压电结构纤维及复合材料
压电纤维复合材料的研究与应用

压电纤维复合材料的研究与应用XXX湖北工程学院湖北孝感432000摘要:本文概述了压电纤维的制备工艺,总结了压电陶瓷纤维研究已取得的成果,阐明了各种制备方法的优缺点及其改进的办法,并对压电纤维及其复合材料的研究进行了概述以及对应用前景进行了展望。
关键词:压电陶瓷纤维;制备;应用1引言压电材料是在外力作用下发生变形时能产生电场,同时在电场作用下也能产生机械变形的材料。
这类材料所固有的机一电耦合效应,使得压电材料广泛应用于传感和驱动领域中,但是传统压电陶瓷产品的一些缺点限制了它在实际中的应用。
20世80年代,人们开始研究压电陶瓷纤维的制备技术,并将纤维与聚合物基质复合制成压电复合材料。
由于添加了聚合物相,所以它既保留了原有压电材料灵敏度高、频响高的优点,又大大改善了压电陶瓷脆性大、柔软性差的缺点,而且纤维材料具有的方向性,更适合于各项异性的应力波检测。
目前,国外正致力于压电纤维复合材料技术研究,关于压电纤维制备的论文颇多,有些技术已得到了广泛的商业应用。
例如,美国的研究人员正在积极开展其在飞机、超轻质量太空船和汽车等方面的应用,另外,以其为核心技术的传感器是目前进行工程结构健康监测的最先进方法,对于非均质材料及真实表面尤为适用。
与国外的先进水平相比,国内对压电陶瓷纤维的研究还只是处于起步阶段。
2压电陶瓷纤维的制备方法2.1 溶胶-凝胶法制备陶瓷纤维传统的方法一般是将氧化物原料加热到熔融状态,熔融纺丝成形。
然而,许多特种陶瓷材料熔点很高,熔体粘度很低,难以用传统方法制备,而溶胶-凝胶法(sol -gel method)的出现解决了这一难题。
溶胶—凝胶工艺的主要特点有:(1)可在较低温度下得到功能陶瓷纤维;(2 )可以制得均匀性好、纯度高的纤维;(3)可以获得一些熔融法难以制备的纤维。
Sol-gel法以无机盐或金属醇盐为原料,将前驱物溶于溶剂中形成均匀溶液,达到近似分子水平的混合;前驱物在溶剂中发生水解及醇解反应,同时进行缩聚反应,得到尺寸为纳米级的线性粒子组成的溶胶。
压电结构纤维及复合材料完整版

压电结构纤维及复合材料完整版压电材料是指具有压电效应的功能材料,具有压电效应的材料在外加电场、机械应力或温度变化下,能够产生电荷分离和电荷累积,从而实现相应的机电耦合效应。
压电材料的应用非常广泛,包括传感器、驱动器、能量转换和微机电系统等领域。
压电材料主要有陶瓷和聚合物两种。
陶瓷压电材料具有优异的压电性能,但是脆性较大,不易加工成复杂形状,而聚合物压电材料则具有良好的可塑性和可加工性。
在聚合物压电材料中,压电结构纤维及复合材料是非常有潜力的应用材料。
压电结构纤维的制备主要通过改性聚合物纺丝方法来实现。
首先,选择适量的压电材料和聚合物基体进行混合,并通过化学方法将压电材料与聚合物基体进行键合,形成复合材料。
然后,将混合物进行熔融,并通过纺丝设备将熔融物拉伸成细丝状。
最后,经过拉伸、冷却和固化等过程,得到压电结构纤维。
压电结构纤维具有良好的可塑性和可加工性,可以通过编织、织物和编织等方式制备成各种形状的材料。
第一,良好的机电耦合效应。
压电材料在外加电场、机械应力或温度变化下能够产生电荷分离和电荷累积,从而实现相应的机电耦合效应。
压电结构纤维及复合材料能够将这种机电耦合效应发挥到极致,实现更高的敏感度和效率。
第二,良好的柔性和可塑性。
由于采用了聚合物基体和改性聚合物纺丝方法制备,压电结构纤维及复合材料具有良好的柔性和可塑性,可以根据需要制备成各种形状和尺寸的材料,非常适合于电子器件和结构件的应用。
第三,多功能性。
压电结构纤维及复合材料不仅具有压电性能,还可以具有其他功能,比如导电、抗静电、磁性和光学性能。
通过控制材料的组成和制备工艺,可以实现多种功能的组合,从而满足不同应用的需求。
第四,广泛的应用领域。
压电结构纤维及复合材料在传感器、驱动器、能量转换和微机电系统等领域具有广泛的应用潜力。
比如,可以制备出高性能的声发射传感器、振动能量收集器和柔性电子器件等,为人们的生活和工作提供更多便利。
总之,压电结构纤维及复合材料是一种具有良好机电耦合效应、柔性和可塑性的多功能材料,具有广泛的应用前景。
压电复合材料

压电复合材料压电复合材料是一种具有压电效应的复合材料,由于其在传感器、换能器等领域具有广泛的应用前景,因此备受关注。
压电复合材料由压电陶瓷和复合材料两部分组成,具有良好的压电性能和优异的力学性能。
本文将从压电复合材料的材料特性、制备工艺、应用领域等方面进行介绍。
首先,压电复合材料具有优异的压电性能。
压电效应是指在外加电场作用下,材料会产生机械应变;反之,在外加机械应力作用下,材料也会产生电荷。
这种双向的耦合效应使得压电复合材料在传感器、换能器等领域具有广泛的应用前景。
其次,压电复合材料还具有良好的力学性能,具有较高的强度和刚度,能够满足不同工程领域的需求。
其次,压电复合材料的制备工艺主要包括材料选择、成型工艺和制备工艺等几个方面。
首先,在材料选择上,需要选择具有良好压电性能的陶瓷材料,并与复合材料进行复合,以确保材料具有良好的力学性能。
其次,在成型工艺上,可以采用注塑成型、压延成型等工艺,以获得所需形状的压电复合材料。
最后,在制备工艺上,需要进行烧结、热压等工艺,以确保压电复合材料具有良好的压电性能和力学性能。
最后,压电复合材料在传感器、换能器等领域具有广泛的应用。
在传感器方面,压电复合材料可以用于压力传感器、加速度传感器等领域,具有灵敏度高、频率响应宽等优点。
在换能器方面,压电复合材料可以用于声波换能器、超声波换能器等领域,具有转换效率高、频率稳定等优点。
因此,压电复合材料在工程领域具有广泛的应用前景。
综上所述,压电复合材料具有优异的压电性能和良好的力学性能,其制备工艺简单可行,应用领域广泛。
随着科学技术的不断发展,相信压电复合材料将会在工程领域发挥越来越重要的作用。
压电纤维复合材料的研究与应用

压电纤维复合材料的研究与应用xxxx湖北工程学院湖北孝感432000摘要:本文概述了压电纤维的制备工艺,总结了压电陶瓷纤维研究已取得的成果,阐明了各种制备方法的优缺点及其改进的办法,并对压电纤维及其复合材料的研究进行了概述以及对应用前景进行了展望。
关键词:压电陶瓷纤维;制备;应用1引言压电材料是在外力作用下发生变形时能产生电场,同时在电场作用下也能产生机械变形的材料。
这类材料所固有的机一电耦合效应,使得压电材料广泛应用于传感和驱动领域中,但是传统压电陶瓷产品的一些缺点限制了它在实际中的应用。
20世80年代,人们开始研究压电陶瓷纤维的制备技术,并将纤维与聚合物基质复合制成压电复合材料。
由于添加了聚合物相,所以它既保留了原有压电材料灵敏度高、频响高的优点,又大大改善了压电陶瓷脆性大、柔软性差的缺点,而且纤维材料具有的方向性,更适合于各项异性的应力波检测。
目前,国外正致力于压电纤维复合材料技术研究,关于压电纤维制备的论文颇多,有些技术已得到了广泛的商业应用。
例如,美国的研究人员正在积极开展其在飞机、超轻质量太空船和汽车等方面的应用,另外,以其为核心技术的传感器是目前进行工程结构健康监测的最先进方法,对于非均质材料及真实表面尤为适用。
与国外的先进水平相比,国内对压电陶瓷纤维的研究还只是处于起步阶段。
2压电陶瓷纤维的制备方法2.1 溶胶-凝胶法制备陶瓷纤维传统的方法一般是将氧化物原料加热到熔融状态,熔融纺丝成形。
然而,许多特种陶瓷材料熔点很高,熔体粘度很低,难以用传统方法制备,而溶胶-凝胶法(sol -gel method)的出现解决了这一难题。
溶胶—凝胶工艺的主要特点有:(1)可在较低温度下得到功能陶瓷纤维;(2 )可以制得均匀性好、纯度高的纤维;(3)可以获得一些熔融法难以制备的纤维。
Sol-gel法以无机盐或金属醇盐为原料,将前驱物溶于溶剂中形成均匀溶液,达到近似分子水平的混合;前驱物在溶剂中发生水解及醇解反应,同时进行缩聚反应,得到尺寸为纳米级的线性粒子组成的溶胶。
压电复合材料

压电复合材料摘 要: 从压电材料的压电效应入手, 介绍了压电材料的分类及结构组成。
针对不同压电材料在生产实践中的应用情况, 列出现阶段压电材料的制备技术。
综述了近年来压电材料的研究现状, 并系统介绍了压电材料在各个领域的应用和发展。
关键词:压电材料;压电效应;制备工艺;应用Abstract: This paper begins with the piezoelectric effect and introduces the classification and structure of piezoelectric materials. Considering the application of different piezoelectric materials in the production practice, preparative techniques of piezoelectric material in the current stage are listed. Research actuality of piezoelectric materials is summaried. Application and development of the piezoelectric materials in various Fields are also introduced systematically.Keywords: piezoelectric material; piezoelectric effect; preparative technique; application1.引言自20世纪出现压电材料以来, 因其独特性能,逐渐成为材料领域中的重要组成部分。
随着电子、导航和生物等高技术领域的发展, 人们对压电材料性能的要求越来越高。
目前, 研究和开发压电材料主要是从老材料中发掘新效应, 开拓新应用; 从控制材料组织和结构入手,运用新工艺制备各种新型压电材料。
1—3型压电纤维复合材料结构参数对驱动性能的影响

Ab ta t src Th i iee e e tme h d i a o t d t d 1 h c o ee to e a i mo e f - iz e e t i f e fn t lm n t o d p e O mo e emir - lc r me h n c S t d l 3 pe o l c r i o 1 c —
叉指 形电极 关键尺 寸、 两相 结构尺寸对驱动性能的影响。结果表 明 : 支电极 中心距 P一定 时, 分 取较 大的分支 电极 宽 度 W 可得 到较 大的 自由应 变和 夹持应 力; 3分支 电极宽度 W不 变时, p w 的增加 , " - 随 / 自由应 变增加 而夹持应 力减小 ; 采用交叉指形 电极 结构 可使 13型压电纤维复合材料 具有较 高的横观 各向异性 , 向效应 系数 可提 高 2 3倍。较 小 - 横 . 的聚合物层厚度 a 纤维截 面尺 寸 f 、 有助 于提 高压 电纤维复合材料 的驱动性 能, 小的纤维 间聚合 物宽度 b有助 于提 较
压电纤维复合材料的研究

( 蚰j gU i ri f eoat sadA t n u c , 蚰j g 10 6 N i n esyo A rnui n so t s N i 2 0 1 ) n v t c ra i n
A s a t I re a et c aigs a n t s f nedg ae lc o e (D b t c nod r ori eat t t i a ds eso t ii t e t d s I E)peolc i f e r t s h u n rn r i r t d er i eetci r z r b
维普资讯
・
计算材料学 ・
压 电纤 维 复 合 材 料 的研 究
刘永 刚 沈 星 赵 东标
201 ) 10 6
裘 进 浩
( 南京航空航 天大学 , 南京
文
摘
以提 高 交叉指 形 电极 压 电纤 维复合 材 料诱 导应 变和挟 持 应 力为 目的 , 用有 限元软 件 A S S分 采 NY
I tr ii td E e to e iz ee ti i e mp sts n edgt e l cr d sP e o l crc F b rCo o i a e
LuY ngn i oga g
S e ig hnXn
Z a ogio hoD nba
QuJ ho i i a n
sn e o fI r i r a i g wi t fI ig p r d o DE o nce sn d h o DE d v l me r to o b r mo g t e c mpo ie i n a ou a i ff e s a n o i h st .
与 传统 的平 面压 电 陶瓷驱 动器 相 比 , 电纤维 复合 材 压
压电结构纤维及复合材料.

[1]Brei D, Cannon B J. Piezoceramic hollow fiber active composites[J]. Composites Science andTechnology, 2004, 64(2):245-261.图1 中空压电纤维一、背景介绍一般压电纤维复合材料中的压电纤维为实心截面,当驱动该类压电复合材料时,电极放在基体表面,电场因需要穿透非导电基体因而其达到压电纤维时产生大的损耗,因而需要高的驱动电压。
另外,该类复合材料的基体必须用不导电材料,这限制了其的应用范围。
中空压电纤维复合材料可以降低驱动电压,并且基体材料选择广泛,可以涵盖不导电的环氧树脂和各类导电的金属材料。
本文讨论了中空圆环形截面压电纤维的制造和应用,以及纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性问题。
Thin-wall纤维最理想,但存在严重的可靠性问题。
总之,对中空压电纤维复合材料,要同时考虑压电纤维品质、制造及可靠性问题。
空心压电纤维复合材料驱动用31模式,实心压电纤维复合材料用33模式。
尽管31模式纵向应变比33模式小一半,但所需驱动电压仅需33模式的1/10或更少。
传统的制备技术可以制备出壁厚在压电材料晶粒尺寸量级的中空纤维,但是长度仅有10mm或更短。
混合共挤技术可以制备100mm以上的空心纤维。
目前对中空压电纤维复合材料的研究大多限于利用短纤维的径向应变(水声听音设备),本文则研究利用纵向应变。
目前对中空纤维的研究主要内容如下:(1)纤维壁内的电场分布(2)电场和应变之间的关系。
本文主要研究(3)纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性影响(4)中空纤维质量对复合材料制备和性能的影响。
二、单个纤维及层板的有效性质中空纤维中的电场:tw E V /t = thin-wall approximationVE(r)r ln(1)-=--α在这篇文献里没有提到这个公式是近似的,还用这个公式计算了各种厚度的中空纤维的电场,但在后面Lin 和Sodano 的文献中,似乎说为近似的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电结构纤维及复合材料Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998[1]Brei D, Cannon B J. [J]. Composites Science and Technology, 2004, 64(2):245-261.图1 中空压电纤维一、背景介绍一般压电纤维复合材料中的压电纤维为实心截面,当驱动该类压电复合材料时,电极放在基体表面,电场因需要穿透非导电基体因而其达到压电纤维时产生大的损耗,因而需要高的驱动电压。
另外,该类复合材料的基体必须用不导电材料,这限制了其的应用范围。
中空压电纤维复合材料可以降低驱动电压,并且基体材料选择广泛,可以涵盖不导电的环氧树脂和各类导电的金属材料。
本文讨论了中空圆环形截面压电纤维的制造和应用,以及纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性问题。
Thin-wall纤维最理想,但存在严重的可靠性问题。
总之,对中空压电纤维复合材料,要同时考虑压电纤维品质、制造及可靠性问题。
空心压电纤维复合材料驱动用31模式,实心压电纤维复合材料用33模式。
尽管31模式纵向应变比33模式小一半,但所需驱动电压仅需33模式的1/10或更少。
传统的制备技术可以制备出壁厚在压电材料晶粒尺寸量级的中空纤维,但是长度仅有10mm或更短。
混合共挤技术可以制备100mm以上的空心纤维。
目前对中空压电纤维复合材料的研究大多限于利用短纤维的径向应变(水声听音设备),本文则研究利用纵向应变。
目前对中空纤维的研究主要内容如下:(1)纤维壁内的电场分布(2)电场和应变之间的关系。
本文主要研究(3)纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性影响(4)中空纤维质量对复合材料制备和性能的影响。
二、单个纤维及层板的有效性质中空纤维中的电场:tw E V /t = thin-wall approximationV E(r)r ln(1)-=--α 在这篇文献里没有提到这个公式是近似的,还用这个公式计算了各种厚度的中空纤维的电场,但在后面Lin 和Sodano 的文献中,似乎说为近似的。
在一般情况,由该表达式电场内表面大外表面小,最大与最小差值随α增加而增大,这样在外表面达到极化时,内表面处材料有可能由于大的电场产生的应力而损坏。
同样在驱动中空纤维时,在外表面难以达到最大工作电压。
因此,α小的中空纤维是一个好的选择。
纤维有效31d :F 31tw 31,eff tw d E d E ln(1)(1/0.5)-⎛⎫ε== ⎪-αα-⎝⎭,F 31,eff d 随着α的增加而降低,即薄壁中空纤维可以产生高的应变。
单层有效31d :讨论:(1)纤维密度(纤维数/能放入的最大纤维数)代替纤维体积分数,f f (2)⎫ν=-αα⎪⎭,通 过计算发现,thin-wall 纤维虽然d31最高,但由于体积分数的限制,不能使单层达到最高的d31;thick-wall 纤维虽d31不及thin-wall ,但由于可以达到高的体积分数,因而层板的d31较大。
(2)层板d31随基体模量增加而降低。
最大基体模量由单个纤维能承受的嵌入应力决定,嵌入应力由制备过层中基体与纤维的热应变差别引起(两种材料热膨胀系数不匹配)。
纤维的环向、轴向和Von Mises 应力由作者另一篇研究工作给出。
研究表明:硬的基体容易导致纤维发生强度破坏,而软的环氧树脂基体容许各种α和f ν而不发生强度破坏。
三、中空纤维制备与评估:上面的研究表明,α和材料性质(模量和d31)决定了中空复合材料的应变行为,而嵌入应力条件限制了基体材料的选择。
这节讨论microfabrication by coextrusion(MFCX),这种方法对各种陶瓷材料,制备晶粒尺度的任意横截面的纤维具有很高的成功率。
(1)ovality(椭圆度)=最大直径偏差/名义直径(2)eccentriclty(偏心度)=孔的偏差/直径以上两个参数是重要的,它们直接影响壁厚,导致壁内电场的变化(3)straightness(直线度),由curvature(曲率)和waviness(波动)表示(4)material property evaluation:包括所制备材料的空隙率、密度、d31、和模量四、中空纤维制备与评估:Thin-wall纤维强度较差因而会对复合材料可靠性带来影响。
五、中空纤维与实心纤维的比较实心纤维驱动电压要求很高,因而工程应用不方便。
空心纤维如果电极破裂丧失了电连通性,纤维就失效了,在这种情况下,实心纤维比空心的强。
[2]Beckert W, Kreher W, Braue W, Ante M. Effective properties of composites utilizing fibreswith a piezoelectric coating[J]. Journal of the European Ceramic Society, 2001, 21(10-11):1455-1458.hybird fiber with an inactive core and a piezoelectric coating, the piezoelectric inactive core provides the mechanical support, and improve mechanical stability. An electrical potential different between an inner and an outer electrode layer gives rise to an actuating electric field. A corresponding axial deformation of the fiber is induced by the 31-coupling of the piezomaterial. core fiber: glass, SiC, steel结果:3种方法比较,d33与bulk fiber比较。
多几层薄的压电层(),然后加反向电压,控制起来灵活性更大(究,压电陶[3] Dai Q L, Ng K. Investigation of electromechanical properties of piezoelectric structural fibercomposites with micromechanics analysis and finite element modeling[J]. Mechanics ofMaterials, 2012,53:29-46.用细观力学和有限元法(利用了双周期条件+能量方法)方法研究压电结构纤维复合材料(piezoelectric structural fiber composites ),纤维纵向极化,芯材为SiC 和C 且不充当电极。
the monolithic piezoceramic materials such as lead-based ceramics are brittle by nature. The fragile property makes them vulnerable to accidental breakage during operations, and difficult to apply to curved surfaces and harsh environments with reduced durability.(陶瓷材料易碎)。
金属芯:platinum ,the metal core can reinforce the composite and serve as electrode.但两者热膨胀性能的不匹配容易使涂层断裂(问题:热分析)。
也可用导电的碳和碳化硅,但在碳和碳化硅表面的压电涂层如果太薄,使在采集轴向纤维的电场很困难,这也是本文的着眼点。
对有效性能预测,本文强调MT 方法与实验结果最为接近。
the aspect ratio, α of PSF is defined as the shell thick, t divided by the outer radius, r. The volume fraction of the PSF is the volume ratio of fibers with the whole laminate.传感模式的基本方程驱动模式的基本方程如果3方向是极化方向,12方向是横观各向同性面,则本文利用驱动模式方程,由1kq kp pq ijk imn mnjk e d C ,d e C -==得到了传感模式方程的d 33.Mori-Tanaka approach only considers the volume fraction and excludes the inclusion shape and size effects on the composite properties. Extended rule of mixture: the inclusion shape and size effects of each phase were considered.最初的混合率是对两相复合材料的,扩展的混合率用于研究三相复合材料,其实质就是应用两次针对两相材料的混合率。
[4] Dinzart F, Sabar H. Electroelastic behabior of piezoelectric composites with coatedreinforcements: micromechanical approach and applications[J]. International Journal ofSolids and Structures, 2009, 46(20):3556-3564.[5] Lin Y, Sodano H A. Concept and model of a piezoelectric structural fiber for multifunctionalcomposites[J]. Composites Science and Technology, 2008,68(7-8): 1911- 1918.这篇文献intrduction 写得好。
this paper introduces a novel active piezoelectric structuralfiber that can be laid up in a in a composite material to perform sensing and actuation, in addition to providing load bearing functionality. 建立了一维模型,结果表明,包含压电结构纤维的复合材料层板可以达到压电材料70%的耦合系数。