最新导数的概念及运算
第14讲、导数的概念与运算(教师版)2025高考数学一轮复习讲义

第14讲导数的概念与运算知识梳理知识点一:导数的概念和几何性质1、概念函数()f x 在0x x =处瞬时变化率是0000()()limlim x x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近;③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率,即00000()()()lim lim x x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.2、几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3、物理意义函数()s s t =在点0t 处的导数0()s t '是物体在0t 时刻的瞬时速度v ,即0()v s t '=;()v v t =在点0t 的导数0()v t '是物体在0t 时刻的瞬时加速度a ,即0()a v t '=.知识点二:导数的运算1、求导的基本公式基本初等函数导函数()f x c =(c 为常数)()0f x '=()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠,()ln x f x a a'=()log (01)a f x x a a =>≠,1()ln f x x a'=()xf x e =()xf x e '=()ln f x x =1()f x x'=()sin f x x =()cos f x x '=()cos f x x=()sin f x x'=-2、导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±;(2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+;(3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=.3、复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:【解题方法总结】1、在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2、过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.必考题型全归纳题型一:导数的定义【例1】(2024·全国·高三专题练习)已知函数()y f x =的图象如图所示,函数()y f x =的导数为()y f x '=,则()A .(2)(3)(3)(2)f f f f <'<-'B .(3)(2)(3)(2)f f f f <'<-'C .(2)(3)(2)(3)f f f f <-'<'D .(3)(3)(2)(2)f f f f <-'<'【答案】D【解析】由()f x 图象可知()()()()''323221f f f f -<<-,即()()()()''3322f f f f <-<.故选:D【对点训练1】(2024·云南楚雄·高三统考期末)已知某容器的高度为20cm ,现在向容器内注入液体,且容器内液体的高度h (单位:cm )与时间t (单位:s )的函数关系式为3213h t t =+,当t t =0时,液体上升高度的瞬时变化率为3cm/s ,则当01t t =+时,液体上升高度的瞬时变化率为()A .5cm/sB .6cm/sC .8cm/sD .10cm/s【答案】C【解析】由3213h t t =+,求导得:22h t t '=+.当t t =0时,20023h t t '=+=,解得01t =(03t =-舍去).故当012t t =+=时,液体上升高度的瞬时变化率为22228cm/s +⨯=.故选:C【对点训练2】(2024·河北衡水·高三衡水市第二中学期末)已知函数()f x 的导函数是()f x ',若()02f x '=,则0001()()2lim x f x x f x x∆→+∆-=∆()A .12B .1C .2D .4【答案】B【解析】因为()02f x '=所以00000Δ0Δ011(Δ)()(Δ)()1122lim lim ()11Δ22Δ2x x f x x f x f x x f x f x x x→→'+-+-===故选:B【对点训练3】(2024·全国·高三专题练习)若函数()f x 在0x 处可导,且()()0002lim12x f x x f x x∆→+∆-=∆,则()0f x '=()A .1B .1-C .2D .12【答案】A【解析】由导数定义可得()()()00002lim 2x f x x f x f x x∆→+∆-'=∆,所以()01f x '=.故选:A .【对点训练4】(2024·高三课时练习)若()f x 在0x 处可导,则()0f x '可以等于().A .()()000lim x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆--∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】A【解析】由导数定义()()()0000=lim x f x x f x x xf ∆→+∆-∆',对于A ,()()()()()()00000000=lim limx x f x f x x f x f x x f x x x x x∆→∆→--∆-=--∆'-∆∆,A 满足;对于B ,()()()()()()()00000000lim lim2=x x f x x f x x f x x f x x x x x x x xf ∆→∆→+∆--∆+∆--∆=+∆--∆∆',()()()00001=lim2x f f x x f x x x x∆→+∆--∆∆',B 不满足;对于C ,()()()()()()()0000000022lim =l =im23x x f x x f x x f x x f x x x x x x xf x ∆→∆→-+∆-∆+∆--∆+'∆--∆∆,()()()000021lim3=x f x x f x f x x x∆→+--∆'∆∆,C 不满足;对于D ,()()()()()()()0000000022lim lim23=x x f x x f x x f x x f x xx x x x x xf ∆→∆→+∆--∆+∆--∆=+∆--∆∆',()()()0000132=limx f x x f x x x f x∆→+∆--∆'∆,D 不满足.故选:A.【解题方法总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出.题型二:求函数的导数【例2】(2024·全国·高三专题练习)求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=(4)()f x =【解析】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '=【对点训练5】(2024·高三课时练习)求下列函数的导数:(1)()2321cos y x x x =++;(2)y (3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【解析】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x-=+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x '⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3xxy x x x '''=+-⋅()313ln 3sin 3cos 3log e xx x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x ''-'''=+⋅+21=e cos e sin cos x x x x x-+.【对点训练6】(2024·海南·统考模拟预测)在等比数列{}n a 中,32a =,函数()()()()12512f x x x a x a x a =---L ,则()0f '=__________.【答案】16-【解析】因为()()()()()()()1251251122f x x x a x a x a x x a x a x a '⎛⎫''=---+---⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎝⎭L L ()()()()()()1251251122x a x a x a x x a x a x a '=-⋅--+---⎡⎤⎡⎤⎣⎦⎣⎦L L ,所以()125102f a a a '=-L .因为数列{}n a 为等比数列,所以2152434a a a a a ===,于是()21042162f '=-⨯⨯=-.故答案为:16-【对点训练7】(2024·辽宁大连·育明高中校考一模)已知可导函数()f x ,()g x 定义域均为R ,对任意x 满足()21212f x x g x x ⎛⎫+=- ⎪⎝⎭,且()11f =,求()112f g ⎛⎫''+= ⎪⎝⎭__________.【答案】3【解析】由题意可知,令1x =,则()211211112f g ⎛⎫+⨯⨯⨯=- ⎪⎝⎭,解得()111222f g ⎛⎫=-=- ⎪⎝⎭,由()21212f x x g x x ⎛⎫+=- ⎪⎝⎭,得()()()221122122f x x g x x g x x '⎡⎤⎛⎫⎛⎫'''++=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即()2114122f x xg x x g x ⎛⎫⎛⎫''++=⎪ ⎪⎝⎭⎝⎭,令1x =,得()211141111122f g g ⎛⎫⎛⎫''+⨯⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,即()1114122f g g ⎛⎫⎛⎫''++= ⎪ ⎝⎭⎝⎭,解得()111114143222f g g ⎛⎫⎛⎫⎛⎫''+=-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:3.【对点训练8】(2024·河南·高三校联考阶段练习)已知函数()f x 的导函数为()f x ',且()()212f x x f x '=++,则()1f '=______.【答案】1-【解析】因为()()212f x x f x '=++,则()()211f x xf ''=+,故()()1211f f ''=+,故()11f '=-.故答案为:1-.【对点训练9】(2024·全国·高三专题练习)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.【答案】-2【解析】由函数2()(0)e e x x f x f -'=-求导得:2()2(0)e e x x f x f -''=+,当0x =时,(0)2(0)1f f ''=+,解得(0)1f '=-,因此,2()e e x x f x -=--,所以(0)2f =-.故答案为:-2【解题方法总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题.题型三:导数的几何意义方向1、在点P 处切线【例3】(2024·广东广州·统考模拟预测)曲线()321y x =-在点()1,1处的切线方程为__________.【答案】650x y --=【解析】函数()321y x =-的导函数为()2621y x '=-,所以函数()321y x =-在1x =处的导数值16x y ='=,所以曲线()321y x =-在点()1,1处的切线斜率为6,所以曲线()321y x =-在点()1,1处的切线方程为()161y x -=-,即650x y --=,故答案为:650x y --=.【对点训练10】(2024·全国·高三专题练习)曲线3()ln(2)2f x x =++在点()()0,0f 处的切线方程为______.【答案】22ln 230x y -++=【解析】因为3()ln(2)2f x x =++,所以1()2f x x '=+,则()102f '=,又3(0)ln 22f =+,所以曲线在点()()0,0f 处的切线方程为31ln 222y x --=,即22ln 230x y -++=.故答案为:22ln 230x y -++=.【对点训练11】(2024·全国·高三专题练习)已知函数321()cos 32f x x bx ⎛⎫=++ ⎪⎝⎭π,()f x '为()f x 的导函数.若()f x '的图象关于直线x =1对称,则曲线()y f x =在点()()22f ,处的切线方程为______【答案】73y =-【解析】2ππ()2sin 22f x x bx x ⎛⎫'=+-⎪⎝⎭,令2()2g x x bx =+,ππ()sin 22h x x ⎛⎫=- ⎪⎝⎭,则()()()f x g x h x '=+,令πππ22x k =+,Z k ∈,解得x =2k +1,Z k ∈,当k =0时,x =1,所以直线x =1为()h x 的一条对称轴,故()g x 的图象也关于直线x =1对称,则有212b-=,解得b =-1,则321π()cos 32f x x x x ⎛⎫=-+ ⎪⎝⎭,2ππ()2sin 22f x x x x ⎛⎫'=-- ⎪⎝⎭,7(2)3f =-,()20f '=,故切线方程为73y =-.故答案为;73y =-.【对点训练12】(2024·湖南·校联考模拟预测)若函数()()()322f x x x x λλ=+-∈R 是奇函数,则曲线()y f x =在点()(),f λλ处的切线方程为______.【答案】24320x y --=【解析】因为()()()322f x x x x λλ=+-∈R 是奇函数,所以()()0f x f x -+=对x ∀∈R 恒成立,即()()()3232222220x x x x x λλλλλ-+-++-=-=对x ∀∈R 恒成立,所以2λ=,则()32f x x =,故()26f x x '=,所以()()3222216,26224f f '=⨯==⨯=,所以曲线()y f x =在点()216,处的切线方程为()16242y x -=-,化简得24320x y --=.故答案为:24320x y --=方向2、过点P 的切线【对点训练13】(2024·江西·校联考模拟预测)已知过原点的直线与曲线ln y x =相切,则该直线的方程是______.【答案】1ey x=【解析】由题意可得()1f x x'=,设该切线方程y kx =,且与ln y x =相切于点()00,x y ,()000000ln 1y kx y x k f x x ⎧⎪=⎪⎪=⎨'⎪⎪==⎪⎩,整理得0ln 1x =,∴0e x =,可得1e k =,∴1ey x =.故答案为:1ey x =.【对点训练14】(2024·浙江金华·统考模拟预测)已知函数()31f x x ax =-+,过点()2,0P 存在3条直线与曲线()y f x =相切,则实数a 的取值范围是___________.【答案】19,22⎛⎫ ⎪⎝⎭【解析】由2()3f x x a '=-,设切点为(,)m n ,则切线斜率为2()3f m m a '=-,所以,过()2,0P 的切线方程为2(3)(2)y m a x =--,综上,23(3)(2)1n m a m n m am ⎧=--⎨=-+⎩,即23(3)(2)1m a m m am --=-+,所以322261a m m =-++有三个不同m 值使方程成立,即2y a =与32()261g m m m =-++有三个不同交点,而2()612g m m m '=-+,故(,0)-∞、(2,)+∞上()0g m '<,()g m 递减,(0,2)上()0g m '>,()g m 递增;所以()g m 极小值为(0)1g =,极大值为(2)9g =,故129a <<时两函数有三个交点,综上,a 的取值范围是19,22⎛⎫⎪⎝⎭.故答案为:19,22⎛⎫⎪⎝⎭【对点训练15】(2024·浙江绍兴·统考模拟预测)过点2,03⎛⎫- ⎪⎝⎭作曲线3y x =的切线,写出一条切线方程:__________.【答案】0y =或32y x =+(写出一条即可)【解析】由3y x =可得23y x '=,设过点2,03⎛⎫- ⎪⎝⎭作曲线3y x =的切线的切点为00(,)x y ,则300y x =,则该切线方程为20003()y y x x x -=-,将2,03⎛⎫- ⎪⎝⎭代入得3200023()3x x x -=--,解得00x =或01x =-,故切点坐标为(0,0)或(1,1)--,故切线方程为0y =或32y x =+,故答案为:0y =或32y x =+【对点训练16】(2024·海南海口·校联考模拟预测)过x 轴上一点(),0P t 作曲线():3e x C y x =+的切线,若这样的切线不存在,则整数t 的一个可能值为_________.【答案】4-,5-,6-,只需写出一个答案即可【解析】设切点为()()000,3e x x x +,因为()4e xy x '=+,所以切线方程为()()()000003e 4e x x y x x x x -+=+-.因为切线l 经过点P ,所以()()()000003e 4e x xx x t x -+=+-,由题意关于0x 的方程()2003430x t x t ----=没有实数解,则()2Δ(3)4430t t =-++<,解得73t -<<-.因为t 为整数,所以t 的取值可能是6-,5-,4-.故答案为:4-,5-,6-,只需写出一个答案即可【对点训练17】(2024·全国·模拟预测)过坐标原点作曲线()2e xy x =+的切线,则切点的横坐标为___________.【答案】1-1-【解析】由()2e xy x =+可得()3e xy x '=+,设切点坐标为()00,x y ,所以切线斜率00(3)e xk x =+,又因为()0002e x y x =+,则切线方程为()()()000002e 3e x xy x x x x -+=+-,把()0,0代入并整理可得200220x x +-=,解得01x =-或01x =-故答案为:1-+1-【对点训练18】(2024·广西南宁·南宁三中校考模拟预测)若过点()()1,P a a ∈R 有n 条直线与函数()()2e xf x x =-的图象相切,则当n 取最大值时,a 的取值范围为__________.【答案】()3,e --【解析】设过点()1,P a 的直线l 与()f x 的图象的切点为()()000,2e xx x -,因为()()1e xf x x '=-,所以切线l 的斜率为()()0001e xf x x '=-,所以切线l 的方程为()()()000002e 1e x xy x x x x --=--,将()1,P a 代入得()()()000002e 1e 1x xa x x x --=--,即()()()()0002000001e 12e 33e x x x a x x x x x =--+-=-+-,设()()2e 33x g x x x =-+-,则()()()()2233e 23e e x x xg x x x x x x =-+-+-+=-+',由()0g x '=,得0x =或1x =,当0x <或1x >时,()0g x '<,所以()g x 在()(),0,1,-∞+∞上单调递减;当01x <<时,()0g x '>,所以()g x 在()0,1上单调递增,所以()()()03,()1e g x g g x g ==-==-极小值极大值,又22333324x x x ⎛⎫-+-=---< ⎪⎝⎭0,所以()0g x <恒成立,所以()g x 的图象大致如图所示,由图可知,方程()02003e 3x a x x =-+-最多3个解,即过点()()1,P a a ∈R 的切线最多有3条,即n 的最大值为3,此时3e a -<<-.故答案为:()3,e --.【对点训练19】(2024·全国·模拟预测)已知函数()()321113f x x f x '=++,其导函数为()f x ',则曲线()f x 过点()3,1P 的切线方程为______.【答案】1y =或38y x =-【解析】设切点为()00,M x y ,由()()321113f x x f x '=++,得()()221f x x f x ''=+,∴()()1121f f ''=+,得()11f '=-,∴()32113f x x x =-+,()22f x x x '=-,∴切点M 为320001,13x x x ⎛⎫-+ ⎪⎝⎭,()20002f x x x '=-,∴曲线()f x 在点M 处的切线方程为()()322000001123y x x x x x x ⎛⎫--+=-- ⎪⎝⎭①,又∵该切线过点()3,1P ,∴()()3220000111233x x x x x ⎛⎫--+=-- ⎪⎝⎭,解得00x=或03x =.将00x =代入①得切线方程为1y =;将03x =代入①得切线方程为()133y x -=-,即38y x =-.∴曲线()f x 过点()3,1P 的切线方程为1y =或38y x =-.故答案为:1y =或38y x =-方向3、公切线【对点训练20】(2024·云南保山·统考二模)若函数()4ln 1f x x =+与函数()()2120g x x x a a=->的图象存在公切线,则实数a 的取值范围为()A .10,3⎛⎤⎥⎝⎦B .1,3⎡⎫+∞⎪⎢⎣⎭C .2,13⎡⎫⎪⎢⎣⎭D .12,33⎡⎤⎢⎥⎣⎦【答案】A【解析】由函数()4ln 1f x x =+,可得()4f x x'=,因为0a >,设切点为(),4ln 1t t +,则()4f t t'=,则公切线方程为()44ln 1y t x t t --=-,即44ln 3y x t t =+-,与212y x x a =-联立可得21424ln 30x x t a t ⎛⎫-+-+= ⎪⎝⎭,所以()2412434ln 0t t a ⎛⎫∆=+-⨯⨯-= ⎪⎝⎭,整理可得221134ln t a t⎛⎫+ ⎪⎝⎭=-,又由00a t >⎧⎨>⎩,可得34ln 0t ->,解得340e t <<,令()22134ln t h t t⎛⎫+ ⎪⎝⎭=-,其中340e t <<,可得()()2424ln 1134ln t t t t t h t t +-⎛⎫+⋅ ⎪⎝⎭'=-,令()4ln 1t t t ϕ=+-,可得()410t t ϕ'=+>,函数()t ϕ在340,e ⎛⎫ ⎪⎝⎭上单调递增,且()10ϕ=,当01t <<时,()0t ϕ<,即()0h t '<,此时函数()h t 单调递减,当341t e <<时,()0t >φ,即()0h t '>,此时函数()h t 单调递增,所以()()min 13h t h ==,且当0t +→时,()h t →+∞,所以函数()h t 的值域为[)3,+∞,所以13a≥且0a >,解得103a <≤,即实数a 的取值范围为1(0,]3.故选:A.【对点训练21】(2024·宁夏银川·银川一中校考二模)若直线1(1)1y k x =+-与曲线e x y =相切,直线21)1(y k x =+-与曲线ln y x =相切,则12k k 的值为___________.【答案】1【解析】设()x f x e =,则()e x f x '=,设切点为11(,)x y ,则11e xk =,则切线方程为111e ()x y y x x -=-,即111e e ()x xy x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以1111e e (1)x x x --=--,所以11e 1xx =,设()ln g x x =,则1()g x x'=,设切点为22(,)x y ,则221k x =,则切线方程为2221()y y x x x -=-,即2221ln ()y x x x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以22211ln (1)x x x --=--,所以22ln 1x x =,则12,x x 是函数()f x e x =和()ln g x x =的图象与曲线1y x=交点的横坐标,易知()f x 与()g x 的图象关于直线y x =对称,而曲线1y x=也关于直线y x =对称,因此点1122(,),(,)x y x y 关于直线y x =对称,从而12e xx =,12ln x x =,所以1122e 1x k k x ==.故答案为:1.【对点训练22】(2024·河北邯郸·统考三模)若曲线e x y =与圆22()2x a y -+=有三条公切线,则a 的取值范围是____.【答案】()1,+∞【解析】曲线e x y =在点()00,x y 处的切线方程为()000e e x xy x x -=-,由于直线()000e ex x y x x -=-与圆()222x a y -+=*)因为曲线e x y =与圆()222x a y -+=有三条公切线,故(*)式有三个不相等的实数根,即方程()()0220e122x x a ---=有三个不相等的实数根.令()()()22e12xg x x a =---,则曲线()y g x =与直线2y =有三个不同的交点.显然,()()()22e21xg x x a x a '=---+.当(),1x a ∈-∞-时,()0g x '>,当()1,2x a a ∈-+时,()0g x '<,当()2,x a ∈++∞时,()0g x '>,所以,()g x 在(),1a -∞-上单调递增,在()1,2a a -+上单调递减,在()2,a ++∞上单调递增;且当x →-∞时,()()22120e xx a g x ----=→,当x →+∞时,()()()22e12xg x x a =---→+∞,因此,只需()()1222g a g a ⎧->⎪⎨+<⎪⎩,即()()2122e 1-e2a a -+⎧>⎪⎨<⎪⎩,解得1a >.故答案为:()1,+∞【对点训练23】(2024·湖南长沙·湖南师大附中校考模拟预测)若曲线21:()C f x x a =+和曲线2:()2ln C g x x =恰好存在两条公切线,则实数a 的取值范围为__________.【答案】(1,)-+∞【解析】由题意得2()2,()(0)f x x g x x x''==>,设与曲线2()f x x a =+相切的切点为()211,x x a +,与曲线()2ln g x x =相切的切点为()22,2ln x x ,则切线方程为()21112y x x x x a =-++,即2112y x x x a =-+,()22222ln y x x x x =-+,即2222ln 2y x x x =+-,由于两切线为同一直线,所以1221222,2ln 2x x x a x ⎧=⎪⎨⎪-+=-⎩,得()21112ln 20a x x x =-->.令2()2ln 2(0)x x x x ϕ=-->,则22(1)(1)()2x x x x x xϕ+-'=-=,当01x <<时,()0x ϕ'<,()ϕx 在(0,1)单调递减,当1x >时,()0x ϕ'>,()ϕx 在(1,)+∞单调递增.即有1x =处()ϕx 取得极小值,也为最小值,且为(1)1ϕ=-.又两曲线恰好存在两条公切线,即()a x ϕ=有两解,结合当0x →时,2x 趋近于0,ln x 趋于负无穷小,故()ϕx 趋近于正无穷大,当x →+∞时,2x 趋近于正无穷大,且增加幅度远大于ln x 的增加幅度,故()ϕx 趋近于正无穷大,由此结合图像可得a 的范围是(1,)-+∞,故答案为:(1,)-+∞【对点训练24】(2024·江苏南京·南京师大附中校考模拟预测)已知曲线21:()C f x x =与曲线()12:e (0)x C g x a a +=>有且只有一条公切线,则=a ________.【答案】34e 【解析】设曲线()yf x =在1x x =处的切线与曲线()yg x =相切于2x x =处,()2f x x '=,故曲线()y f x =在1x x =处的切线方程为21112()y x x x x -=-,整理得2112y x x x =-.()1e x g x a +'=,故曲线()y g x =在2x x =处的切线方程为()22112e e x x y a a x x ++-=-,整理得()22112ee 1x x y a x a x ++=--.故()()()2211121212e 2e 1x x x a x a x ++⎧=⎪⎨-=--⎪⎩由(1)再结合0a >知1>0x ,将(1)代入(2),得21122(1)x x x -=--,解得122(1)x x =-且21x >,将122(1)x x =-代入(1),解得()21241e x x a +-=且21x >,即()22141e x x a +-=且21x >,令21t x =+,则()42e tt a -=,2t >.令()()42ett h t -=,()()43ett h t ='-,则()h t 在区间(2,3)单调递增,在区间(3,)+∞单调递减,且()343e h =,又两曲线有且只有一条公切线,所以()42e tt a -=只有一个根,由图和0a >知34e a =.故答案为:34e .【对点训练25】(2024·福建南平·统考模拟预测)已知曲线ln y a x =和曲线2y x =有唯一公共点,且这两条曲线在该公共点处有相同的切线l ,则l 的方程为________.【答案】2e e 0y --=【解析】设曲线()ln g x a x =和曲线2()f x x =在公共点00(,)x y 处的切线相同,则()()2,af x xg x x''==,由题意知()()()()0000,f x g x f x g x ''==,即002002ln a x x x a x⎧=⎪⎨⎪=⎩,解得0e ,2e a x ==故切点为(e,e),切线斜率为()02e k f x '==,所以切线方程为e 2e(e)y x -=,即2e e 0x y --=,故答案为:2e e 0y --=方向4、已知切线求参数问题【对点训练26】(2024·江苏·校联考模拟预测)若曲线ln y x x =有两条过()e,a 的切线,则a 的范围是______.【答案】(),e -∞【解析】设切线切点为()00,x y ,因()000ln ln 1ln x x x y x x '⎧=+⎪⎨=⎪⎩,则切线方程为:()()()00000011ln ln ln y x x x x x x x x =+-+=+-.因过()e,a ,则()001ln e -a x x =+,由题函数()()1ln e -f x x x =+图象与直线y a =有两个交点.()1e e --x f x x x'==,得()f x 在()0,e 上单调递增,在()e,+∞上单调递减.又()()max e e f x f ==,()0,x f x →→-∞,(),x f x ∞∞→+→-.据此可得()f x 大致图象如下.则由图可得,当(),e a ∈-∞时,曲线ln y x x =有两条过()e,a 的切线.故答案为:(),e -∞【对点训练27】(2024·山东聊城·统考三模)若直线y x b =+与曲线e x y ax =-相切,则b 的最大值为()A .0B .1C .2D .e【答案】B【解析】设切点坐标为()00,x y ,因为e x y ax =-,所以e x y a '=-,故切线的斜率为:0e 1x a -=,0e 1x a =+,则()0ln 1x a =+.又由于切点()00,x y 在切线y x b =+与曲线e x y ax =-上,所以000e xx b ax +=-,所以()()()()01111ln 1b a x a a a ⎡⎤=+-+=+-+⎣⎦.令1a t +=,则()1ln b t t =-,设()()1ln f t t t =-,()1()1ln ln f t t t t t ⎛⎫=-+⋅-=- ⎪⎝⎭',令()0f t '=得:1t =,所以当()0,1t ∈时,()0f t '>,()f t 是增函数;当()1,t ∈+∞时,()0f t '<,()f t 是减函数.所以max ()(1)1f t f ==.所以b 的最大值为:1.故选:B.【对点训练28】(2024·重庆·统考三模)已知直线y =ax -a 与曲线ay x x=+相切,则实数a =()A .0B .12C .45D .32【答案】C 【解析】由a y x x =+且x 不为0,得21a y x'=-设切点为()00,x y ,则00000201y ax a a y x x a ax ⎧⎪=-⎪⎪=+⎨⎪⎪-=⎪⎩,即0002201a ax a x x x a x ⎧-=+⎪⎪⎨⎪=⎪+⎩,所以320022200000111x x x x x x x +-+++=,可得042,5x a =-=.故选:C【对点训练29】(2024·海南·校联考模拟预测)已知偶函数()()2131f x a x bx c d =--+--在点()()1,1f 处的切线方程为10x y ++=,则a bc d-=-()A .1-B .0C .1D .2【答案】A【解析】因为()f x 是偶函数,所以()()()2131f x a x bx c d f x -=-++--=,即0b =;由题意可得:()()113111f a b c d c d a a b =--+--=-+⇒-=-=-+,所以1a bc d-=--.故选:A【对点训练30】(2024·全国·高三专题练习)已知M 是曲线21ln 2y x x ax =++上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是()A .[)2,+∞B .[)1,-+∞C .(],2-∞D .(],1-∞-【答案】B【解析】函数21ln 2y x x ax =++的定义域为()0,∞+,且1y x a x'=++,因为曲线21ln 2y x x ax =++在其上任意一点M 点处的切线的倾斜角均是不小于π4的锐角,所以,1πtan 14y x a x '=++≥=对任意的0x >恒成立,则11a x x-≤+,当0x >时,由基本不等式可得12x x +≥=,当且仅当1x =时,等号成立,所以,12a -≤,解得1a ≥-.故选:B.【对点训练31】(2024·全国·高三专题练习)已知0m >,0n >,直线11ey x m =++与曲线ln 2y x n =-+相切,则11m n+的最小值是()A .16B .12C .8D .4【答案】D【解析】对ln 2y x n =-+求导得1y x'=,由11e y x '==得e x =,则1e 1ln e 2em n ⋅++=-+,即1m n +=,所以()11112224n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当12m n ==时取等号.故选:D .方向5、切线的条数问题【对点训练32】(2024·河北·高三校联考阶段练习)若过点(,)m n 可以作曲线2log y x =的两条切线,则()A .2log m n >B .2log n m>C .2log m n<D .2log n m<【答案】B【解析】作出函数2log y x =的图象,由图象可知点(,)m n 在函数图象上方时,过此点可以作曲线的两条切线,所以2log n m >,故选:B.【对点训练33】(2024·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则()A .ln a b <B .ln b a<C .ln b a<D .ln a b<【答案】D【解析】设切点坐标为00(,)x y ,由于1y x'=,因此切线方程为0001ln ()y x x x x -=-,又切线过点(,)a b ,则000ln a x b x x --=,001ln ab x x +=+,设()ln a f x x x =+,函数定义域是(0,)+∞,则直线1y b =+与曲线()ln af x x x =+有两个不同的交点,221()a x af x x x x-'=-=,当0a ≤时,()0f x '>恒成立,()f x 在定义域内单调递增,不合题意;当0a >时,0x a<<时,()0f x '<,()f x 单调递减,x a >时,()0f x '>,()f x 单调递增,所以min ()()ln 1f x f a a ==+,结合图像知1ln 1b a +>+,即ln b a >.故选:D.【对点训练34】(2024·湖南·校联考二模)若经过点(),a b 可以且仅可以作曲线ln y x =的一条切线,则下列选项正确的是()A .0a ≤B .ln b a=C .ln a b=D .0a ≤或ln b a=【答案】D【解析】设切点()00,ln P x x .因为ln y x =,所以1y x'=,所以点P 处的切线方程为()0001ln y x x x x -=-,又因为切线经过点(),a b ,所以()0001ln b x a x x -=-,即001ln a b x x +=+.令()ln (0)a f x x x x =+>,则1y b =+与()ln (0)af x x x x=+>有且仅有1个交点,()221a x a f x x x x'-=-=,当0a ≤时,()0f x ¢>恒成立,所以()f x 单调递增,显然x →+∞时,()f x →+∞,于是符合题意;当0a >时,当0x a <<时,()0f x '<,()f x 递减,当x a >时,()0f x ¢>,()f x 递增,所以()min ()ln 1f x f a a ==+,则1ln 1b a +=+,即ln b a =.综上,0a ≤或ln b a =.故选:D方向6、切线平行、垂直、重合问题【对点训练35】(2024·全国·高三专题练习)若函数()ln f x x x =+与2()1x mg x x -=-的图象有一条公共切线,且该公共切线与直线21y x =+平行,则实数m =()A .178B .176C .174D .172【答案】A【解析】设函数()ln f x x x =+图象上切点为00(,)x y ,因为1()1f x x'=+,所以001()12f x x '=+=,得01x =,所以00()(1)1y f x f ===,所以切线方程为12(1)y x -=-,即21y x =-,设函数()21x mg x x -=-的图象上的切点为11(,)x y 1(1)x ≠,因为222(1)(2)2()(1)(1)x x m m g x x x ----'==--,所以1212()2(1)m g x x -'==-,即211244m x x =-+,又11111221()1x m y x g x x -=-==-,即211251m x x =-+-,所以221111244251x x x x -+=-+-,即2114950x x -+=,解得154x =或11x =(舍),所以25517244448m ⎛⎫=⨯-⨯+= ⎪⎝⎭.故选:A【对点训练36】(2024·全国·高三专题练习)已知直线980x y --=与曲线32:3C y x px x =-+相交于,A B ,且曲线C 在,A B 处的切线平行,则实数p 的值为()A .4B .4或-3C .-3或-1D .-3【答案】B【解析】设1122(,),(,)A x y B x y ,由323y x px x =-+得2323y x px =-+',由题意221122323323x px x px -+=-+,因为12x x ≠,则有1223x x p +=.把89x y -=代入323y x px x =-+得32992680x px x -++=,由题意112,3x p x -都是此方程的解,即32111992680x px x -++=①,321112229()9()26()80333p x p p x p x ---+-+=,化简为32311145299268033x px x p p -++--=②,把①代入②并化简得313120p p --=,即(1)(3)(4)0p p p ++-=,1,3,4p =--,当1p =-时,①②两式相同,说明12x x =,舍去.所以3,4p =-.故选:B .【对点训练37】(2024·江西抚州·高三金溪一中校考开学考试)已知曲线()e 1(1)x f x x =->-在点()()()()()112212,,,A x f x B x f x x x <处的切线12,l l 互相垂直,且切线12,l l 与y 轴分别交于点,D E ,记点E 的纵坐标与点D 的纵坐标之差为t ,则()A .220et -<<B .22e 0t -<<C .22et <-D .2e 2t >-【答案】A【解析】由题意知12x x <,当10x -<<时,()()1e ,e x xf x f x '=-=-,当0x >时,()()e 1,e x xf x f x =-'=,因为切线12,l l 互相垂直,所以()()121f x f x ''=-,所以12121210,e e e 1x x x xx x +-<<<-=-=-,所以1220,01x x x +=∴<<,直线1l 的方程为()()1111e e x x y x x --=--,令0x =,得()111e 1xy x =-+,故()()110,1e 1xD x -+,直线2l 的方程为()()222e 1e x x y x x --=-,令0x =,得()221e 1xy x =--,故()()220,1e 1xE x --,所以()()()()212221221e 1e 21e 1e 2x x x xt x x x x -=----=-++-,设()()()1e 1e 2,(01)x xg x x x x -=-++-<<,则()()e e 0x x g x x -'=-+<,()g x 在()0,1上单调递减,所以()()1()0g g x g <<,即220et -<<,故选:A.【对点训练38】(2024·全国·高三专题练习)若函数()sin f x ax x =+的图象上存在两条相互垂直的切线,则实数a 的值是()A .2B .1C .0D .1-【答案】C【解析】因为()sin f x ax x =+,所以()cos f x a x '=+,因为函数()sin f x ax x =+的图象上存在两条相互垂直的切线,不妨设函数()sin f x ax x =+在1x x =和2x x =的切线互相垂直,则()()12cos cos 1a x a x ++=-,即()22121cos cos 1cos cos 0a a x x x x ++++=①,因为a 一定存在,即方程①一定有解,所以()()22121cos cos 41cos cos 0x x x x ∆=+-+≥,即()212cos cos 4x x -≥,解得12cos cos 2x x -≥或12cos cos 2x x -≤-,又|cos |1x ≤,所以12cos 1,cos 1x x ==-或12cos 1,cos 1x x =-=,Δ0=,所以方程①变为20a =,所以0a =,故A ,B ,D 错误.故选:C.【对点训练39】(2024·上海闵行·高三上海市七宝中学校考期末)若函数()y f x =的图像上存在两个不同的点,P Q ,使得在这两点处的切线重合,则称()f x 为“切线重合函数”,下列函数中不是“切线重合函数”的为()A .421y x x =-+B .sin y x =C .cos y x x =+D .2sin y x x=+【答案】D【解析】对于A ,()421f x x x =-+显然是偶函数,()'32242422f x x x x x x ⎛⎫⎛⎫=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,当x <时,()'0f x <,单调递减,当0x <<时,()'0f x >单调递增,当02x <<时,()'0f x <,单调递减,当2x >时,单调递增;在2x =时,()'0f x =,都取得极小值,由于是偶函数,在这两点的切线是重合的,故A 是“切线重合函数”;对于B ,()sin f x x =是正弦函数,显然在顶点处切线是重合的,故B 是“切线重合函数”;对于C ,考察()(),1,3,31A B ππππ--两点处的切线方程, '1sin y x =-,,A B ∴两点处的切线斜率都等于1,在A 点处的切线方程为()()11y x ππ--=- ,化简得:1y x =+,在B 点处的切线方程为()()3113y x ππ--=- ,化简得1y x =+,显然重合,∴C 是“切线重合函数”;对于D ,'2cos y x x =+,令()2cos g x x x =+,则()'2sin 0g x x =->,()g x 是增函数,不存在12x x ≠时,()()12g x g x =,所以D 不是“切线重合函数”;故选:D.【对点训练40】(2024·全国·高三专题练习)已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩,图象上不同的两点,若函数()y f x =在点A 、B 处的切线重合,则实数a 的取值范围是()A .1,2∞⎛⎫- ⎪⎝⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .()0,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】当0x ≤时,()2f x x x a =++的导数为()21f x x '=+;当0x >时,()ln f x x x a =-的导数为()ln 1f x x '=+,设()()11,A x f x ,()()22,B x f x 为函数图象上的两点,且12x x <,当120x x <≤或120x x <<时,12()()f x f x ''≠,故120x x ≤<,当10x ≤时,函数()f x 在()()11,A x f x 处的切线方程为:21111()(21)()y x x a x x x -++=+-;当20x >时,函数()f x 在()()22,B x f x 处的切线方程为2222ln (ln 1)().y x x a x x x -+=+-两直线重合的充要条件是21ln 121x x +=+①,221x a a x --=-②,由①②得:12211(e )2xa x =-,10x ≤,∴令221()(e )(0)2x g x x x =-≤,则2()e x g x x '=-,令2()()e x h x g x x '==-,则2()12e x h x '=-,由()0h x '=,得11ln 22x =,即11ln 22x =时()h x 有最大值11111(ln )ln 022222h =-<,()g x ∴在(],0-∞上单调递减,则1()(0)2g x g ≥=-.∴a 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭.故选:B.方向7、最值问题【对点训练41】(2024·全国·高三专题练习)设点P 在曲线1e x y +=上,点Q 在曲线1ln y x =-+上,则||PQ 最小值为()A B .C 2)ln +D 2)ln -【答案】B【解析】1e x y += 与1ln y x =-+互为反函数,其图像关于直线y x =对称先求出曲线1e x y +=上的点到直线y x =的最小距离.设与直线y x =平行且与曲线1e x y +=相切的切点0(P x ,0)y .1e x y +'=,01e 1x +=,解得01x =-.110e 1y -+∴==.得到切点(1,1)P -,点P 到直线y x =的距离d =||PQ ∴最小值为故选:B .【对点训练42】(2024·全国·高三专题练习)设点P 在曲线2e x y =上,点Q 在曲线1ln 2y x =上,则||PQ 的最小值为()A ln 2)2-B ln 2)-C ln 2)+D .(1ln 2)2+【答案】D【解析】2e x y =与1ln 2y x =互为反函数,它们图像关于直线y x =对称;故可先求点P 到直线y x =的最近距离d ,又22e x y '=,当曲线上切线的斜率022e 1x k ==时,得01ln 22x =-,0201e 2xy ==,则切点11ln 2,22P ⎛⎫- ⎪⎝⎭到直线y x =的距离为ln 2)4d =+,所以||PQ 的最小值为2ln 2)d =+.故选:D .【对点训练43】(2024·全国·高三专题练习)设点P 在曲线2e x y =上,点Q 在曲线ln ln 2y x =-上,则||PQ 的最小值为()A .1ln 2-B ln 2)-C .2(1ln 2)+D ln 2)+【答案】D【解析】2e x y = 与ln ln 2y x =-互为反函数,所以2e x y =与ln ln 2y x =-的图像关于直线y x =对称,设()2()x f x e x x R =-∈,则()2e 1x f x '=-,令()0f x '=得1ln 2x =,则当1ln2x <时,()0f x '<,当1ln 2x >时,()0f x '>,所以()f x 在1(,ln )2-∞单调递减,在1(ln ,)2+∞单调递增,所以11()(ln )1ln 022f x f ≥=->,所以2e x y =与y x =无交点,则ln ln 2y x =-与y x =也无交点,下面求出曲线2e x y =上的点到直线y x =的最小距离,设与直线y x =平行且与曲线2e x y =相切的切点0(P x ,0)y ,2e x y '= ,02e 1x ∴=,解得01ln ln 22x ==-,1ln202e1y ∴==,得到切点(ln 2,1)P -,到直线y x =的距离ln 2)2d +==,||PQ的最小值为2ln 2)d +,故选:D .【对点训练44】(2024·全国·高三专题练习)已知实数a ,b ,c ,d 满足|ln(1)||2|0a b c d --+-+=,则22()()a c b d -+-的最小值为()A .B .8C .4D .16。
导数的定义和求导规则

导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
导数知识点概念归纳总结

导数知识点概念归纳总结1. 导数的定义导数的定义是建立在函数的极限概念上的。
设函数y = f(x),在点x处的导数定义为:\[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]其中,Δx表示x的增量,当Δx趋于0时,上式的极限存在则称函数在点x处可导,这个极限的值就是函数在点x处的导数。
导数表示了函数在某一点处的变化率,可以理解为函数在这一点处的斜率。
2. 导数的性质导数具有一些基本性质,例如:(1)可导函数一定是连续函数,但连续函数不一定可导。
(2)导数存在的充要条件是函数在该点处有切线。
(3)可导函数在一点的导数等于该点的切线的斜率。
(4)导数具有线性运算性质,即\[ (f(x) \pm g(x))' = f'(x) \pm g'(x) \],\[ (k \cdot f(x))' = k \cdot f'(x) \],其中f(x)和g(x)都是可导函数,k是常数。
(5)复合函数的导数公式,如果y = f(u),u = g(x),则\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]。
3. 导数的计算方法对于简单的函数,可以通过导数的定义进行计算。
但是对于一些复杂的函数,使用导数的定义进行计算过于繁琐,因此需要借助一些常用的导数公式和方法来进行计算。
(1)常用函数的导数公式常用函数的导数公式包括:- 幂函数的导数:\[ (x^n)' = nx^{n-1} \],其中n是常数。
- 指数函数的导数:\[ (a^x)' = a^x \ln a \],其中a是常数。
- 对数函数的导数:\[ (\log_a x)' = \frac{1}{x \ln a} \],其中a是常数。
- 三角函数的导数:\[ (\sin x)' = \cos x \],\[ (\cos x)' = -\sin x \],\[ (\tan x)' = \sec^2 x \]。
导数概念与运算

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=xx f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy ∆∆=0lim→∆x xx f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,xy ∆∆有极限。
如果xy ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=xx f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xy x ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x'=; ⑧()1l g log a a o x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''vuv v u -(v ≠0)。
导数的定义与计算方法

导数的定义与计算方法导数是微积分中的重要概念,用于描述函数的变化率。
本文将介绍导数的定义以及计算方法,帮助读者更好地理解导数的概念和运用。
一、导数的定义导数是函数在某一点处的变化率。
数学上,对于函数f(x),其在点x处的导数记为f'(x),可以通过以下极限定义得到:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示自变量x的增量。
这个极限定义可以理解为当自变量x的增量趋近于0时,函数f(x)在点x处的变化率。
二、导数的计算方法导数的计算方法可以根据函数的具体形式来进行。
下面介绍几种常见的计算方法:1. 可导函数的导数计算法则- 常数法则:如果f(x) = c,其中c为常数,则f'(x) = 0。
- 幂函数法则:如果f(x) = x^n,其中n为常数,则f'(x) = n * x^(n-1)。
- 指数函数法则:如果f(x) = e^x,则f'(x) = e^x。
- 对数函数法则:如果f(x) = log_a(x),其中a为常数且a > 0,则f'(x) = 1 / (x * ln(a))。
- 三角函数法则:如果f(x) = sin(x),则f'(x) = cos(x);如果f(x) = cos(x),则f'(x) = -sin(x)。
- 复合函数法则:如果f(x) = g(h(x)),则f'(x) = g'(h(x)) * h'(x),其中g'表示函数g的导数。
2. 基本初等函数的导数以下是一些基本初等函数的导数计算公式:- (sin x)' = cos x- (cos x)' = -sin x- (tan x)' = sec^2 x- (cot x)' = -csc^2 x- (sec x)' = sec x * tan x- (csc x)' = -csc x * cot x- (log_a x)' = 1 / (x * ln a)- (e^x)' = e^x3. 导数的加法、减法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的和、差、常数倍的导数可以通过以下法则计算:- (f(x) + g(x))' = f'(x) + g'(x)- (f(x) - g(x))' = f'(x) - g'(x)- (k * f(x))' = k * f'(x),其中k为常数4. 导数的乘法、除法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的乘积和商的导数可以通过以下法则计算:- (f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)- (f(x) / g(x))' = [f'(x) * g(x) - f(x) * g'(x)] / (g(x))^2,其中g(x) ≠ 0以上是导数的一些基本计算方法,能够满足大多数函数的求导需求。
导数知识点总结

导数知识点总结导数是微积分中的重要概念,用于描述函数在某一点上的变化率。
在这篇文章中,我将总结导数的相关知识点,包括定义、计算方法、性质以及应用等方面。
一、导数的定义导数是描述函数变化率的一个重要概念,用符号f'(x)表示。
在微积分中,导数的定义可以用极限来表示。
对于函数f(x),在点x处的导数定义为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h这个极限表示了当自变量x的增量h趋近于0时,函数f(x)在点x 处的变化率。
二、导数的计算方法导数的计算方法主要有以下几种:1. 基本导数公式:通过对常见函数的导数进行记忆,可以直接计算出相应函数的导数。
2. 函数的四则运算法则:对于复合函数、求和、求差、求积、求商等复杂表达式,可以通过使用四则运算法则来计算导数。
3. 高阶导数:导数的概念不仅可以应用于一阶导数,还可以推广到高阶导数,表示函数变化率的变化率。
三、导数的性质导数具有一些重要的性质,包括:1. 导数与函数的连续性:如果函数在某一点可导,则在该点必然连续,但反过来不一定成立。
2. 导数与函数的单调性:如果函数在某一区间上导数恒大于0(或恒小于0),则函数在该区间上单调递增(或单调递减)。
3. 导数与函数的极值点:函数在极值点上的导数等于0,但导数为0的点不一定是极值点。
四、导数的应用导数在数学和物理等领域有广泛的应用,其中一些常见的应用包括:1. 切线与曲线的切点:导数可以用于求曲线上某一点的切线,切线的斜率就是该点的导数值。
2. 函数的极值点:通过求函数的导数,可以找到函数的极大值和极小值点。
3. 函数的变化率:导数描述了函数在某一点的变化率,可以用于分析函数的增减性和速度。
4. 物理学中的运动分析:导数可以用于描述物体的速度和加速度,从而分析物体的运动规律。
总结:导数是微积分中的重要概念,用于描述函数在某一点上的变化率。
它的定义通过极限来表示,计算方法包括基本导数公式、四则运算法则和高阶导数。
《导数的概念及运算》知识点

一、导数的概念1、定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值Δy Δx 就叫函数y =f (x )从x 0到x 0+Δx 之间的平均变化率,即Δy Δx =f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,Δy Δx有极限,我们就说函数y =f (x )在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=Δy Δx =f (x 0+Δx )-f (x 0)Δx. 2、导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx . 3、用定义求函数y =f (x )在点x 0处导数的方法(1)求函数的增量Δy =f (x 0+Δx )-f (x 0);(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx; (3)取极限,得导数f ′(x 0)=Δy Δx . 二、导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是f ′(x 0).相应的切线方程为y -y 0=f ′(x 0)(x -x 0).三、基本初等函数的导数公式1、c ′=0 (c 为常数), (x α)′=αx α-1 (α∈Q *).2、(sin x )′=cos x , (cos x )′=-sin x.3、(ln x )′=1x , (log a x )′=1x ln a. 4、(e x )′=e x , (a x )′=a x ln a.四、导数运算法则1、[f (x )±g (x )]′=f ′(x )±g ′(x ).2、f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );当g (x )=c (c 为常数)时,即[cf (x )]′=cf ′(x ).3、⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 五、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y ′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.。
导数的概念及运算

x0 x x0
x
存在,则称f(x)在点x0处可导,并称此极限为函数
y=f(x)在点x0处的导数,记为f (x)或y |x=x0.
说明:
1.导数是一个特殊的极限;
2. f (x)为函数所表示的曲线在相应点M(x0, f(x0))处的切线
斜率, 其切线方程为:y- f(x0)= f (x0)(x-x0);
v2
3.复合函数的导数:
设函数 u=(x) 在点 x 处有导数 ux=(x),函数 y=f(u) 在点 x 的对应点 u 处有导数 yu=f (u),则复合函数y=f((x)) 在点 x 处有导数, 且 yx=yu·ux 或写作 fx((x))=f(u)(x)。
即复合函数对自变量的导数, 等于已知函数对中间变 量的导数, 乘以中间变量对自变量的导数.
导数的概念及运算
麻城一中 彭稳章
一、基本内容
(一)导数的概念:
y
y=f(x)
Q
y 就是割线PQ的斜率
△y
x
P △x
0
M x
lim y 就是过P点切线的斜率 x0 x
概念:
如果函数y=f(x)在x0处增量△y与自变量的增
量△x的比值 y ,当△x→0时的极限 x
lim y lim f (x0 x) f (x0)
切线的方程为y 11x 18或y 17 (x 3) 15 4
即为:11x y 18 0或17x 4 y 8 0.
说明:
求切线方程应注意: ①判断点A是否在函数图象上; ②审题:在A(x0,f(x0))处切线
y-f(x0)=f(x0)(x-x0)过A(x0,f(x0)),先设切 点,再按上述方法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及运算导数的概念及运算重点难点分析:1.导数的定义、意义与性质:(1)函数的导数:对于函数f(x),当自变量x在x0处有增量Δx,则函数y相应地有改变量Δy=f(x0+Δx)-f(x0),这两个增量的比叫做函数y=f(x)在x0到x0+Δx之间的平均变化率,即。
如果当Δx→0时,有极限,我们说函数在x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率)。
记作f'(x0)或,即。
(2)导函数:如果函数y=f(x)在开区间(a,b)内每一点处可导,这时,对于开区间(a,b)内的每一个值x0,都对应着一个确定的导数f'(x0),这样就在开区间(a,b)内构成一个新的函数,我们把这一新函数叫做f(x)在区间内的导函数,记作f'(x)或y',即。
(3)可导与连续的关系:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续。
(4)导数的几何意义:过曲线y=f(x)上任意一点(x,y)的切线的斜率就是f(x)在x处的导数,即。
也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f'(x0),切线方程为y-y0=f'(x0)(x-x0)。
2.求导数的方法:(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。
(2)几种常见函数的导数公式:① C'=0(C为常数);② (x n)'=nx n-1 (n∈Q);③ (sinx)'=cosx;④ (cosx)'=-sinx;⑤ (e x)'=e x;⑥ (a x)'=a x lna⑦;⑧(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。
说明:1.函数的导数实质是一个极限问题,不应理解为平均变化率,而是平均变化率的极限。
2.求函数的导数要熟练掌握求导公式,特别是复合函数的导数要学会合理地分析3.搞清导数的几何意义,为解决实际问题,如切线,加速度等问题打下理论基础。
典型例题:例1.求下列函数的导数①y=(2x-3)5②③④y=sin32x解析:①设u=2x-3,则y=(2x-3)5分解为y=u5,u=2x-3由复合函数的求导法则得:y'=f'(u)u'(x)=(u5)'(2x-3)'=5u4·2=10u4=10(2x-3)4②设u=3-x,则可分解为,。
③④ y'=3(sin2x)2·(sin2x)'=3sin22xcos2x(2x)'=6·sin22x·cos2x例2.已知曲线,问曲线上哪一点处切线与直线y=-2x+3垂直,并写出这一点切线方程。
解析:,令,即,得x=4,代入,得y=5,∴曲线在点(4,5)处的切线与直线y=-2x+3垂直,切线方程为,即x-2y+6=0。
例3.已知曲线C:y=3x4-2x3-9x2+4。
①求曲线C上横坐标为1的点的切线方程;②第①小题中切线与曲线C是否还有其它公共点。
解析:①把x=1代入C的方程,求得y=-4,∴切点为(1,-4),y'=12x3-6x2-18x∴切线斜率为k=12-6-18=-12,∴切线方程为y=-12x+8。
②由得3x4-2x3-9x2+12x-4=0,即(x-1)2(x+2)(3x-2)=0,。
公共点为(1,-4)(切点),,除切点外,还有两个交点。
评析:举例说明曲线与直线相切并不说明只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确。
*例4.设,求f'(x)。
解析:当x>0时,,当x<0时,,由于x=0是该函数的分界点,由导数定义知由于f'+(0)=f'-(0)=1,故有f'(0)=1于是:,即:。
例5.已知使函数的导数为0的x值也使y值为0,求常数a。
解析:y'=3x2+2ax,令y'=0,得x=0或,由题设x=0时,y'=y=0,此时,∴a=0;当时也解出a=0。
训练题:1.已知函数,且f'(1)=2,则a的值为______。
2.设f(x)=xlnx,则f'(2)=________。
3.给出下列命题:①;②(tanx)'=sec2x③函数y=|x-1|在x=1处可导;④函数y=|x-1|在x=1处连续。
其中正确的命题有:_____。
4.函数y=cosx在点处的切线方程为_______。
5.已知函数f(x)=ax4+bx3+cx2+dx+e为偶函数,它的图象过点A(0,-1),且在x=1处的切线方程为2x+y-2=0,求函数y=f(x)的表达式。
参考答案:1. 22.3. ②,④4.5.解:∵ f(x)是偶函数,f(-x)=f(x),∴ b=d=0,f(x)=ax4+cx2+e,又∵图象过点A(0,-1),∴ e=-1,∴ f(x)=ax4+cx2-1,f'(x)=4ax3+2cx,当x=1时,f'(1)=4a+2c=-2......①对于2x+y-2=0,当x=1时,y=0。
∴点(1,0)在f(x)图象上,a+c-1=0........②由①,②解出a=-2,c=3,因此f(x)=-2x4+3x2-1。
在线测试选择题1.设函数f(x)在x0处可导,则等于()。
A、f'(x0)B、f'(-x0)C、-f'(x0)D、-f(-x0)2.设f(x)在x0处可导,下列式子中与f'(x0)相等的是()。
(1)(2)(3)(4)A、(1)(2)B、(1)(3)C、(2)(3)D、(1)(2)(3)(4)3.曲线在点(1,1)处的切线方程是()。
A、B、C、x-2y+1=0D、x+2y+1=04.y=x3在点P(2,8)处的切线方程是()。
A、12x+y-16=0B、12x-y-16=0C、12x-y+16=0D、12x+y+16=05.y=sinx(cosx+1)的导数是()。
A、cos2x-cosxB、cos2x+sinxC、cos2x+cosxD、6.曲线y=x3-3x上切线平行于x轴的点的坐标是()。
A、(-1,2)B、(1,-2)C、(1,2 )D、(-1,2) 或(1,-2)7.的导数是()。
A、B、C、D、8.已知函数且f'(1)= ,则正实数a的值为()。
A、a=4B、a=2C、D、a>09.设f(x)=e sinx,则f'(π)为()A、1B、-1C、π2D、-π210.设y=f(e-x)可导,则y'等于()。
A、f'(e-x)B、e-x f'(e-x)C、-e-x f'(e-x)D、-f'(e-x)答案与解析答案:1. C 2. B 3. C 4. B 5. C 6. D 7. C 8. A 9. B 10. C解析:3.提示:函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率。
也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f′(x0)。
相应地,切线方程为。
解:y′= = =,,所以点(1,1)处的切线的斜率是;切线方程是,即。
4.解:,所以,在点P处的切线的斜率是12;切线方程是,即。
5.解:6.解:,又因为切线平行于x轴,所以,∴x=±1,当x=1时,y=-2;当x=-1时,y=2.7.解:设:8.解:设:,两边平方得:,整理得,解得。
9.解:设:。
例谈导数在解高考试题中的应用导数是研究函数性质中强有力的工具,特别在研究函数的单调性、最值方面有着独特的作用。
本文将依托近几年的高考试题,例谈导数在解高考试题中的应用。
一、导数在解高考选择题中的应用例1.(1993理第14题)如果圆柱轴截面的周长l为定值,那么体积的最大值为()。
A、B、C、D、解:设圆柱的底面半径为r,高为h,体积为V,则4r+2h=l,,∵ V'=lπr-6πr2, 令V'=0,得r=0或,而r>0,∴是其唯一的极值点。
当时,V取得最大值,最大值为。
∴应选A。
例2.(1995年理第11题)已知函数y=log a(2-ax)在[0,1]上是x的减函数,则a的取值范围为()。
A、(0,1)B、(1,2)C、(0,2)D、[2,+∞)解:,由题意可知:y'<0在x∈[0,1]上恒成立,∴,在x∈[0,1]上恒成立。
又a>0,∴,即,或在[0,1]上恒成立。
当时,由log a e>0得a>1.由2-ax>0得:在[0,1]上恒成立,而在[0,1]上的最小值为2,所以只需a<2。
由上讨论可知1<a<2。
注:作为选择题即可选出答案B,可以用同样的方法得出另外一种情况不成立。
例3.(1996年理第14题)母线长为1的圆锥体积最大时,其侧面展开图圆心角φ等于()。
A、B、C、D、解:设母线与底面夹角为α,则底面半径r=cosα,h=sinα,,∴, ,令V'=0, 得,而,∴,而它是唯一的极值点。
∴当时,V取得最大值,此时,此时侧面展开图圆心角,应选D。
评:上述几个选择题是当年高考中难度最大,得分率最低的选择题,但用导数求解,可以大大降低试题的难度。
二、导数在解高考解答题中的应用例1.(1991年理第24题)根据函数单调性的定义,证明:f(x)=-x3+1在(-∞,+∞)上为减函数。
分析:如果去掉证明的要求,本题就成为一个“口答题”即f'(x)=-3x20, ∴ f(x)=-x3+1在(-∞,+∞)上为减函数。
例2.(1997年理22题)甲,乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时,已知:汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a。
(I)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;(II)为了使全程运输成本最小,汽车应以多大的速度行驶?解:(I)(略解)。
(II),令y'=0,得。
当时,是该函数唯一的极值点。
∴当时,y取得最小值,即全程的运输成本最小。
当时,而v∈(0,c],所以,此时y'<0,∴在v∈(0,c]为减函数,∴当v=c时全程运输成本最低。