旋转机械振动及频谱分析

合集下载

典型振动频谱图范例

典型振动频谱图范例

典型振动频谱图范例(经典中的经典!)频谱图(Spectrum)依照物理学,旋转中物体的振动,是呈现正弦波形。

在转动机械上所量测到的振动波形,是许多零件的综合振动。

利用数学方法,可以将合成振动,利用数学方法(傅立叶转换,Fourier Transform)分解成不同零件各自的正弦波形振动。

如上图中,(a)为由机械所量测之总振动,可以分解成不同转速频率的振动(b)。

(b)图中的正弦波,由右侧方向观察,其端视图为(c),亦即所谓的频谱图(Spectrum)。

频谱图的横轴为代表转速的频率,纵轴表振动量。

若在机械主轴转速的频率出现高峰图形,表示转轴发生大的振动量。

若在倍数於主轴转速处出现高峰,而其倍数为叶轮数,代表叶轮为振动来源。

若在频率极高区域出现高峰,则一般为轴承发生问题。

? ?????????频谱分析利用频谱图中频率分布特性,可以判断机器之振源。

常见频谱图形如下表摘要说明:??转子不平衡,分为两轴承间、两轴承外~??∙两轴承间不平衡,细分为三种:1.静不平衡 Static Unblance ∙振动频率为 1倍转速(1×RPM)。

∙径向振动大,轴向小。

∙两轴承径向呈同相(In Phase)运动,两相角相差0°,同轴承垂直与水平相位差90°。

2.偶不平衡 Couple Unblance ∙径向振动大,轴向有可能大。

∙振动频率为 1倍转速(1×RPM)。

∙两轴承径向呈反相(Out of Phase)运动,两相角相差180°,同轴承垂直与水平相位差90°。

3.动不平衡同上∙径向振动大,轴向有可能大。

∙振动频率为 1倍转速(1×RPM)。

∙两轴承径向呈不同相运动。

∙两轴承外不平衡∙? ?∙??∙??OverhungRotorUnblance ∙轴向及径向振动大。

∙振动频率为 1倍转速(1×RPM)。

∙两轴承径向呈同相(In Phase)运动,径向相位不稳定。

第二章 旋转机械振动分析基础汇总

第二章 旋转机械振动分析基础汇总

第二章 旋转机械振动分析基础振动在设备故障诊断中占了很大的比重,是影响设备安全、稳定运行的重要因素。

振动又是设备的“体温计”,直接反映了设备的健康情况,是设备安全评估的重要指标。

一台机组正常运行时,其振动值和振动变化值都应该比较小。

一旦机组振动值变大,或振动变的不稳定,都说明设备出现了一定程度的故障。

第一节 振动分析的基本概念振动是一个动态量。

图2.1所示是一种最简单的振动形式——简谐振动,即振动量按余弦或正弦函数规律周期性地变化,可以写为()ϕω+=t A y sin (3-1)f πω2=;Tf 1= 试中,y 振动位移;A 振动幅值,反映振动的大小;ϕ振动相位,反映信号在t=0时刻的初始状态;ω为圆频率;f 为振动频率,反映了振动量动态变化的快慢程度;T 为周期。

图2.1简谐振动波形图2.2给出了三组相似的振动波形:图2.2(a )为两信号幅值不等,图2.2(b )为两信号相位不等,图2.2(c )为两信号频率不等。

可见,为了完全描述一个振动信号,必须知道幅值、频率和相位这三个参数,人们称之为振动分析的三要素。

(a)幅值不等;(b)相位不等;(c)频率不等图2.2 三组相似的振动波型简谐振动时最简单的振动形式,实际发生的振动要比简谐振动复杂的多。

但是根据付立叶变换理论知道,不管振动信号多复杂,都可以将其分解为若干具有不同频率的简谐振动。

图2.3 付立叶变换图解旋转机械振动分析离不开转速,为了方便和直观起见,常以1x表示与转动频率相等的频率,又称为工(基)频,分别以0.5x、2x、3x等表示转动频率的0.5倍、2倍、3倍等相等的频率,又称为半频、二倍频、三倍频。

采用信号分析理论中的快速傅立叶变换可以很方便地求出复杂振动信号所含频率分量的幅值和相位。

目前频谱分析已成为振动故障诊断领域最基本的工具。

频谱分析所起的作用可以概括为以下两点:1)特定故障的频率特征具有必然性。

例如,转子不平衡的频率为工频,气流基振和油膜振荡等故障的频率为低频,电磁激振等故障为高频。

旋转机械振动及频谱分析.ppt

旋转机械振动及频谱分析.ppt

图10两个相差90度相位角振动 的质量块系统
图11 两个相差180度相位角振动 的质量块系统
什么是振动相位?
振动相位是以角度为单位,通常是利用频闪灯或光电头测量得到。 下图给出了,振动相位与机器振动间的关系。
在左侧图中,机器上的轴承1和轴承2之间的振动相位差为0度(同 相振动),而在右侧图中的机器,轴承1和轴承2之间的振动相位差为 180度(反相振动)。
什么是振动
当有一个作用力施加在质量块上时,如向上托起质量块,如图 二所示,质量块向上运动,弹簧在这个力的作用下被压缩。
图2 质量块被一个向上的力激励
图3 撤除作用力后质量块的响应
一旦这个质量块达到上部极限位置时,撤除作用力,质量块开
始下落。质量块将下落通过平衡位置而继续向下运动到它的下部极 限位置处如图三所示。
图9 两个同相位振动的质量块振动系统
什么是振动相位?
图10给出了,两个相位差为90度的振动系统,即#2质量块超前#1质 量块1/4周(或90度)运动,或#1质量块相对滞后#2质量块90度。
图11给出了同样的两个质量块,相位差为180度时的振动情况,在 任何时刻,#1质量块向下运动的同时,#2质量块向上运动。
1987年国务院《全民所用制公交设备管理条例》
监测和诊断的各种手段
★ 振动:适用于旋转机械、往复机械、轴承、齿轮等。
★ 温度(红外):适用于工业炉窑、热力机械、电机、电器等。 ★ 声发射:适用于压力容器、往复机械、轴承、齿轮等。 ★ 油液(铁谱) :适用于齿轮箱、设备润滑系统、电力变压器等。 ★ 无损检测:采用物理化学方法,用于关键零部件的故障检测。 ★ 压力:适用于液压系统、流体机械、内燃机和液力耦合器等。 ★ 强度:适用于工程结构、起重机械、锻压机械等。 ★ 表面:适用于设备关键零部件表面检查和管道内孔检查等。 ★ 工况参数:适用于流程工业和生产线上的主要设备等。 ★ 电气:适用于电机、电器、输变电设备、电工仪表等。

转动设备常见振动故障频谱特征及案例分析

转动设备常见振动故障频谱特征及案例分析

转动设备常见振动故障频谱特征及案例分析一、不平衡转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。

结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。

转子不平衡的主要振动特征:1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动;2、波形为典型的正弦波;3、振动频率为工频,水平与垂直方向振动的相位差接近90度。

案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm/s,轴向12.0 mm/s。

各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。

再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。

诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。

二、不对中转子不对中包括轴系不对中和轴承不对中两种情况。

轴系不对中是指转子联接后各转子的轴线不在同一条直线上。

轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。

通常所讲不对中多指轴系不对中。

不对中的振动特征:1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主;3、平行不对中在联轴节两端径向振动的相位差接近180度;4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。

案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显着,且2倍频振幅明显高于工频,初步判定为不对中故障。

旋转机械常见振动故障及原因分析

旋转机械常见振动故障及原因分析

旋转机械常见振动故障及原因分析旋转机械是指主要依靠旋转动作完成特定功能的机械,典型的旋转机械有汽轮机、燃气轮机、离心式和轴流式压缩机、风机、泵、水轮机、发电机和航空发动机等,广泛应用于电力、石化、冶金和航空航天等部门。

大型旋转机械一般安装有振动监测保护和故障诊断系统,旋转机械主要的振动故障有不平衡、不对中、碰摩和松动等,但诱发因素多样。

本文就旋转设备中,常见的振动故障原因进行分析,与大家共同分享。

一、旋转机械运转产生的振动机械振动中包含着从低频到高频各种频率成分的振动,旋转机械运转时产生的振动也是同样的。

轴系异常(包括转子部件)所产生的振动频率特征如表1。

二、振动故障原因分析1、旋转失速旋转失速是压缩机中最常见的一种不稳定现象。

当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。

这样失速区会以某速度向叶栅运动的反方向传播。

实验表明,失速区的相对速度低于叶栅转动的绝对速度,失速区沿转子的转动方向以低于工频的速度移动,这种相对叶栅的旋转运动即为旋转失速。

旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。

在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。

强烈的旋转失速会进一步引起整个压缩机组系统产生危险性更大的不稳定气动现象,即喘振。

此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,将会引起强烈振动,使叶片疲劳损坏造成事故。

旋转失速故障的识别特征:1)振动发生在流量减小时,且随着流量的减小而增大;2)振动频率与工频之比为小于1X的常值;3)转子的轴向振动对转速和流量十分敏感;4)排气压力有波动现象;5)流量指示有波动现象;6)机组的压比有所下降,严重时压比可能会突降;7)分子量较大或压缩比较高的机组比较容易发生。

2、喘振旋转失速严重时可以导致喘振。

喘振除了与压缩机内部的气体流动情况有关,还同与之相连的管道网络系统的工作特性有密切的联系。

振动测量及频谱分析

振动测量及频谱分析

振动测量及频谱分析振动测量及频谱分析是一个在工程领域中广泛应用的技术领域。

振动测量能够对物体的振动行为进行准确测量,并通过频谱分析来分析振动信号的频率分布及能量大小。

本文将从振动测量的原理、频谱分析的方法和应用领域等方面来进行介绍。

一、振动测量的原理振动测量是利用传感器将物体的振动变化转化为电信号,再通过相应的测量仪表来实现对振动的测量。

常用的振动传感器有加速度传感器、速度传感器和位移传感器。

加速度传感器是最常见的振动传感器,它通过感受物体的加速度来测量振动。

速度传感器则通过测量物体的速度来间接测量振动,位移传感器则直接测量物体的位移变化。

振动测量通常可以采用两种方式进行:点测法和场测法。

点测法是通过将传感器直接固定在被测物体上来测量振动,适用于机械系统中的部件振动测量。

场测法则是将传感器固定在离被测物体一定距离的固定点上,通过测量传感器所在点的振动来间接测量被测物体的振动。

场测法适用于较大物体或结构的振动测量。

二、频谱分析的方法频谱分析是将振动信号转换为频谱图以进行分析的方法。

常用的频谱分析方法有傅里叶变换、功率谱密度分析和包络分析等。

1.傅里叶变换:傅里叶变换是一种将时域信号转化为频域信号的方法。

通过傅里叶变换,可以得到振动信号的频率分布特性。

傅里叶变换可以表示为:\[ X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt \]其中,X(f)是频域上的信号,x(t)是时域上的信号,f是频率。

2.功率谱密度分析:功率谱密度分析是一种分析振动信号频率分布密度的方法,它描述了频域上各个频率的能量大小。

功率谱密度可以通过直接对振动信号进行傅里叶变换得到,也可以通过相关函数计算得到。

3.包络分析:包络分析是一种分析振动信号包络曲线的方法。

在振动信号中,常常会存在着多个频率分量,包络分析可以将各个频率分量分离出来,得到振动信号的主要振动频率。

三、频谱分析的应用领域1.机械故障诊断:通过振动测量及频谱分析可以检测机械系统中的振动异常,进而判断机械系统的故障类型和严重程度。

旋转机械振动及频谱分析

旋转机械振动及频谱分析

旋转机械振动及频谱分析
旋转机械振动是指由于旋转机械内部的不平衡、错位、传动链条松弛
等原因引起的振动现象。

这种振动不仅会影响机械设备的正常运行,还会
对设备的寿命和工作效率产生不利影响。

因此,对旋转机械振动进行频谱
分析是非常重要的。

频谱分析是振动分析中最常用的一种方法,它将振动信号分解为不同
频率的成分,并通过频谱图来表示。

在旋转机械振动的频谱分析中,通常
使用傅里叶变换将时域信号转换为频域信号。

通过频谱分析,可以获得机
械振动信号的频率、振幅和相位等信息。

另外,频谱分析还可以判断机械振动是否超过了允许范围。

在设备正
常工作时,机械振动通常都是存在的,但是如果振动超过了设备的允许范围,则可能会导致机械的故障和损坏。

通过频谱分析,可以将机械的振动
信号与设备的允许范围进行对比,及时发现问题并采取相应的修复措施。

在进行频谱分析时,需要注意一些技术和操作细节。

首先,要选择合
适的传感器和采样频率,以确保采集到准确可靠的振动信号。

其次,还需
要选择合适的频谱分析方法和工具,以确保分析结果的准确性和可靠性。

最后,还需要对分析结果进行合理解读和判断,以及采取相应的修复措施。

如何利用VIB07机械振动分析仪的频谱图来判断设备故障类型?

如何利用VIB07机械振动分析仪的频谱图来判断设备故障类型?
至存在这些峰的谐频,指示磨损非常严重的轴承。 油膜涡动:油膜涡动是激起 0.38 x RPM 至 0.48 x RPM 间频率振动的油膜,振动由异
常大的裕量和小的径向载荷导致,它对油膜施加一个压力,驱使轴沿轴承运动。油膜涡动可 导致油不对轴润滑。改变油的粘度和压力,和有关负荷也会影响油膜涡动。
频谱如图:
频通常占主导。基本皮带通过频率 FBF 按如下公式计算: FBF = π (D/L) RPM FBF = 基本皮带通过频率 D = 皮带轮直径 L = 皮带长度 RPM =ቤተ መጻሕፍቲ ባይዱ皮带轮 D 的转速(Hz) 频谱如图:
基本皮带频率总是小于 1x RPM。 皮带轮偏心产生高的径向 1x 成分振动,特别在与皮带平行的方向 (径向指从传感器到 皮带轮中心的方向)。 皮带轮对中不良产生轴向 1xRPM 振动和皮带基本波动频率 FBF 的轴向谐频。 如果皮带的张力不正确,皮带产生 固有频率的振动,这个频率在一个大 的范围内取值。 11.风机问题 风机通常在叶片上产生不均颗粒附着,特别是风机工作的介质空气或气体具有高颗粒浓 度的场合,这些不均附着导致不平衡。如果叶片变形,裂纹或断裂,叶片通过频率峰值将增 加。如果叶片数量很多,叶片通过频率有时会出现边频带。 叶片通过频率 , bpf = 叶片数乘以转速 频谱如图:
400‐628‐9668
KM Instrument
12.泵问题 离心泵的一个显著的振动成分发生在叶片通过频率,BPF (叶片数乘以转速)。如果 BPF
振动值增加,可能是由于泵的内部问题,如对中不良或损坏的叶片, BPF 谐频也可能出现。 下面的 FFT 包含高频宽带噪声,表明存在由于低出口压力引起气蚀。 频谱如图:
在无缺陷的齿轮箱,相对主导的音调出现在啮合频率,即齿轮的齿数乘以转速(RPM 频 率)。当齿轮箱使用过一段时间齿轮啮合成分降低,因为齿的边缘被稍微磨圆。然而,继续 磨损会使啮合振动水平再次增加。这个振动水平也受到齿轮轴的对中的影响 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F 是防止事故和计划外停机的有效手段。
F 是设备维修的发展方向。
简易诊断和精密诊断
状态监测(简易诊断)
故障诊断(精密诊断)
内容:
内容:

识明作别确出有故故无障障故严趋障重势程分度析http://www.immot确确提or定定出.cn故故维障障修部原建位因议
由设备维修人员在现场进行
由设备诊断人员在现场或中 心进行
★ 表面:适用于设备关键零部件表面检查和管道内孔检查等。
★ 工况参数:适用于流程工业和生产线上的主要设备等。
★ 电气:适用于电机、电器、输变电设备、电工仪表等。
简谐振动的三要素

偏描振频离述幅率平振Af 衡动((FA位的rmeq置快pulei的慢tnucd最。ye))大单值位。为ht描次tp述/:秒/振/(动Hwzw的)w.规或im模次m。/o分to(rc./cminn) 。
给出消除故障的措施。防止发生同类故障。
停产一天的损失有多大?
33三000万峡M吨2W号化发水肥电轮装机机置组组7h0t损t损0pM失:失/W/电化w停w7肥w2.机0i1m万04m0小ok0tWto时,rh.损,cn失约约¥¥¥411054004万万万元元元
先进维修制度的作用
C 保证机器精度,提高产品质量
什么是振动?

什么是振动频率?
考察上图可见,在记录纸上画出的振动轨迹是一条有一定幅值的、 比较标准的正弦曲线。由振动的周期(T)可以计算出振动的频率。如 下图所示:频率的单位是用CPM或用Hz表示(1Hz=60 CPM)。

状态监测和故障诊断的过程
正常
开始
参数
维修
检测
搜集 征兆
htt状 判p:态 别/正常 /www异常 .i故 原mm障 因ot定 分or位 析.cn


趋势 分析
决策


定期检测
缩小故障范围
状态监测和故障诊断的作用
C 监测与保护
C C
分处监判析理测断与与机故诊预器障断防工性作质状、ht态程tp。度:/发和/w现部ww故位.i障。mm及分ot时析o报r故.警c障n,原并因隔。离故障。
变转速:波德图和极坐标图、三维频谱图、坎贝尔图、
轴心位置图
典型机械故障特征及频谱图
现场动平衡原理
诊断实例
状态监测和故障诊断

什么是状态监测和故障诊断?
在设备运行中或在基本不拆卸的情况下,
通过各种手段,掌握设备运行状态,

判并定预产测生、h故预tt报障p:设的//w备部ww未位.i来和mmo的原to状因r.态,cn。
图6 振动波形的是一个振动部件相对于机器的另一个振动部件在某一固定 参考点处的相对移动。也就是说振动相位是某一位置处的振动运动相对 于另一位置处的振动运动,对所发生位置变化程度的度量。振动相位是 一个很有用的设备故障诊断工具。如下图所示,给出了两个彼此同相位
的现代化水平。 1987年国务院《全民所用制公交设备管理条例》
监测和诊断的各种手段
★ 振动:适用于旋转机械、往复机械、轴承、齿轮等。
★ 温度(红外):适用于工业炉窑、热力机械、电机、电器等。
★ 声发射:适用于压力容器、往复机械、轴承、齿轮等。
★ ★ ★ ★
油无压强力度液损::(检适适铁 测用用谱 :于于采)液工用h:t压程物t适p系结理:用/统构化/于w、、学w齿w流起方.轮i体重法m箱m机机,o、械械t用o设、、于r备.内锻关c润n燃压键滑机机零系和械部统液等件、力。的电耦故力合障变器检压等测器。。等。
图1 质量块位于平ht衡tp位:/置/且ww没w.有i任mm何ot力or的.作cn用
振动传感器安装在轴承座上,传感器将拾取振动信号,并将此 振动信号通过电缆线传入到振动分析仪,如上图所示,这个在机器 轴承座上测量振动的过程可模型化为一个质量块悬挂在弹簧上。在 没有力的作用之前,它一直保持静止处于平衡位置处。
振动的基础知识及振动测量
状态监测与故障诊断概述
简谐振动三要素
振动波形

频 旋 传 基 旋 定率 转 感 频 转 转h分 机 器 分 机 速tt析 械 及 量 械 :p:和 振 其 幅 的 波//频 动 选 值 振 形ww谱 测 用 和 动 图w.图 量 相 图 、i框 位 示 频mm图 的 谱ot测 图or量 、.cn轴心轨迹
什么是振动
当有一个作用力施加在质量块上时,如向上托起质量块,如图 二所示,质量块向上运动,弹簧在这个力的作用下被压缩。

图2 质量块被一个向上的力激励
图3 撤除作用力后质量块的响应
一旦这个质量块达到上部极限位置时,撤除作用力,质量块开 始下落。质量块将下落通过平衡位置而继续向下运动到它的下部极 限位置处如图三所示。
C C C
减减防少少止意维事h外修故ttp停时,://车间杜ww引和绝w.i起维灾mmo的修难to生r费性.c产用故n 损(障失人力和财力)
C 改善环境,改善企业形象
投资获得最大和最长远的回报
国家有关的条例摘录
逐步采用现代故障诊断和状态监测技术,发展以状态监测为基
础备的状企预态业知监应维测当修为积体基极制础采19。的用83设h先年t备t进国p维:的家/修/设经w方w备委w法.管《i,m理国m不o方营t断o法公r提.和交c高n维设设修备备技管管术理理,试和采行维用条修例以技》设术
x
周期 T = 1/f 为每振动一次所需的时间,单位为秒。
圆频率 ω = 2π f 为每秒钟转过的角度,单位为弧度/秒
初相角 ϕ (Initial phase)
描述振动在起始瞬间的状态。
什么是振动?
振动就是机器或机器零件从其平衡位置所做的往复运动。 振动有三个重要的可测量的参数:幅值、频率、相位。
什么是振动?
当质量块达到下部极限位置时,它将停止向下运动,而再次改 变方向通过平衡位置处移动到上部极限位置;然后停止而再返回到 下部极限位置。

图4 对施加的激励力连续响应 图5 在恒速运动的记录纸上记录质量块的振动
如果将一只铅笔固定在这个作往复运动的质量块上,然后将记 录带靠近它,这时质量块的振动响应就会被记录下来。
相关文档
最新文档