等形与相似形之间的关系.【结论】全等图形是相似图形的一种特殊情况.全等图形一定相似,相似图形不一定全等.【思考3】你能举出现实生活中一些相似图形的例子吗?【师生活动】学生积极回答,通过生活中相似图形的实例巩固相似图形的概念,教师对思维活跃、积极参与的学生给予鼓励.思路二教师引导学生思考回答下列问题.(1)全等形的形状和大小之间有什么关系?(全等形的形状相同、大小相等)(2)观察上述图片,它们的形状和大小之间有什么关系?(形状相同、大小不等)(3)你能给出相似图形的定义吗?(形状相同的图形叫做相似形)(4)全等图形一定相似吗?相似图形一定全等吗?(全等图形一定相似,相似图形不一定全等)(5)归纳全等图形和相似图形之间的关系.(全等图形是相似图形的特例)(6)你能举出现实生活中一些相似图形的例子吗?【师生活动】学生在教师设置的问题下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.[设计意图]让学生亲自观察实际生活中的图形,在教师问题的引导下,进行分析、探究,根据图形特点归纳出相似形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似形概念的形成过程,体会数学与生活息息相关.二、相似图形的特征【课件2展示】观察下列每组图形,是不是相似图形?【思考】(1)两个相似的平面图形之间有什么关系?(2)两个相似图形的主要特征是什么?(3)如何判定两个图形是相似图形?(4)相似图形的大小是不是一定相等?(5)相似图形是否可以看作其中一个图形是由另一个图形放大或缩小得到的?【师生活动】学生观察独立思考,小组合作交流,展示小组成果,教师点评,共同归纳相似图形的特征.【结论】相似图形的特征是:形状相同.两个图形的形状相同,则两个图形就是相似图形.相似图形的大小不一定相等,其中一个图形可以看作是由另一个图形放大或缩小得到的. [设计意图]让学生通过观察思考、合作交流,共同归纳出相似形的特征,培养学生的观察能力、归纳总结能力及合作交流的能力,激发学生学习的兴趣,加深学生对相似图形的概念的理解和掌握.[过渡语]我们了解了相似形的概念和基本特征,让我们一起利用所学知识判断下列图形是不是相似图形.如图所示的是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?【思考】(1)在平面镜中的像与物体的形状 ,大小,则从平面镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).(2)哈哈镜里看到的形象,有的被“压扁”了,有的被“拉长”了,所以哈哈镜中的像与物体的形状 ,大小,则从哈哈镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).〔解析〕女孩从平面镜中看到的自己的形象是相似的;女孩从哈哈镜里看到的自己的形象不是相似的.〔答案〕(1)相同相等是(2)不同不相等不是【师生活动】学生独立思考回答,教师点评.观察下列图形,哪些是相似图形?第一组:第二组:【师生活动】教师引导、点拨、分析.要找出图中的相似图形,只要仔细观察每个图形特征,通过图形变化后是否具备“形状相同”这一特征.学生观察后回答即可.解:第一组图,图1,2,5是相似图形.第二组相似图形分别是:(1)和(8);(2)和(6);(3)和(7).[设计意图]通过经历对例题的探究过程,加深学生对相似形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.[知识拓展]所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.1.相似图形定义:形状相同的图形叫做相似图形.2.相似图形与全等形之间的关系.3.相似图形的特征:形状相同.1.下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似.其中正确的有()A.2个B.3个C.4个D.1个解析:所有的正方形的形状相同,所以③正确;直角三角形、等腰三角形、菱形的形状和内角有关,角度不同,图形的形状就不同,所以所有的直角三角形、所有的等腰三角形、所有的菱形不一定相似.故选D.2.下列图形是相似图形的是()A.①②③B.②③④C.①③④D.①②④解析:观察图形可得①②③中图形的形状相同.故选A.3.下列图形不是相似图形的是()A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图解析:某人的侧面照片和正面照片形状不相同,不是相似图形.故选C.4.如图所示,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换解析:相似图形的形状相同,其中一个图形可以看作是由另一个图形放大或缩小得到的.所以用放大镜放大图形属于相似变换.故选A.第1课时1.认识相似图形2.相似图形的特征3.例题讲解例1例2一、教材作业【必做题】教材第25页练习第1,2题.【选做题】教材第27页习题27.1第4题.二、课后作业【基础巩固】1.下列图形中,相似的一组图形是()2.下列属性中,是相似图形的本质属性的是()A.大小不同B.大小相同C.形状相同D.形状不同3.下列图形中,不是相似图形的有()A.0组B.1组C.2组D.3组4.下列四组图形中,一定相似的是()A.正方形和矩形B.正方形和菱形C.菱形与菱形D.正五边形与正五边形5.如图所示的是小华拍摄的足球的照片,下列说法不正确的是()A.足球上所有“黑片”形状相同B.足球上所有“白片”形状相同C.足球上“黑片”“白片”形状相同D.足球上“黑片”“白片”形状不相同6.放大镜下的图形和原来的图形相似图形.哈哈镜中的图形和原来的图形相似图形(填“是”或“不是”).7.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角是80°的两个等腰三角形;⑤两个正六边形;⑥有一个内角是100°的两个等腰三角形.其中一定是相似图形的是.8.如图所示,各组图形中相似的是.(只填序号)9.在实际生活和数学学习中,我们常会看到许多形状相同的图形,下图中,形状相同的图形有哪几组?10.如何将图中的图形ABCDE放大,使新图形的各顶点仍在格点上?【能力提升】11.用一个10倍的放大镜看一个15°的角,看到的角的度数是.12.在实际生活和数学学习中,我们常会看到许多形状相同的图形,在下图中,形状相同的图形有哪些?【拓展探究】13.用相似图形设计美丽的图案.生活中有许多形状相同的图形,我们可以用相似图形设计出各种各样的美丽图案.例如:已知如图(1)所示的是由相似的直角三角形拼成的一个商标图案,请你参照此图案用相似图形设计出几个你喜欢的图案,并联系实际为你的设计取一个合适的名字. (下面举两例供参考,如图(2)所示)【答案与解析】1.D(解析:观察各图形,只有D中两个图形形状相同,大小不相等.故选D.)2.C(解析:相似图形的形状相同,但大小不一定相同,所以形状相同是相似图形的本质属性.故选C.)3.B(解析:(1)中形状相同,但大小不同,符合相似形的定义;(2)中形状相同,但大小不同,符合相似形的定义;(3)中形状不相同,不符合相似形的定义;(4)中形状相同,符合相似形的定义.故不是相似图形的有1组.故选B.)4.D(解析:正方形和矩形的形状不一定相同,所以不一定相似;正方形和菱形的对应角不一定相等,所以不一定相似;菱形与菱形对应角不一定相等,所以不一定相似;正五边形与正五边形的形状相同,所以两个图形相似.故选D.)5.C(解析:“黑片”是正五边形,“白片”是正六边形,两个图形的形状不相同.故选C.)6.是不是(解析:放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不相似.)7.②⑤⑥(解析:两个平行四边形的角不一定相等,所以不一定相似;两个矩形的边不确定,所以不一定相似;80°的内角可能是顶角也可能是底角,所以形状不一定相同;两个圆、两个正六边形、一个内角是100°的两个等腰三角形的形状相同,所以图形相似.故填②⑤⑥.)8.②③(解析:观察图形可得:②③的形状相同,大小不相等.故填②③.)9.解:(1)中的左边图形是圆,右边图形是椭圆,形状不同;(2)中的左边是正六边形,右边不是正六边形,形状不同;(3)中的两个图形形状相同;(4)中的左边是长方形,右边的是正方形,形状不同;(5)中的两个图形形状相同;(6)中的左边是圆形脸,右边是椭圆形脸,形状不同,故(3),(5)组中的图形形状相同,(1),(2),(4),(6)组中的图形形状不同.10.如图所示.11.15°(解析:用放大镜看后的图形与原图形形状相同,大小不相等,角放大后度数不变.故填15°.)12.解:(1)和(3),(2)和(13),(4)和(11),(5)和(10),(6)(7)(8)和(9).13.解:答案不唯一,如图所示.本节课通过对生活中形状相同的图形的观察和欣赏导入新课,让学生体会数学来源于生活,激发学生学习的兴趣,同时感受数学和生活中的美,再让学生观察、思考、分析、探究,然后归纳结论,得出相似图形的特征,相似图形只与形状有关,与图形大小、位置无关,培养了学生观察事物的能力,提高了学生分析问题与归纳的能力,例题的探究让学生体会把实际问题转化为数学问题,获得成功的体验,在探究知识的形成过程中,学生积极参与,思维活跃,尤其在举生活中相似图形的实例时,学生发言积极,课堂气氛活跃,让课堂教学达到高潮.本节课比较简单,通过观察图形,形状相同的图形是相似图形,所以学生学习起来比较简单,所以学生在课堂上非常活跃,发言积极,虽然有些学生发言不够准确,但可以看出大家情绪高涨、积极思考的状态.但是在简单课时的教学中,忽略了学生能力的培养和知识的拓展,如在探究图形相似的特征后,可以让学生在网格图中画相似图形,培养学生动手操作能力.本节课的重点是通过欣赏图形,观察图形的特征,归纳总结相似图形的概念和特征,并能总结全等图形与相似图形之间的关系,由于课时内容较少,学生易于掌握,在教学时用多媒体多展示一些相似图形的图片,可以用一些图形不同的角度和方向的图片,培养学生的观察能力,同时在课堂上注重培养学生自主学习的能力,教师起到引导作用即可,让学生多参与、思考、归纳,通过小组合作交流,达到掌握知识的目的.练习(教材第25页)1.解:相似.2.解:(d)与(1)相似,(e)与(2)相似.(1)相似图形是现实生活中广泛存在的现象,本章是在研究了图形的全等及图形的一些变换后,进一步研究的一种变换——相似,本课时重点掌握相似图形的概念,可用大量的实例引入,让学生体会数学与实际生活之间的联系,通过学生观察、思考,得出相似图形的概念,但要注意教材中“形状相同的图形是相似图形”,只是对相似图形概念的一个描述,不是定义,还要强调:相似图形一定形状相同,与它的位置、颜色、大小无关;相似图形不仅仅指平面图形,也包括立体图形;两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.在教学中,要通过大量实例让学生观察、思考、归纳、辨析,从而理解和掌握相似图形的概念.(2)本节课内容比较简单,易理解掌握,所以在教学设计中注重培养学生的自主探究、合作交流能力,教师要大胆放手,学生通过自主学习,探索知识的形成过程,从而真正成为课堂的主人,享受成功的快乐.同时在课堂上注重培养学生的能力,如通过辨析图形是否为相似图形,探索相似图形的特征时,注重培养学生观察、分析问题、解决问题的能力.如图所示,下面右边的四个图形中,与左边的图形相似的是()〔解析〕因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180°后,再按一定比例缩小得到的,因此图C与左图相似.故选C.如图所示,下列四组图形中,两个图形相似的有A.1组B.2组C.3组D.4组〔解析〕观察图形可得,四组图形的形状都分别相同,只是大小不同,所以四组图形都是相似图形.故选D.第课时1.了解成比例线段的概念,会判断已知线段是否成比例.2.理解相似多边形的概念、性质及判定.3.能根据相似多边形的有关概念和性质进行判断及有关计算.1.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.2.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.经历相似多边形概念的形成过程,培养学生的观察、推理能力,激发学生探究及发现数学问题的兴趣.2.在探索相似多边形性质的过程中,培养学生与他人交流、合作的意识和品质.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似多边形的概念及性质.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】探索相似多边形的性质中的“对应”关系.【教师准备】多媒体课件.【学生准备】形状相同的两个三角尺及边长不等的两个正方形.导入一:如图所示的一块黑板,长3米,宽1.5米,加一7.5厘米宽的边框,边框外围与边框里边的矩形形状相同吗?【导入语】我们凭借“直观”感觉这两个矩形的形状相同,实际上这两个矩形的形状是不相同的,通过今天的学习,我们将知道这两个矩形的形状为什么不相同.导入二:如图所示,将△ABC用2倍放大镜观察得到△A1B1C1,这两个三角形相似吗?这两个三角形中的对应角、对应边之间有什么关系?导入三:如图所示,将四边形ABCD用2倍放大镜观察得到四边形A1B1C1D1,这两个四边形相似吗?这两个四边形中的对应角、对应边之间有什么关系?。

人教版九年级数学下册第二十七章27.2.1相似三角形的判定教学设计

人教版九年级数学下册第二十七章27.2.1相似三角形的判定教学设计

课堂教学设计表章节名称27.2.1相似三角形的判定学时 1学习目标课程标准:全日制义务教育数学课程标准本节(课)学习目标:知识和能力:掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,平行线分线段成比例定理和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似)。

过程和方法:经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力。

情感态度和价值观:体验探索三角形相似的过程,增强学生爱数学、探讨数学的乐趣。

学生特征学生敢于探索,对图形的变化有好奇心,大部分学生能对感兴趣的内容提出简单的问题。

部分学生有表达的自信心,能积极参加讨论,发表自己的见解。

个别学生则缺乏自信,较为胆怯,学习的主动意识不够,对意愿的表达较为模糊。

学习目标描述知识点编号学习目标具体描述语句27.2-127.2-227.2-3知识与能力过程与方法情感态度与价值观1、掌握相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例。

2、理解并掌握平行线分线段成比例定理和三角形相似的预备定理,并会应用计算。

3、培养合情推理能力,发展空间观念.1、初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。

2、经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。

1、积极参与数学活动,对数学有好奇心和求知欲。

2、感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。

3、在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值项目内容解决措施教学重点平行线分线段成比例定理和三角形相似的预备定理。

人教版九年级数学下册第二十七章相似数学活动优秀教学案例

人教版九年级数学下册第二十七章相似数学活动优秀教学案例
(五)教学内容与过程系统、全面,突出重点
本案例教学内容与过程设计系统、全面,涵盖了相似图形的定义、性质、判定方法、应用等方面。通过讲授新知、小组讨论、总结归纳等环节,突出重点,使学生深入理解相似图形的知识。
此外,本案例还注重以下方面的教学实践:
1. 结合课本知识,引导学生运用类比、归纳、演绎等数学思维方法,发现相似图形的性质和判定方法。
(二)讲授新知
1. 通过具体例子,引导学生观察、思考相似图形的特点,进而引出相似图形的定义和性质。
2. 结合课本,讲解相似图形的判定方法,如AA、SSS、SAS等,并通过实例进行解释。
3. 介绍相似变换的概念和性质,以及在实际中的应用。
(三)学生小组讨论
将学生分成小组,让他们探讨以下问题:
1. 生活中还有哪些相似图形的例子?
2. 鼓励学生运用信息技术手,提高学习效率。
3. 培养学生的探究精神,让他们在解决问题的过程中,体会成功带来的喜悦,树立自信心,形成积极向上的价值观。
(三)小组合作,提高团队协作能力
本案例重视小组合作,通过合理分组,确保每个学生在小组中发挥自己的优势。在小组合作过程中,学生共同探讨问题、分享经验,培养团队协作能力和沟通能力。
(四)注重反思与评价,提升自我认知
本案例强调学生的反思与评价,鼓励学生在课后总结学习经验,提高自我认知。同时,教师对学生的学习过程和结果进行全面评价,为学生提供有针对性的指导,帮助他们建立自信,激发学习动力。
二、教学目标
(一)知识与技能
1. 理解并掌握相似图形的定义、性质和判定方法,能运用相似知识解决实际问题。
2. 能够运用比例线段、相似多边形、相似三角形等知识,解决生活中的实际问题,如地图比例尺的计算、物体放大与缩小的比例等。

新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。

第一节课重点讲解了相似图形的概念和运用方法。

通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。

同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。

在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。

同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。

第二节课重点讲解了相似多边形的主要特征和识别方法。

老师让学生们了解到相似多边形的对应角相等,对应边的比相等。

通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。

总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。

通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。

在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。

这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。

如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。

在解决这个问题时,依靠直觉观察是不可靠的。

课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。

2.相似多边形的特征是对应角相等,对应边的比相等。

如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。

3.相似比是相似多边形对应边的比。

4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。

例1(补充)(选择题):下列说法正确的是D。

因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。

例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。

人教版九年级数学第27章《相似》全章导学案

人教版九年级数学第27章《相似》全章导学案

27.1 图形的相似-1(第一课时)教学目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.了解成比例线段的概念,会确定线段的比. 教学过程:一、预习检测案:相似图形的概念: 二、合作探究案:线段的比:两条线段的比,就是两条线段长度的比.成比例线段:对于四条线段,,,a b c d ,如果其中两条线段的比与另两条线段的比相等,如a cb d=(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段.例1如图,下面右边的四个图形中,与左边的图形相似的是( )例2一张桌面的长 1.25a m =,宽0.75b m =,那么长与宽的比是多少? (1)如果125a cm =,75b cm =,那么长与宽的比是多少? (2)如果1250a mm =,750b mm =,那么长与宽的比是多少?小结:上面分别采用,,m cm mm 三种不同的长度单位,求得的ab的值是________的,所以说,两条线段的比与所采用的长度单位______,但求比时两条线段的长度单位必须____. 三、达标测评案:1、下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的. 2、填空题形状 的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的 或 而得到的。

4.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm ,宽是_______cm ; (大)长是_______cm ,宽是_______cm ;(2)(小)=长宽 ;(大)=长宽 . (3)你由上述的计算,能得到什么结论吗? 3.观察下列图形,指出哪些是相似图形:5.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?6.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?27.1 图形的相似-2(第二课时)教学目标:知道相似多边形的主要特征:会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.一、预习检测案:(阅读教材P36页思考,回答以下问题)1、相似图形性质:2、成比例线段二、合作探究案:实验探究:如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等?结论:(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:∵∴(2)相似比:相似多边形________的比称为相似比.相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.三、达标测评案:1.ABC ∆与DEF ∆相似,且相似比是23,则DEF ∆ 与ABC ∆与的相似比是( ). A .23 B .32 C .25 D .492.下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个3.如图所示的两个五边形相似,求未知边a 、b 、c 、d 的长度.4.已知四边形ABCD 和四边形1111ABC D 相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形1111ABC D 的最短边的长是6cm ,那么四边形1111ABC D 中最长的边长是多少?6.如图,AB ∥EF ∥CD ,4CD=,9AB =,若梯形CDEF 与梯形FEAB 相似,求EF 的长.7.如图,一个矩形ABCD 的长ADacm =,宽AB bcm =,,E F 分别是,AD BC AD 的中点,连接,E F ,所得新矩形ABFE A 与原矩形ABCD 相似,求:a b 的值.27.2.1相似三角形的判定-1(第三课时)教学目标:会用符号“∽”表示相似三角形如ABC ∆ ∽'''A B C ∆ ;知道当ABC ∆ 与'''A B C ∆的相似比为k 时,'''A B C ∆与ABC ∆的相似比为1k.理解掌握平行线分线段成比例定理教学过程:一.预习检测案:1、相似多边形的主要特征是什么?相似三角形有什么性质?2、在相似多边形中,最简单的就是相似三角形.在ABC ∆与'''A B C ∆中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且k A C CAC B BC B A AB =''=''=''. 我们就说ABC ∆与'''A B C ∆相似,记作ABC ∆∽'''A B C ∆,k 就是它们的相似比. 反之如果ABC ∆∽'''A B C ∆,则有∠A=_____, ∠B=_____, ∠C=____, 且A C CAC B BC B A AB ''=''=''. 注意:(1)在相似多边形中,最简单的就是相似三角形。

新人教版九年级下册-第27章-相似-全章教案

新人教版九年级下册-第27章-相似-全章教案

初三数学九(下)第二十七章:相似第1课时图形的相似(1)教学目标:1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 认识图形的相似.教学难点: 理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)( 课本图27.1-2)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动: 学生观察思考,小组讨论回答;二. 通过练习巩固相似图形的概念活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三. 小结巩固活动3(1)谈谈本节课你有哪些收获.(2)课外作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。

课后反思:第2课时 图形的相似 (2)教学目标:1、 知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比; (2)掌握判定三角形相似的预备定理。

人教版九年级数学下册《第二十七章 相似》教案

人教版九年级数学下册《第二十七章 相似》教案

人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。

本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。

这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。

但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。

此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。

2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。

3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。

四. 教学重难点1.相似图形的定义和性质的理解。

2.相似三角形的性质和判定方法的掌握。

3.图形变换的熟练运用。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。

2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。

3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。

六. 教学准备1.多媒体教学设备。

2.实物模型和图片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。

2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。

3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。

可以提供一些提示和指导,帮助学生解决问题。

4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。

教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。

人教版九年级下册第二十七章相似教学设计

人教版九年级下册第二十七章相似教学设计
(三)情感态度与价值观
1.培养学生对几何图形的审美观念,激发他们对几何学的兴趣。
-通过展示美丽的几何图形,让学生感受几何图形的美,培养他们的审美情趣。
-通过解决实际问题,让学生体会几何学的实用价值,提高他们对几何学的兴趣。
2.培养学生勇于探索、积极思考的学习态度,形成良好的学习习惯。
-在教学过程中,注重鼓励学生提问、质疑,培养他们勇于探索的精神。
1.教学活动设计:
-以生活中的实例导入新课,如展示一组形状相似但大小不同的物体(如照片、玩具等),引导学生观察并思考它们之间的关系。
-提问:“同学们,你们在生活中遇到过形状相似但大小不同的物体吗?它们之间有什么共同特征?”
-通过学生回答,引出相似图形的概念。
2.教学目标:
-激发学生对相似图形的兴趣,调动他们的学习积极性。
-引导学生运用演绎推理和合情推理,证明相似图形的性质,提高他们的逻辑思维能力。
2.学会运用小组合作、讨论交流等学习方法,提高解决问题的能力。
-在课堂教学中,组织学生进行小组合作,共同探讨相似图形的问题,培养他们的团队协作能力和沟通能力。
-鼓励学生在课堂上积极发言,分享自己的思考过程和解决方案,提高他们的表达能力和自信心。
-结合实际案例,让学生了解相似在实际生活中的应用。
(三)学生小组讨论
1.教学活动设计:
-将学生分成小组,针对给定的问题或案例进行讨论,如相似三角形的判定、相似图形的应用等。
-各小组派代表分享讨论成果,其他小组进行评价和补充。
2.教学目标:
-培养学生的团队协作能力和沟通能力。
-通过讨论交流,巩固学生对相似图形性质的理解,提高他们解决问题的能力。
-对本节课的主要内容进行总结,强调相似图形的定义、判定方法及性质应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章 相似测试1 图形的相似学习要求1.理解相似图形、相似多边形和相似比的概念. 2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如dcb a =),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________.5.相似多边形的两个基本性质是____________,____________.6.比例的基本性质是如果不等于零的四个数成比例,那么___________.反之亦真.即⇔=d cb a ______(a ,b ,c ,d 不为零).7.已知2a -3b =0,b ≠0,则a ∶b =______.8.若,571=+x x 则x =______.9.若,532z y x ==则=-+x z y x 2______.10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( ) A .1种 B .2种 C .3种 D .4种三、解答题14.已知:如图,梯形ABCD 与梯形A ′B ′C ′D ′相似,AD ∥BC ,A ′D ′∥B ′C ′,∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF 上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN ∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边. 2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF ∽△ABC 表示△DEF 与△ABC ______,其中D 点与______对应,E 点与 ______对应,F 点与______对应;∠E =______;DE ∶AB =______∶BC ,AC ∶DF =AB ∶______.2.△DEF ∽△ABC ,若相似比k =1,则△DEF ______△ABC ;若相似比k =2,则=AC DF ______,=EFBC______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______. 4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_____ ____________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②;)(,)(BC AB AD AE AB AD == ③⋅==CABA BD AE DB AD )(,)( 二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式.(1)若△ADC ∽△CDB ;(2)若△ACD ∽△ABC ;(3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.8.已知:如图,AD ∥BE ∥CF .(1)求证:;DFDEAC AB (2)若AB =4,BC =6,DE =5,求EF .9.如图所示,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作MC 的平行线交AP 于D .求证:PA ∶PB =PC ∶PD .拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且23=DE AE ,CE 交BD 于点F ,BF =15cm ,求DF 的长.11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求BFAF; (2)若E 为AD 上的一点,且kED AE 1=,射线CE 交AB 于F ,求⋅BF AF测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似.2.如果两个三角形的______对应边的______,那么这两个三角形相似.3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相似.4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC和△A′B′C′中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.9题图10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AC2=DC·BCD.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5 B.8.2C.6.4 D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC 相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.拓展、探究、思考20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .m 3102.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .m 711 B .m 710 C .m 79 D .m 23 3.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )第3题图A .1.5mB .1.6mC .1.86mD .2.16m 4.如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( )第4题图A .3.85mB .4.00mC .4.40mD .4.50m 二、填空题5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m .第5题图6.如图所示,有点光源S 在平面镜上面,若在P 点看到点光源的反射光线,并测得AB=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.3.相似三角形的周长比等于______.4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______. 6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______. 9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______. 11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______. 12.在比例尺1∶1000的地图上,1cm 2所表示的实际面积是______. 二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A .9∶4B .4∶9C .3∶2D .81∶1614.如图所示,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点Q ,若△DQE 的面积为9,则△AQB 的面积为( )A .18B .27C .36D .4515.如图所示,把△ABC 沿AB 平移到△A ′B ′C ′的位置,它们的重叠部分的面积是△ABC 面积的一半,若2=AB ,则此三角形移动的距离AA '是( )A .12-B .22 C .1 D .21 三、解答题16.已知:如图,E 、M 是AB 边的三等分点,EF ∥MN ∥BC .求:△AEF 的面积∶四边形EMNF 的面积∶四边形MBCN 的面积.综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .18.已知:如图,□ABCD 中,E 是BC 边上一点,且AE BD EC BE ,,21相交于F 点.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S △BEF =6cm 2,求△AFD 的面积S △AFD .19.已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB .(1)当△CDE 的面积与四边形DABE 的面积相等时,求CD 的长; (2)当△CDE 的周长与四边形DABE 的周长相等时,求CD 的长.拓展、探究、思考20.已知:如图所示,以线段AB 上的两点C ,D 为顶点,作等边△PCD .(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB.(2)当△ACP∽△PDB时,求∠APB.21.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S△DOC =2∶3,求S△AOB∶S△COD.22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )A.(0,0),21B.(2,2),2C.(2,2),2D.(2,2),3综合、运用、诊断3.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.4.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D 点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考5.在已知三角形内求作内接正方形.6.在已知半圆内求作内接正方形.答案与提示第二十七章 相 似测试11.形状相同的图形.2.其中两条线段的比,另两条线段的比相等,比例线段. 3.对应角相等,对应边的比相等. 4.对应边的比,全等,⋅k1 5.对应角相等,对应边的比相等.6.两个内项之积等于两个外项之积,ad =bc .7.3∶2. 8.⋅259.1. 10.1 000.11.C . 12.B . 13.C .14.(1)k =2∶3;(2)A 'B '=9,BC =8;(3)3∶2. 15.⋅==750,730AE AD 16.相似.17.25=x 时,S 的最大值为⋅225测试21.相似,A 点,B 点,C 点,∠B ,EF ,DE .2.≌,2,⋅213.∽;k 1k 2.4.一边的直线,构成的三角形,相似. 5.①△ABC ;②AC ,DE ;③EC ,CE . 6.(1);BC CA BD CD CD AD == (2);BC CD AC AD AB AC == (3)⋅==ACCDBC BD BA BC 7.9.375cm .8.(1)提示:过A 点作直线AF '∥DF ,交直线BE 于E ',交直线CF 于F '. (2)7.5.9.提示:PA ∶PB =PM ∶PN ,PC ∶PO =PM ∶PN . 10.OF =6cm .提示:△DEF ∽△BCF . 11.(1);21=BF AF (2)1∶2k . 测试31.平行于,直线,相交. 2.三组,比相等. 3.两组,相应的夹角. 4.两个,两个角对应相等.5.△ABC ∽△A 'C 'B ',因为这两个三角形中有两对角对应相等. 6.△ABC ∽△A 'B 'C '.因为这两个三角形中有两对角对应相等.7.△ABC ∽△A 'B 'C ',因为这两个三角形中,有两组对应边的比相等,且相应的夹角相等.8.△ABC ∽△DFE .因为这两个三角形中,三组对应边的比相等. 9.6对. 10.6对.11.D . 12.D . 13.A .14.(1)△ADC ∽△CDB ,△ADC ∽△ACB ,△ACB ∽△CDB ;(2)略;(3);4,54,52===CD BC AC (4);36,33,3===BC CD AD(5)提示:AC ·BC =2S △ABC =AB ·CD .15.提示:(1)OD ∶OA =OF ∶OC ,OE ∶OB =OF ∶OC ;(2)OD ∶OA =OE ∶OB ,∠DOE =∠AOB ,得△ODE ∽△OAB ; (3)证DF ∶AC =EF ∶BC =DE ∶AB . 16.略.17.提示:连结AE 、ED ,证△ABE ∽△ECD . 18.提示:关键是证明△OBC ∽△ADB .∵AB 是⊙O 的直径,∴∠D =90°. ∵BC 是⊙O 的切线,∴OB ⊥BC . ∴∠OBC =90°.∴∠D =∠OBC .∵AD ∥OC ,∴∠A =∠BOC .∴△ADB ∽△OBC .⋅=∴CBBDOB AD ∴AD ·BC =OB ·BD . 19.提示:连接BF 、AC ,证∠CFB =∠CBE20.⋅=21FB AF 提示:过C 作CM ∥BA ,交ED 于M . 21.相似.提示:由△BHA ∽△AHC 得,ACBAAH BH =再有BA =BD ,AC =AE .则:,AE BD AH BH =再有∠HBD =∠HAE ,得△BDH ∽△AEH .22..2423+-=x y 提示:可证△APE ∽△ACB ,则⋅=ACAPBC PE则).10(6)458(43,45,43x x x y x AE x PE -++-+===测试41.A . 2.B . 3.A . 4.C .5.3. 6.12. 7.48mm .8.教师在黑板上写的字的大小约为7cm ×6cm(高×宽). 9.树高7.45m . 10..31AB B A ='' 11.∵EF ∥AC ,∴∠CAB =∠EFD .又∠CBA =∠EDF =90°,∴△ABC ∽△FDE .)m (2.181.11.1265.1≈⨯=⋅=∴⋅=∴BA DF BC DE DF BA DE BC 故教学楼的高度约为18.2m .12.(1)提示:先证EF ∶ED =1∶3.(2)略.测试51.相等,相似比. 2.相似比、相似比、相似比. 3.相似比. 4.相似比的平方.5.相似比.相似比的平方. 6.4∶5. 7.5∶2,25∶4. 8.1∶2,1∶4. 9..2:1,2:1 10..4:3,2:3 11..4:3,2:3 12.100m 2.13.C. 14.C . 15.A . 16.1∶3∶5. 17.(1)提示:证△ABC ∽△BCD ;(2).215a - 18.(1);31 (2)54cm 2. 19.(1);22 (2)⋅724 20.(1)CD 2=AC ·DB ;(2)∠APB =120°. 21.4∶9 22.BP =2,或,311或9. 当BP =2时,S △ABP ∶S △PCD =1∶9;当311=BP 时,S △ABP ∶S △DCP =1∶4;当BP =9时,S △ABP :S △PCD =9∶4.测试61.略. 2.C .3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1));32,2(),2,3(+A E(2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)图16作法:(1)在AB 上任取一点G ',作G 'D '⊥BC ;(2)以G 'D '为边,在△ABC 内作一正方形D 'E 'F 'G ';(3)连结BF ',延长交AC 于F ;(4)作FG ∥CB ,交AB 于G ,从F ,G 各作BC 的垂线FE ,GD ,那么DEFG 就是所求作的内接正方形.方法2:利用代数解析法作图(图17)图17(1)作AH (h )⊥BC (a );(2)求h +a ,a ,h 的比例第四项x ; (3)在AH 上取KH =x ;(4)过K 作GF ∥BC ,交两边于G ,F ,从G ,F 各作BC 的垂线GD ,FE ,那么DEFG 就是所求的内接正方形. 6.提示:正方形EFGH 即为所求.第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( )第1题图A .32 B .41 C .31D .21 2.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .21=BC DE B .21=∆∆的周长的周长ABC ADEC .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )第4题图A .1B .23 C .2 D .25 5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .BC DEDB AD =B .ADEFBC BF =C .FC BF EC AE =D .BCDEAB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .PA ·AB =PC ·PB B .PA ·PB =PC ·PD C .PA ·AB =PC ·CD D .PA ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个 D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______. 三、解答题13.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长.14.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点,AD =4cm ,DB =9cm ,求CB 的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值;(2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.(1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?答案与提示第二十七章 相似全章测试1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A .9.4.8m . 10.⋅3111.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ; (2)△ABC ∽△CDE ,DE =1.5. 14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x 当∠ADE 为底角时:⋅=21AE 19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y(2)1130=t 或;1350 (3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S (3)当x =3时,S 最大值33=.。

相关文档
最新文档